荧光素FITC标记抗体的方法

荧光素FITC标记抗体的方法
荧光素FITC标记抗体的方法

荧光素FITC标记抗体的方法

当FITC在碱性溶液中与抗体蛋白反应时,主要是蛋白质上赖氨酸的r氨基与荧光素的硫碳胺键(thiocarbmide)结合,形成FITC-蛋白质结合物,即荧光抗体或荧光结合物。一个IgG分子中有86个赖氨酸残基,一般最多能结合15~20个,一个IgG分子可结合2~8个分子的FITC,其反应式如下

FITC-N=C=S + N-H2-蛋白质→ FITC-NS-C-N-H2-蛋白质

常用Marsshall(1958)法标记荧光抗体,也可以根据条件采用Chadwick等标记法或Clark等(1963)的透析标记法。

1.Marsshall法

(1)材料抗体球蛋白溶液、0.5mol/L(pH9.0)碳酸盐缓冲液、无菌生理盐水、异硫氰酸荧光

素、1%硫柳汞水溶液、50ml小烧杯、4℃冰箱、电磁搅拌器、透析袋、玻棒、pH7.2或

3.0的0.01mol/LPBS等。

(2)方法及步骤①抗体的准备取适量已知浓度的球蛋白溶液于烧杯中,再加人生理盐水及碳酸盐缓冲液,使最后免疫球蛋白浓度为

20mg/ml,碳酸盐缓冲液容量为总量的1/10,混匀,将烧瓴置电磁搅拌器上(速度适当以不起泡沫为宜)5~10min。

②荧光素的准备根据欲标记的蛋白质总量,按每毫克免疫球蛋白加0.01mg荧光色素,用分析天平准确称取所需的异硫氰酸荧光素粉末。也可用下述公式计算出免疫球蛋白、荧光素的量,还可以算出需加缓冲液的量。

a.蛋白溶液:含量Amg/m1;容积Bml。

b.总蛋白量(AXB)=Crag。

c.C/20~C/10=Dmg(如蛋白含量低于20mg/ml,用C/10;如高于20mg/ml,用C/20)。

d.荧光素FITC的量:(1/50~2/100)XC=Emg。

e.巳0.5mol/L(pH9.5)碳酸盐缓冲液D/10=Fml。

f.PBS量D-(B+F)=Gml。

注:A为蛋白含量,mg/ml;B为蛋白质溶液的容积;C为蛋白总量,mg;D为常数,mg;正为荧光素的量,mg;F为碳酸盐缓冲液的容积,ml;G为PBS的容积,ml。

③结合(或标记) 边搅拌边将称取的荧光色素渐渐加入球蛋白溶液中,避免将荧光素粘于烧瓶壁(大约在5—10min内加完),加完后,继续避光搅拌12h左右。结合期间应保持蛋白溶液于4℃左右,故需将烧杯和搅拌器一起移人4℃冰箱中。

④透析结合完毕后,将标记的球蛋白溶液离心(2500r/

min)20rain,除去其中少量的沉淀物,装入透析袋中,再置于烧杯中,用pH8.0缓冲盐水透析(0~4~C)过夜。

⑤过柱取透析过夜的标记物,通过葡聚糖凝胶SephadexG-25或G—50柱,分离游离荧光素,收集标记的荧光抗体进行鉴定。洗脱液:0.01mol/L磷酸盐缓冲液(pH7.2);过滤量:12ml标记全球蛋白液(过滤前未透析);收集量:20ml(稀释1.7倍左右)。

2.Chadwick法

(1)试剂和材料抗体球蛋白溶液、异硫氰酸荧光素、3%碳酸钠水溶液、0.01mol/L pH8.0PBS、1%硫柳汞、离心机及离心管、烧杯(25ml)搅拌器、无菌吸管,无菌吸管及毛细滴管、烧杯(500ml)透析袋等。

(2)方法及步骤①抗体准备用o~4~C的pH8。0磷酸盐缓冲盐水将球蛋白溶液稀释至浓度为30~40mg/ml,置入25ml烧杯内,放于冰槽中。

②荧光色素准备按每毫克免疫球蛋白加入荧光素0.01rug计算,称取所需的荧光素,用3%碳酸钠水溶液溶解。

③将准备的抗体与荧光色素溶液等量混合,充分搅匀,在o~4~C 冰箱中结合(最好在磁力搅拌机上持续搅拌)18~24h。

④透析和柱层析方法同Marsshall法。

3.改良法

(1)试剂和材料①0.01mol/L(pH7.2)PBS配法中,校定pH 至7.2。NaCi 18g、Na2HP04 1.15g,溶于2000ml蒸馏水

②0.5mol/L(pH9.0)碳酸盐缓冲液配法取0.5mol/LNazCOs(5.3%)10ml加入0.5mol/LNaHC03(4.2%)90ml,混合后,校定pH至9.0。

③3%碳酸钠水溶液配法称L 5g无水碳酸钠充分溶解于50ml

灭菌蒸馏水中即成。

④其他试剂和材料l%叠氮化钠、离心机及离心管、烧杯(25m1)、搅拌器、无菌吸管及毛细滴管、烧杯(500m1)透析袋等。

(2)方法及步骤①取高效价的抗人球蛋白兔免疫血清,分离球蛋白,用盐水(0.15mol/LNaCl)及缓冲液(0.5mol/

LNaHC03—Na2C03,pH9.0)稀释使每毫升内含蛋白质lOmg,缓冲液为总量的10%,降温至4℃。

②加入异硫氰酸盐(FITC)荧光素[蛋白:荧光素=

(50—80)mg‘lmg],在0~4℃

下电磁搅拌12~14h。

③然后用半饱和的硫酸铵将标记球蛋白沉淀分离,除去未结合的荧光素,再用缓冲盐水透析,除去硫酸铵(用Nessler试剂测验,至隔夜透析的盐水无氨离子及荧光色素为止)。

④将制备好的荧光抗体加叠氮化钠o.01%,分装在lml安瓿中,或冻干,保存于冰箱中(4℃)可以用半年以上,一20~C保存可达2

年以上。

4.透析标记法

此法适用于小量抗体的荧光素标记,标记简便,非特异性染色较少。

(1)试剂和材料试剂和材料同改良法。

(2)方法及步骤①用0.025mol/L碳酸盐缓冲液pH9.0,将欲标记免疫球蛋白稀释成1%浓度,装入透析袋中。

②用同一缓冲液将FITC配成0.1mg/ml的溶液,按10mg/ml球蛋白溶液体积的10倍,将FITC稀释液盛于圆柱形容器内,并使透析袋浸没于FITC液中。

③容器顶端盖紧,底部放搅拌棒,在4~C电磁搅拌下透析标记24h。取出透析袋中标记液,即刻用SephadexG50凝胶过滤,去除游离荧光素,分装,贮存于4℃中。

FITC

CAS#:3326-32-7

中文名:异硫氰酸荧光素

英文名:Flourescein iso-thiocyanate;FITC

结构式:

分子式:C21H11NO5S

分子量:389.38

性质:

1. 外观:黄色粉末

2. 纯度:≥95% (HPLC)

3. 产品描述:

FITC能和各种抗体蛋白结合,结合后的抗体不丧失与一定抗原结合的特异性,并在碱性溶液中具有强烈的黄绿色荧光。通过在荧光显微镜下观察或流式细胞仪分析可对相应抗原进行定性、定位或定量的检测。用于医学,农学和畜牧等方面,可对由地细菌病毒和寄生虫等所致疾病进行快速诊断。

4. FITC标记抗体流程:

(1)将待交联的蛋白(浓度≥1mg/mL)对交联反应液透析三次4 ℃,至pH=9.0。交联反应液配制方法:7.56g NaHCO3,1.06g Na2CO3,7.36g NaCl,加水定容至1 L。

(2)将FITC溶于DMSO中,浓度为1mg/mL。每次交联使用的FI TC均应新鲜配制,避光。

(3)按P:F(蛋白质:FITC)=1mg:150μg 的比例将FITC缓慢加入于抗体溶液中,边加边轻轻晃动使其与抗体混合均匀,暗处4 ℃反应8 h。

(4)加入5mol/L的NH4Cl至终浓度50mmol/L,4 ℃终止反应2 h。

(5)将交联物在PBS中透析四次以上,至透析液清亮。

(6)交联物的鉴定

蛋白浓度(mg/mL) = [ A280–0.31×A495] / 1.4

F/P比例: 3.1×A495/ [A280–0.31×A495],该值应介于2.5 ~ 6.5之间。

(7)FITC交联的蛋白应置于pH 7.4的磷酸盐缓冲液中,加入0.1% NaN3、1% BSA,4℃避光保存。

储存条件:4℃避光保存

常用抗体标记荧光染料的特性及其应用

常用抗体标记荧光染料的特性及其应用 1、FITC:激发波长488nm,最大发射波长525nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL1通道检测; 3)可用于荧光显微镜技术 4)荧光强度易受PH值影响,PH值降低时其荧光强度减弱。 2、Alexa Fluor 488:激发波长488nm,最大发射波长519nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL1通道检测; 3)具有超乎寻常的光稳定性,非常适用于荧光显微镜技术; 4)在较宽的PH值范围内保持稳定(PH4~10)。 3、Cy3:激发波长488nm,最大发射波长570nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL2通道检测; 3)适用于荧光显微镜技术; 4)为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于P E。 4、Cy5:激发波长633/635nm,最大发射波长670nm。 1)其标记的抗体适用于所有配备633nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL4通道检测;

3)适用于荧光显微镜技术; 4)同样为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于APC。 5)与单核和粒细胞非特异性结合多,易出现假阳性结果。 5、PE:激发波长488nm,最大发射波长575nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL2通道检测; 3)其荧光泯灭性强,不适用于传统的荧光显微镜技术,但适用于激光共聚焦显微镜技术。 6、PE-TR:激发波长488nm,最大发射波长615nm。 1)在Beckman Coulter流式细胞仪的FL3通道检测; 2)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。 7、PE-Alexa Fluor 610:激发波长488nm,最大发射波长628nm。 1)在Beckman Coulter流式细胞仪的FL3通道检测; 2)荧光强度高; 3)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。 8、PE-Alexa Fluor 647:激发波长488nm,最大发射波长668nm。 1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测; 2)不易湮灭;

几种常见荧光素极其特性介绍

几种常见荧光素极其特性介绍 荧光素(英语:Fluorescein,又称为荧光黄)是一种合成有机化合物,它是具有光致荧光特性的染料,外观为暗橙色/红色粉末,可溶于乙醇,微溶于水,在蓝光或紫外线照射下,发出绿色荧光。荧光染料种类很多,目前常用于标记抗体的荧光素有以下几种:异硫氰酸荧光素,四乙基罗丹明,四甲基异硫氰酸罗丹明,酶作用后产生荧光的物质。目前荧光素广发应用在免疫荧光、免疫荧光染色实验中。 下面介绍几种常用荧光素及其基本生物学特性: 1、异硫氰酸荧光素,简称“FITC”。是一种小分子荧光素,其效率取决于于溶液的pH 值,因此,在使用FITC时应注意溶液的酸碱度。FITC分子量为389.4,最大吸收光波长为490~495nm,最大发射光波长为520~530nm,呈现明亮的黄绿色荧光。 FITC在冷暗干燥处可保存多年,是目前应用最广泛的荧光素。其主要优点是人眼对黄绿色较为敏感,通常切片标本中的绿色荧光少于红色。 2、藻红蛋白,简称“PE”。相对分子质量较大,约为240kD,最大吸收峰为564nm,当使用488nm激光激发时其发射荧光峰值约为576nm,故可能会对其它大探针产生空间位阻。 但PE的化学结构非常稳定,有很高的荧光效率,并易与抗体分子结合。需要注意的是PE作为天然染料,因来源不同可能造成荧光素结构上的微小差别,导致其特征的不一致。 3、PI和EB。两者都具有嵌入到双链DNA和RNA的碱基对中并与碱基对结合的特异性。为了获得特异的DNA分布,染色前必须用RNA酶处理细胞,排除双链RNA的干扰。 PI和EB不能进入完整的细胞膜,因此,又可以用于检测死活细胞。PI和EB各种理化性质相似,但PI比EB的发射光光谱峰向长波方向移动,因而在做DNA和蛋白质双参数测量时,PI的红色荧光和FITC的绿色荧光更易于区分和测量。另外,PI比EB测得的DNA 分布的变异系统(CV值)低,所以PI得到更广泛的应用。

荧光素标记抗体方法

荧光素标记抗体技术 (一) 原理 目前用于抗体标记的荧光素主要有异硫氰酸荧光素(Fluorescein isothiocy nate,FITC)或罗达明(Lissamine rhodamine B200, RB200)。在硷性条件下FITC 的碳酰胺键可与抗体赖氨酸的ε氨基共价结合,标记后的抗体仍保持与相应抗原结合的能力。在荧光灯源紫外线或兰紫光激发下产生黄绿色荧光,通过在荧光显微镜下观察或流式细胞仪分析可对相应抗原进行定性、定位或定量的检测。 (二) 操作步骤 将纯化的IgG抗体对PH9~9.5碳酸盐缓冲液透析过夜, 透析后抗体液移入小烧杯中 ↓ 称取适量IFTC,加入二甲亚砜(DMSO)(FITC~1mg/1ml DMSO) 使终浓度为1mgFITC/1mlDMSO FITC/IgG比例:如IgG浓度为1mg/ml,FITC/IgG比例约为50μgFI TC/mgIgG; 如IgG为5~10mg/ml,则比例为25μgFITC/ml IgG 在10ml小烧杯中先放入抗体 ↓ 按上述比例将FITC-DMSO溶液逐滴加入透析后的抗体溶液中 ↓ 将标记物用PBS加至2.5ml,磁力搅拌器室温下避光搅拌2h ↓ 用PD10柱(Sephadex G25柱)除去游离荧光素,先用25ml PBS淋洗G2 5柱 ↓

收集PBS洗脱第一个荧光素结合蛋白峰,测定F/P 比值。第二个荧光素峰为游离荧光素 计算: 2.87×A495 F/P=──────── A280-0.35×A495 合适的F/P值为2~4。 (三) 试剂器材 1. 纯化的多克隆抗体或单克隆抗体。 2. FITC(Fluorescein-5-Lsothiocyanalte)或其它荧光色素。 3. PBS、DMSO 4. PH9~9.5碳酸盐缓冲液: Na 2CO 3 4.3g,NaHCO 3 8.6g加蒸馏水至500ml。 5. PD10柱(Sephadex G25柱) 6.磁力搅拌器,紫外分光光度计等 (四) 注意事项 1. FITC保存于4℃暗处,使用前待试剂瓶升至室温时开盖称取,以避免潮解。 2. FITC-DMSO液要临用时配制。 3. 碳酸盐缓冲液要新鲜配制。 如有侵权请联系告知删除,感谢你们的配合!

标记抗体技术

标记抗体技术 免疫标记技术是将一些既易测定又具有高度敏感性的物质标记到特异性抗原或抗 体分子上,通过这些标记物的增强放大效应来显示反应系统中抗原或抗体的性质与含量。常用的标记物包括荧光素、酶和放射性核素等,用这3种标记物进行标记的免疫检测技术被称为3大免疫标记技术。目前,使用的免疫标记物还有化学发光物质、铁蛋白和胶体金等。 一、辣根过氧化物酶(HRP)标记抗体 a. 辣根过氧化物酶(Horseradish Peroxidase, HRP ) HRP广泛分布于植物界,它是由无色的酶蛋白和棕色的铁卟啉结合而成的糖蛋白,糖含量18%。HRP由多个同功酶组成,分子量为40,000,等电点为pH3~9,酶催化的最适PH因供氢体不同而稍有差异,但多在pH5左右。酶溶于水和58%以下的硫酸铵溶液。HRP的辅基和酶蛋白最大吸收光谱分别为403nm和275nm,一般以OD403nm /OD275nm 的比值RZ(德文Reinheit Zahl)表示酶的纯度。 HRP的催化反应需要底物过氧化氢(H2O2)和供氢体(DH2)。供氢体多为无色的还原型染料,通过反应可生成有色的氧化型染料(D)。 HRP DH2+H2O2──────→D+2H2O b. 辣根过氧化物酶标记方法 酶标记抗体的制备方法主要有两种,即戊二醛交联法和过碘酸盐氧化法。 辣根过氧化物酶的标记常用过碘酸盐氧化法,这种方法法只适用于含糖量较高的酶。过碘酸钠将HRP分子表面的多糖氧化为醛基,醛基与抗体分子上的氨基形成Schiff 碱而结合。后者可进一步用NaBH4(或乙醇胺)还原生成稳定的酶标记抗体。 在酶标过程中一般都混有未结合的酶和抗体。游离酶理论上不影响最终的显色。但游离的抗体则不同,它会与酶标抗体竞争固相抗原,从而减少了结合到固相上的酶标抗体的量。因此需要对制备的酶结合物进行纯化,去除游离的酶和抗体。纯化的方法很多,

生物素标记EMSA探针-AP1

生物素标记EMSA探针-AP1 产品简介: 生物素标记EMSA探针-AP1是用于EMSA(也称gel shift)研究的并经生物素(Biotin)标记的AP1 consensus oligonucleotide。 这个生物素标记的双链寡核苷酸含有公认的AP1结合位点,可以用作EMSA研究时的探针。 AP1 consensus oligo的序列如下: 5’-CGC TTG ATG ACT CAG CCG GAA-3’ 3’-GCG AAC TAC TGA GTC GGC CTT-5’ 本生物素标记EMSA探针已经过纯化,可以直接用于EMSA结合反应。 本生物素标记EMSA探针可以和碧云天的化学发光法EMSA试剂盒(GS009)配套使用。 一个包装的生物素标记探针可以进行约200-400个样品的EMSA检测。 保存条件: -20℃保存,一年有效。 注意事项: 避免加热到40℃以上,温度过高会导致双链DNA探针解聚成单链。而单链无法用于EMSA研究。 对于基于生物素标记的EMSA检测的详细操作可以参考碧云天的化学发光法EMSA试剂盒(GS009)的使用说明。 为了您的安全和健康,请穿实验服并戴一次性手套操作。 使用说明: 1.本生物素标记EMSA探针用于EMSA结合反应时,参考如下步骤进行: A.如下设置EMSA结合反应: 阴性对照反应: Nuclease-Free Water 7-7.5μl EMSA/Gel-Shift 结合缓冲液(5X) 2μl 细胞核蛋白或纯化的转录因子 0μl 生物素标记探针 0.5-1μl 总体积 10μl 探针冷竞争反应: Nuclease-Free Water 4-4.5μl EMSA/Gel-Shift 结合缓冲液(5X) 2μl 细胞核蛋白或纯化的转录因子 2μl 未标记的探针 1μl 生物素标记探针 0.5-1μl 总体积 10μl Super-shift反应: Nuclease-Free Water 4-4.5μl EMSA/Gel-Shift 结合缓冲液(5X) 2μl 细胞核蛋白或纯化的转录因子 2μl 目的蛋白特异抗体 1μl 生物素标记探针 0.5-1μl 总体积 10μl 样品反应: Nuclease-Free Water 5-5.5μl EMSA/Gel-Shift 结合缓冲液(5X) 2μl 细胞核蛋白或纯化的转录因子 2μl 生物素标记探针 0.5-1μl 总体积 10μl 突变探针的冷竞争反应: Nuclease-Free Water 4-4.5μl EMSA/Gel-Shift 结合缓冲液(5X) 2μl 细胞核蛋白或纯化的转录因子 2μl 未标记的突变探针 1μl 生物素标记探针 0.5-1μl 总体积 10μl

抗体标记技术汇总

第1章抗体分子标记技术 第一节抗体的I125标记法 基本原理 有多种方法可用于蛋白质的碘标记,如应用化学法或酶促法通过氧化对蛋白质分子进行碘化是常用的方法。当应用化学氧化法时,碘化钠(NaI)遇强氧化剂,碘离子被氧化为碘分子,所生成的自由碘分子可与某些基团进行卤化反应。蛋白质分子可进行卤化反应的基团主要为酪氨酸残基,某些组氨酸残基也可能进行碘化。在应用氯胺T(Chloramine T)法的实验中,所用的氧化剂(1,3,4,6-tetrachloro-3α, 6α -diphenyl-glucoluril)是溶于强挥发性的有机溶剂中。该溶剂加入试管后,先让其挥发(即让氧化剂将试管包被),然后把Na125I和蛋白质液加入包被好的试管中,反应完成即将混合液移入他管,以终止反应。 试剂及仪器 ●经亲和层析纯化的多克隆抗体或单克隆抗体 ●0.5 mol/L磷酸钠缓冲液,pH 7.5 (配法见附录1) ●无载体的Na125I 3.7GBq/ml ( 100 mCi/ml ) 的NaOH液 ●凝胶过滤柱 ●γ-记数器 ●100g/L 三氯醋酸 ●70% 乙醇 ●玻璃纤维滤 ●氯胺T (Chloramine T)反应用 * 新鲜制备的含2mg/ml氯络胺T的 0.5 mol/L磷酸钠缓冲液(pH 7.5); * 氯胺T 反应终止缓冲液: 2.4mg/ml 偏重亚硫酸, 10mg/ml 酪氨酸, 10%甘油, 1g/L Xyene cyanol 的PBS 液。 操作步骤 *注意:125I 对健康有害,需要保护措施。在应用125I 应先有关同位素知识,及在有关部门的监测下,按放射线同位素的应用及处置要求进行。 (一)氯胺T法 1.用1.5ml Ependof 管,加10μl 抗体及pH 7.5的0.5 mol/L磷酸钠缓冲液总体积至25μl; 2.加500 μCi 的Na125I ,混匀; 3.加25μl 2mg/ml 氯胺T液,混匀; 4.在室温下培养1分钟; 5.加入50μl氯胺T 反应终止缓冲液(以饱和的酪氨酸来捕获游离的 Na125I); 6.通过凝胶过滤层析分离将碘化抗体与碘化酪氨酸分离。将反应混合液上1ml的凝胶过滤层析柱,分部收集洗脱液100μl/管,碘化抗体在开始的组分排出。应用γ-记数器监测各组分; 7.收集、合并含碘化抗体的各管;

DNA3’端生物素标记

1、准备工作: A、取出TdT Buffer (5X)、Biotin-11-dUTP和Ultrapure water溶解,并置于冰浴上备用。 B、取出待标记的单链EMSA探针,用水稀释至1μM,并置于冰浴上备用。如果待标记的EMSA探针为双链, 95℃加热2分钟,然后立即放置到冰水浴中,使双链的EMSA探针转变为单链的探针,然后同样用水稀 释至总的单链DNA浓度为1μM,即每条单链的浓度为0.5μM,相当于最初双链的EMSA 探针浓度为0.5μM。 2、DNA探针的标记: Ultrapure water 29μl TdT Buffer(5X) 10μl 待标记探针(1μM) 5μl Biotin-11-dUTP(5μM) 5μl TdT(10U/μl) 1μl 总体积 50μl A、参考上述设置反应体系。注:对于双链的EMSA探针的标记反应,建议一次做两管,即总体积共100μl,以最终获得足够的生物素标记EMSA探针用于后续EMSA检测。 B、用枪轻轻吹打混匀,切勿vortex。37℃孵育30分钟。 C、加入2.5μl 探针标记终止液,轻轻混匀终止反应。 3、TdT的去除: A、探针标记反应终止后,加入52.5μl氯仿-异戊醇(24:1),vortex使有机相和水相充分混合以抽提TdT(说明:静止后有机相和水相会很快分层)。 B、12000-14000g离心1-2分钟。吸取上清备用。上清即为被生物素标记的单链DNA探针。 4、探针的纯化(选做): 通常为实验简便起见,可以不必纯化标记好的探针。有些时候,纯化后的探针会改善后续实验的结果。 如需纯化,可以按照如下步骤操作: A、对于100μl标记好的探针,加入1/4体积即25μl的5M醋酸铵,再加入2体积即200μl的无水乙醇,混匀。 B、-70℃至-80℃沉淀1小时,或-20℃沉淀过夜。 C、4℃,12,000g-16,000g离心30分钟。小心去除上清,切不可触及沉淀。 D、4℃,12,000g-16,000g离心1分钟。小心吸去残余液体。微晾干沉淀,但不宜过分干燥。 E、加入50μl TE,完全溶解沉淀。标记好的探针可以-20℃保存。 5、生物素标记探针标记效率的检测: A、取5μl Biotin-Control Oligo(0.4μM),加入196μl TE,混匀,稀释成10nM Biotin-Control Oligo(作为标准品)。取出适量10nM Biotin-Control Oligo,依次稀释成5nM、2.5nM、1nM、0.5nM和0.25nM。 B、取3μl步骤3B所获得的生物素标记的DNA探针(100nM),加入27μl TE,混匀,稀释成10nM 生物素标记的探针(作为待测样品)。取出适量的10nM 生物素标记的探针,依次稀释成5nM、2.5nM、1nM、0.5nM和0.25nM。 C、参考下面的表格,取一适当大小的带正电荷尼龙膜,在膜上做好相应标记。对于经过

生物素标记抗体的免疫荧光方法

生物素标记抗体的免疫荧光方法 *重要提示:在开始实验前请查阅所用抗体的说明书中第一页应用(APPLICATIONS)部分,确认这支抗体已经验证过可用于你计划采用的本实验方法中的特定方案。 A.所需溶液和试剂 注意:用Milli-Q超纯水或是相当级别的水配制溶液。 1.10 X磷酸盐缓冲液(PBS): 1升水中加入80 g 氯化钠(NaCl), 2 g 氯化钾(KCl), 14.4 g 磷 酸氢二钠(Na2HPO4) and 2.4 g 磷酸二氢钾(KH2PO4)。调整pH到7.4。 2.甲醛溶液,16%,无甲醇的类型,Polysciences, Inc. (cat# 18814) ,现配现用。开封 以后放在4°C避光保存。使用时用PBS稀释。 3.二甲苯 4.无水乙醇,组织学级,100%和95%。 5.蒸馏水(dH2O) 6.封闭缓冲液:配制25ml时,2.5 ml 10X PBS和1.25ml正常血清(来源与二抗相同, 例如正常山羊血清,正常驴血清)兑到21.25ml的蒸馏水中,混匀。边搅拌边加入75μL Triton X-100(100%) 7.抗体稀释缓冲液配置40ml时,取4 ml 10X PBS兑入36 ml蒸馏水,混匀。加入0.4 BSA,使溶解。边搅拌边加入120μL Triton X-100(100%)。 8.10 mM 柠檬酸钠缓冲液配置1L时,称取2.94g二水合柠檬酸三钠(C6H5Na3O7?2H2O) 溶解在1L蒸馏水中。调整pH为6.0。 9.荧光素标记的抗生物素蛋白Avidin/Streptavidin 注意:第一次使用不论是一抗还是荧光素标记的抗生物素蛋白Avidin/Streptavidin时,都需要做滴定分析以判断何种稀释比例能在你的样品上得到最强的特异信号同时背景保持最低 11.Prolong? Gold 抗淬灭试剂(Invitrogen, Eugene, OR, Cat# P36930) B.样品制备 I.细胞系培养物来源(IF-IC) 重要提示:查阅说明书中APPLICATIONS部分,确认所用抗体可用于IF-IC。 注意:细胞应直接在多孔板,腔室玻片或是盖玻片上直接培养,处理,固定和染色。 1.用PBS稍加润洗。 2.吸去PBS,将细胞泡在2-3 mm厚的2-4%甲醛溶液(PBS配制)中。 注意:甲醛有毒,需要在通风橱中操作。 3.室温下固定细胞15分钟。 4.吸去固定剂,用PBS润洗三次,每次五分钟。 5.甲醇打孔步骤(是否需要参考抗体说明首页)在甲醛固定后,将细胞浸泡在冰纯甲 醇中(加入足量甲醇完全盖住细胞,液层厚度在3-5mm,千万别让细胞干掉),–20°C 孵育10分钟。用PBS润洗5分钟。 6.继续C部分的免疫染色。 II.石蜡切片(IF-P) 重要提示:查阅说明书中APPLICATIONS部分,确认所用抗体可用于IF-P。 脱蜡处理/再水化 1.用二甲苯浸洗切片3次,每次5分钟。 2.用无水乙醇浸洗切片2次,每次10分钟。 3.用95%乙醇浸洗切片2次,每次10分钟 4.在蒸馏水中润湿2次,每次5分钟。 抗原暴露:

生物素标记试剂盒使用说明书

生物素标记试剂盒 使用说明书 货号: EBLK0002

产品介绍: Elabscience生物素标记试剂盒提供了生物素标记所需全部试剂,用于含有氨基(NH2-)抗体的标记。生物素已经活化,可直接使用,每个试剂盒足以完成3次标记,每次可标记0.2-2mg。试剂盒中包括6个用于抗体标记脱盐的Filtration tube,不用透析,操作简便,熟练操作90min可完成整个标记过程。 产品特点: 试剂全面:本试剂盒提供了生物素标记所需全部试剂。 快速:整个过程仅需90min。 方便:通过Filtration tube即可脱盐,无需透析或者凝胶过滤。 使用灵活:既可用于微量标记又可大量标记,每次可标记0.2-2mg。 理想的标记效果:已经优化确定了最适的标记比例,降低标记不足或由于过度标记而失活的可能性。 产品组成: 标记过程需要仪器: 1. 10ul,50ul,200ul,1000ul可调高精度移液器 2. 恒温箱(37℃) 3. 离心机(离心力可达到12,000×g) 储存条件: 本试剂盒未开封前在2-8℃可稳定保存一年

生物素标记反应原理: NH2-Reactive Biotin专一地与伯胺反应(N-末端及赖氨酸残基侧链)形成稳定的酰胺键 生物素标记NH 2 -Reactive Biotin使用量的计算: 每个反应中生物素试剂的使用量取决于待标记蛋白质的量和浓度。通过优化,我们确定了标记2mg/ml的抗体(IgG ,150KD),使用生物素和抗体的分子比为20:1能达到较理想的标记效果。 1、标记2mg/ml的抗体,使用生物素和抗体的分子比为20:1时,应加入生物素量的计算方 法: ml蛋白×2mg蛋白 ml蛋白×1mmolIgG 150,000mgIgG ×20mmol生物素 mmol蛋白 = mmol生物素 2、对于10mmol的生物素溶液,应加入反应中该生物素体积的计算方法: mmol生物素×1,000,000μL L ×L 10mmol = ul生物素 计算示例: 对于0.5ml 2mg/ml的IgG(分子量为150,000)溶液,需加入10mM的生物素溶液13.3ul。 0.5ml IgG×2mgIgG 1mLIgG ×1mmolIgG 150,000mgIgG ×20mmol生物素 1mmolIgG =0.000133mmol生物素 0.000133mmol生物素×1,000,000μl L ×L 10mmol =13.3ul生物素溶液 操作过程: 实验前准备: 1.仔细阅读使用说明书。 2.计算待使用NH2-Reactive Biotin的量。 3.提前20min从冰箱中取出试剂盒,平衡至室温(注:不需要用到的NH2- Reactive Biotin 继续放置冰箱中)。

几种常见的抗体标记方法-酶标记、荧光素标记、同位素标记、生物素标记

几种常见的抗体标记方法-酶标记、荧光素标记、同位素标记、 生物素标记 抗体标记主要有酶标记、荧光素标记、同位素标记、生物素标记等,还有一些其他的标记方法例如金标记,本文主要讲述了这些抗体标记的基本原理、操作步骤。 一、酶标记 1、辣根过氧化物酶(HRP)标记辣根过氧化物酶(HRP)标记单抗和多克隆抗体的常用方法是过碘酸钠法。其原理是HRP的糖基用过碘酸钠氧化成醛基,加入抗体IgG 后该醛基与IgG氨基结合,形成Schiff氏碱。为了防止HRP 中糖的醛基与其自身蛋白氨基发生偶合,在用过碘酸钠氧化前先用二硝基氟苯阻断氨基。氧化反应末了,用硼氢化钠稳定Schiff氏碱。这里介绍两种程序。 程序一: (1)将5mg HRP溶于0.5ml 0.1mol/L NaHCO3溶液中;加0.5ml 10mmol/L NaIO4溶液,混匀,盖紧瓶塞,室温避光作用2小时。 (2)加0.75ml 0.1mol/L Na2CO3混匀。 (3)加入0.75ml小鼠已处理的腹水,或纯化单抗等 (15mg/ml),混匀。 (4)称取Sephadex

G25干粉0.3g,加入一支下口垫玻璃棉的5ml注射器外筒内;随后将上述交联物移入注射器外套;盖紧,室温作用(避光)3小时或4℃过夜。 (5)用少许PBS将交联物全部洗出,收集洗出液,加 1/20V体积新鲜配制的5mg/ml NaBH4溶液,混匀,室温作用30分钟;再加入3/20V NaBH4溶液,混匀,室温作用1小时(或4℃过夜)。 (6)将交联物过Sephadex g200或Sepharose 6B(2.6×50cm)层析纯化,分管收集第一峰。 (7)酶结合物质量鉴定: 克分子比值测定 酶量(mg/ml)=OD403×0.4 IgG量(mg/ml)=(OD280-OD403×0.3)×0.62 克分子比值(E/P)=酶量×4/IgG量,一般在1-2之间。酶结合率=酶量×体积/抗体,标记率一般为0.3-0.6,即1-2个HRP分子结合在一个抗体分子上,标记率可大于0.6,0.8,0.9;OD403/OD280等于0.4时,E/P约为1。 标记率=OD403/OD280 酶活性和抗体活性的测定可应用ELISA法、免疫扩散、DAB-H2O2显色反应测定酶结合物的酶活性,抗体活性及效

34抗体的标记——生物素(Biotin)

抗体/蛋白的生物素(Biotin)标记 一般每个抗体可以标记3~5个生物素,标记时,生物素与抗体的比率受抗体浓度影响,对于10 mg/ml 的抗体溶液来说,生物素应超过蛋白12倍(摩尔数),对于2 mg/ml 的抗体溶液应超过20倍,生物素也可以直接以粉末的形式加入蛋白溶液中。 蛋白样品不得含有叠氮钠、BSA、甘氨酸、Tris或其他任何有自由氨基的添加物。 SOP35 抗体/蛋白的生物素(Biotin)标记 1. 抗体/蛋白的前处理: 1.1 选择适当截留的超滤柱中加入400μl 标记反应溶液(0.1M PBS pH 7.2),加入1mg抗体,混匀。 1.2 4℃,6,000rpm,离心2min,弃滤液;于超滤柱中再加入200μl标记反应溶液,混匀。4℃,6,000rpm,离心2min, 1.3 重复步骤1.2 6~7次。 1.4 混匀超滤柱中的残留的液体,室温静置1min;将超滤柱反转倒置于一新的超滤管中,4℃,6,000rpm,2min,收集液体。 1.5 取50μl PBS于超滤柱中混匀,静置1min。倒置超滤柱,4℃,6,000rpm,2min,收集液体。 1.6 步骤1.4 与步骤1.5 的收集的滤液合并,用标记反应溶液调节抗体浓度到2mg/ml,4℃放置备用。 2. 生物素的标记: 2.1 将生物素溶解在合适的溶剂中(请参照所选购生物素的说明书,不同的生物素其溶剂不同),浓度为20mg/ml,按照生物素与抗体分子摩尔比1:20的比例加入抗体溶液,室温反应1h。 2.2 葡聚糖凝胶分离纯化/透析袋或者超滤管去除游离生物素及其他试剂。 2.3 将抗体保存于合适的抗体保存液。 进行抗体标记的时候,需要对抗体性质、交联剂和标记物的性质非常了解,否则很难标记出高品质的抗体;标记量低,导致信号值低;标记量太高,不但容易造成背景,并且还容易由于标记物的聚集造成信号拮抗,反而降低或者淬灭信号值。标记物的种类繁多,不同类型的标记物其性质完全不一样,标记物很难选择和把握,建议初学者使用专业化的试剂盒进行标记,或者直接委托专业化公司标记。福因德生物提供以下抗体标记相关产品,同时可以提供抗体/蛋白标记服务。

荧光素FITC标记抗体的方法

荧光素FITC标记抗体的方法 当FITC在碱性溶液中与抗体蛋白反应时,主要是蛋白质上赖氨酸的r氨基与荧光素的硫碳胺键(thiocarbmide)结合,形成FITC-蛋白质结合物,即荧光抗体或荧光结合物。一个IgG分子中有86个赖氨酸残基,一般最多能结合15~20个,一个IgG分子可结合2~8个分子的FITC,其反应式如下 FITC-N=C=S + N-H2-蛋白质→ FITC-NS-C-N-H2-蛋白质 常用Marsshall(1958)法标记荧光抗体,也可以根据条件采用Chadwick等标记法或Clark等(1963)的透析标记法。 1.Marsshall法 (1)材料抗体球蛋白溶液、0.5mol/L(pH9.0)碳酸盐缓冲液、无菌生理盐水、异硫氰酸荧光 素、1%硫柳汞水溶液、50ml小烧杯、4℃冰箱、电磁搅拌器、透析袋、玻棒、pH7.2或 3.0的0.01mol/LPBS等。 (2)方法及步骤①抗体的准备取适量已知浓度的球蛋白溶液于烧杯中,再加人生理盐水及碳酸盐缓冲液,使最后免疫球蛋白浓度为

20mg/ml,碳酸盐缓冲液容量为总量的1/10,混匀,将烧瓴置电磁搅拌器上(速度适当以不起泡沫为宜)5~10min。 ②荧光素的准备根据欲标记的蛋白质总量,按每毫克免疫球蛋白加0.01mg荧光色素,用分析天平准确称取所需的异硫氰酸荧光素粉末。也可用下述公式计算出免疫球蛋白、荧光素的量,还可以算出需加缓冲液的量。 a.蛋白溶液:含量Amg/m1;容积Bml。 b.总蛋白量(AXB)=Crag。 c.C/20~C/10=Dmg(如蛋白含量低于20mg/ml,用C/10;如高于20mg/ml,用C/20)。 d.荧光素FITC的量:(1/50~2/100)XC=Emg。 e.巳0.5mol/L(pH9.5)碳酸盐缓冲液D/10=Fml。 f.PBS量D-(B+F)=Gml。 注:A为蛋白含量,mg/ml;B为蛋白质溶液的容积;C为蛋白总量,mg;D为常数,mg;正为荧光素的量,mg;F为碳酸盐缓冲液的容积,ml;G为PBS的容积,ml。 ③结合(或标记) 边搅拌边将称取的荧光色素渐渐加入球蛋白溶液中,避免将荧光素粘于烧瓶壁(大约在5—10min内加完),加完后,

生物素标记

生物素标记 1,向皿中加入2ml 1mg/ml的生物素试剂。 2,4℃,温和shaking30min,孵育后有一些细胞会悬浮起来,转移这些细胞至离心管中,离心收集细胞,并按下面方法洗涤细胞。 3,用2ml含0.1mM Ca+,1mM mg2+,100Mm Glycine的PBS清洗细胞2次,这时也会有一些细胞悬浮起来,转移它们到一个离心管,离心收集细胞。 4,加2ml含0.1mM Ca+,1mM mg2+的PBS到皿中。 5,4℃,45min停止未反应的生物素试剂的反应。(使生物素试剂失活),并收集浮起来的细胞,离心收集细胞。 6,收集细胞:将皿中的细胞和浮起来的细胞转移进入一个1.5ml的离心管。 7,向1.5ml的离心管中加入1ml RIPA/lysis buffer。(含蛋白酶抑制剂1table /50ml)8,4℃涡旋1h。 9,20000g,10min,4℃,以沉淀核酸与其他残渣。 10,把上清转入新的EP管,(这是总蛋白,T,一般情况下浓度应该在1-5mg/ml,可以用B radford method来测定浓度,并调整全部样品至同一浓度) 11,向300ul pre-cleared sample中加入300ul含50% slurry-Avidin beads的PBS,P I孵育。(PI,蛋白酶抑制剂,的工作浓度0.1-1mM,17-174ug/ml) 12,室温涡旋1h。(使生物素和亲和素充分结合) 13,离心除去beads,将上清转移至一新离心管中。(这是位结合的蛋白质,浓度相对于总蛋白被稀释了1.5倍。) 14,向beads中加入150ul 2×Laemmli buffer来将beads上的蛋白质洗掉。(洗下来的蛋白浓度是总蛋白浓度的2倍)

荧光微球标记抗体制备的详细步骤及问题分析

荧光微球标记抗体方法及问题分析 很多公司开展了荧光胶乳免疫层析做定量分析及胶乳增强免疫比浊分析项目,关注胶乳标记技术的技术人员越来越多。本人总结了部分胶乳微球标记技术相关主题帖,并加以分类,以便朋友们查阅,希望朋友们继续完善或分享经验。 1. 胶乳大小选择 【求助】免疫胶乳或免疫颗粒(聚苯乙烯)的粒径 免疫胶乳或免疫颗粒(聚苯乙烯)的粒径- 丁香园论坛 【求助】乳胶免疫比浊中的乳胶颗粒大小与抗体 乳胶免疫比浊中的乳胶颗粒大小与抗体- 丁香园论坛 2. 胶乳标记方法 【交流】蛋白如何偶联到聚苯乙烯乳胶颗粒上 蛋白如何偶联到聚苯乙烯乳胶颗粒上- 丁香园论坛 (求助)胶乳标记 (求助)胶乳标记- 丁香园论坛 【求助】抗原或抗体致敏胶乳的缓冲液和pH值 抗原或抗体致敏胶乳的缓冲液和pH值- 丁香园论坛 3. 胶乳标记过程问题 【求助】胶乳偶联出现絮凝 胶乳增强免疫比浊试剂稳定性问题- 丁香园论坛 【求助】胶乳增强免疫比浊中抗体交联的问题 胶乳微球物理吸附 反应微球带磺酸基、羧基、醛基表面的都是疏水微球,都可以用来设计被动吸附蛋白。磺酸基微球表面含带有负电荷的磺酸基团,pka大约为2,因此在酸性pH保持稳定。醛基微球表面也带有磺酸基团,但能和蛋白行程共价键。羧基微球表面含带负电荷的羧基基团,在pH5.0以上时保持稳定。 带有疏水基团的蛋白的吸附和配位结合,是最简单和直接的标记方法。这种方法中,微球溶液和含目标蛋白的溶液混合,反应后,未结合的游离蛋白通过清洗步骤除去,从而获得胶体蛋白复合物。疏水吸附方法只能用于疏水微球(硫酸盐、羧基、醛基表面修饰的微球)。醛

基表面修饰微球是一个特例,其疏水吸附结果取决于后来的共价结合。虽然物理吸附是不依赖pH的,但反应缓冲液的pH对蛋白的结构有非常大的影响,从而影响蛋白吸附到微球上的反应效率。一般,在被吸附蛋白等电点附近pH时,物理吸附效率会很高。 反应步骤: 1. 用反应缓冲液系数蛋白到10mg/ml; 2. 用反应缓冲液系数胶乳微球到1%; 3. 将蛋白溶液加入到胶乳微球溶液中,10ml胶乳中加入1ml蛋白溶液。室温搅拌孵育2hr; 4. 离心或超滤,除去未结合蛋白; 5. 将微球蛋白复合物用储存缓冲液溶解。 注意事项: 1. 最优蛋白标记量影响因素 1)有效比表面积:粒径减小时,比表面积/mg微球值得增加; 2)胶体稳定性:蛋白对胶乳有稳定和去稳定作用; 3)免疫反应:最近标记量由免疫反应需要决定。 2. 胶乳微球中加入蛋白后,快速搅拌混合,利于反应均衡。反应体积是1ml时,可用移液器吸取蛋白加入微球中,并吹打数次。如果反应体积较大时,用烧杯,边搅拌边加入蛋白, 3. 储存缓冲液和反应缓冲液不同时,抗体有脱落的可能; 4. 表面活性剂能使得抗体从胶乳中脱落,所以应避免加入。 微球共价结合抗体方法 一、一步法 1. 准备50mM pH 6.0的reaction buffer,醋酸或MES buffer更合适 2. 用reaction buffer溶解抗体,使其浓度为1mg/mL。 3. 用reaction buffer 悬浮微球,使其浓度为1% w/v 4. 边搅拌边将一倍体积的抗体溶液加入到10倍体积的微球悬液中,室温下持续搅拌20分钟 5. 准备浓度为10mg/ml(52umol/mL)的EDC溶液,用前准备,现配现用。 6. 将计算需求量的EDC溶液加入到上述微球悬液中。(Note 6). 7. 室温下,立即调节pH (Note 7). 8. 移除未结合的蛋白,并将包被微球用storage buffer重悬。(Note 3 and 4) B. 两步法 为了避免EDC将相邻微球之间的蛋白偶联导致微球聚集或者蛋白之间交流,两步法偶联抗体更合适。两步法中,在蛋白加入之前,多余的EDC被移除。两步法中,蛋白也可以使用更高pH的buffer来溶解,从蛋白的稳定性方面和加速蛋白和活化微球之间的交联速度方便考虑,是非常有利的。 B1 简单一步法: 1. 准备50mM pH 6.0的活化buffer,醋酸或MES buffer更合适;用活化buffer 悬浮微球,使其浓度为1% w/v 2. 每ml微球悬液加入20mg的EDC,室温孵育20分钟,然后再次加入20mg/mL的EDC,继续室温孵育20分钟。(Note 7). 3. 离心或超滤,用等体积的包被缓冲液清洗两次微球,最后悬浮在包被缓冲液中。(Note 3). 4. 用包被缓冲液溶解抗体到1mg/mL,包被缓冲液pH7~9,浓度为50mM~100mM。(Note 1)

第十六章 标记抗体技术

第十六章标记抗体技术 1、免疫荧光标记技术的概念/所用荧光素的要求/基本原理/操作步骤/注意事项/实际应用 (一)概念:免疫荧光标记技术是指用荧光素对抗体或抗原进行标记,然后用荧光显微镜观察荧光以分析示踪相应的抗原或抗体的方法(二)荧光素要求:作为蛋白质标记用的荧光素须具备①有与蛋白质分子形成稳定共价键的化学基团,而不形成有害产物②荧光效率高,与蛋白质结合的需要量很小③结合物一般在储存条件下稳定,结合后不影响抗体的免疫活性④作为组织学标记,结合物的荧光必须与组织的自发荧光有良好的反衬,以便能清晰地判断结果⑤结合程序简单,能制成直接应用的商品,可长期保存。可用于标记的荧光素有FITC,RB200,四甲基异硫氰酸罗丹明。 (三)基本原理:将荧光素标记在相应的抗体上,直接与相应抗原反应 (四)操作步骤:

①标本制备: 涂片或压印片:细菌培养物、感染动物的组织或血液、脓汁、粪便、尿沉渣 冰冻切片或低温石蜡切片:组织学、细胞学和感染组织 盖玻片:上面培养单层细胞 首要要求是保持抗原的完整性,并尽可能减少形态变化,抗原位置保持不变。标本要相当薄,有适当的固定处理方法 ②固定:常用丙酮和95%乙醇,室温固定15-30min后,用PBS反复冲洗,干后即可染色。 目的:防止被检材料从玻片上脱落,消除抑制抗原抗体反应的因素。检测细胞内的抗原,用有机溶剂固定可增加细胞膜的通透性而有利于荧光抗体渗入。 ③检测: A、直接法:直接滴加2-4个单位的标记抗体于标本区,置湿盒中,于37度染色30min左右,然后置大量ph7-7.2PBS中漂洗15min,干燥、封载,显微镜镜检 B、间接法:将标本先滴加特异性的抗血清,置湿盒中,于37度作用30min,PBS漂洗5min后,再加入FITC标记的抗抗体,置湿盒中,37度作用30min,PBS漂洗5min,干燥、封载,显微镜观察

FITC标记抗体流程

其中FITC 应用最广,为黄色结晶,最大吸收光波长为490~495nm,最大发射光波长520~530nm ,可呈现明亮的黄绿色荧光。FITC 分子中含有异硫氰基,在碱性(pH9.0~9.5)条件下能与IgG 分子的自由氨基结合,形成FITC-IgG 结合物,从而制成荧光抗体。 抗体经荧光色素标记后,不影响 与抗原的结合能力和特异性。当荧光 抗体与相应的抗原结合时,就形成了 带有荧光性的抗原抗体复合物,从而 可在荧光显微镜下检出抗原的存在。 一,FITC 标记抗体流程 (1) 将待交联的蛋白(浓度 ≥1mg/ml )对交联反应液透析三次 (4 ℃),至pH =9.0。 交联反应液配制方法:7.56g NaHCO 3,1.06g Na 2CO 3,7.36g NaCl ,加水定 容至1 L 。 (2) 将FITC 溶于DMSO 中,浓度为1mg/ml 。每次交联使用的FITC 均应新鲜配制,避光。 (3) 按P:F (蛋白质:FITC )=1mg:150μg 的比例将FITC 缓慢加入于抗体溶液中,边加边轻轻晃动使其与抗体混合均匀,暗处4 ℃反应8 hr 。 (4) 加入5mol/L 的NH 4Cl 至终浓度50mmol/L , 4 ℃终止反应2 hr 。 (5) 将交联物在PBS 中透析四次以上,至透析液清亮。 (6) 交联物的鉴定 蛋白浓度(mg/ml) = [ A 280– 0.31×A 495 ] / 1.4 F/P 比例: 3.1×A 495 / [A 280 – 0.31×A 495 ],该值应介于2.5 ~ 6.5之间。 (7) FITC 交联的蛋白应置于pH7.4的磷酸盐缓冲液中,加入0.1% NaN 3、1% BSA , 4℃暗处保存。 二,免疫荧光组织化学染色方法 1.直接法 简便、快速,用已知特异性标记荧光的一抗与组织细胞内抗原结合。 操作流程: (1)冰冻切片经固定,凉干PBS 洗;石蜡切片脱蜡至水,消化30min ,PBS 洗。 (2)适当稀释荧光抗体滴加在组织切片上,湿盒内37℃温育1h ,PBS 洗3×3min。 (3)0.01%伊文氏蓝衬染1~3min ,PBS 洗3×3min,蒸馏水洗2次,除去Nacl 结晶。

生物素标记cRNA的纯化

生物素标记cRNA的纯化、定量及检测 实验材料 已纯化好的Double-Stranded cDNA。 实验步骤 1. 体外转录合成生物素标记cRNA 使用Affmetrix IVT Labeling Kit,按操作说明进行: 1) 取0.2 ml EP管,加入纯化后12ul Double-Stranded cDNA。 2) 室温下,按照表1依次加入下列组分,轻弹管壁使其充分混匀,瞬时离心(约5 sec)收集溶液于管底。 3) 37℃温育16h,之后进行下一步。 2. 生物素标记cRNA纯化、定量和检测 1) cRNA纯化 a. 加60ul RNase-free Water到IVT反应体系中,漩涡3 sec混匀。 b. 加350 ul IVT cRNA Binding Buffer到样品中,漩涡3 sec混匀。 c. 加250ul无水乙醇到混合物中,移液器吹打充分混匀。 d. 将700 ul混合液转移到IVT cRNA Cleanup Spin Column(置于2ml Collection Tube内)中,大于等于8000 g离心15 sec,弃滤液和Collection Tube。 e. 将Spin Column转移至新的2 ml Collection Tube中,加500 ul IVTcRNA Wash Buffer 到Spin Column中,大于等于8000 g离心15 sec,弃滤液。 f. 加500 ul80%乙醇到Spin Column中,大于等于8000 g离心15 sec,弃滤液。 g. 打开Spin Column的管盖,最大转速(小于等于25000 g)离心5 min,弃滤液和Collection Tube。

第5章 常见免疫学检测技术-荧光、化学发光

第五章 常见免疫学检测技术

第二节 荧光免疫检测
l
用荧光素标记抗体或抗原,与相应的抗原或抗 体反应后,测定复合物中的荧光素,这种免疫 技术,称为荧光免疫技术
l
包括荧光抗体技术和荧光抗原技术,但在实际 工作中荧光抗原技术很少应用 荧光显微镜技术 常见技术 荧光免疫测定技术

一、荧光的基础知识
(一)荧光 (fluorescence)
?
某些物质能吸收外界能量进入激发状态,使处 于基态的电子被激发至激发态,当其再回到稳 定基态时,多余的能量会以电磁辐射的形式释 放,即发出荧光,这类物质被称为荧光素

?
由光激发所引起的荧光,为光致荧光 ------荧光免疫技术 由化学反应所引起的荧光,为化学荧光 ------化学发光技术
?
?
荧光免疫技术的标记物一般为光致荧光物质, 当受一定波长光激发后,在极短时间内发出长 于激发光波长的荧光,一旦停止供能,荧光即 消失(约持续10-7~10-8s)

?
荧光效率:指荧光物质分子将光能转变成荧光 的百分率 荧光效率= 发射荧光的光量子数/吸收光的光 量子数
?
?
发射光谱:是指固定激发波长,在不同波长下 记录的样品发射荧光的强度 激发光谱:是指固定检测发射波长,用不同波 长的激发光激发样品记录的相应的荧光强度
?

?
荧光寿命:指荧光物质被激发后所产生的荧光 衰减到一定程度时所用的时间 各种荧光物质的荧光寿命不同
?
?
荧光猝灭:荧光物质在某些理化因素作用下, 发射荧光减弱甚至消退称为荧光猝灭 荧光猝灭物质如亚甲基蓝、碱性复红、伊文思 蓝、碘溶液等
?

相关文档
最新文档