算法分析与设计第1章

合集下载

算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6

算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6

第一章习题(1-1,1-2,1-3,1-6)1-1 求下列函数的渐进表达式3n2+10n = O(n2)n2/10+2n = O(2n)21+1/n = O(1)logn3 = O(logn)10log3n = O(n)知识点:如果存在正的常数C和自然数N0,使得:当N>=N0时有f(N)<=Cg(N),则称f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)).这时,可以说f(N)的阶不高于g(N)的阶。

1-2 论O(1)和O(2)的区别O(1)和O(2)差别仅在于其中的常数因子,根据渐进上界记号O的定义可知,O(1)=O(2)。

1-3 从低到高排列以下表达式(按渐进阶排列以下表达式)结果:2 logn n2/320n 4n23n n! 分析:当n>=1时,有logn< n2/3当n>=7时,有3n < n!补充:当n>=4时,有logn> n1/31-6 对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=Θ(g(n))。

知识点:f(n)的阶不高于g(n)的阶:f(n)=O(g(n));f(n)的阶不低于g(n)的阶:f(n)=Ω(g(n));f(n)与g(n) 同阶:f(n)=Θ(g(n)) (1)f(n)= logn2 ; g(n)= logn+5f(n)与g(n)同阶,故f(n)=Θ(g(n)) (2) f(n)= logn2 ; g(n)= n1/2当n>=8时,f(n)<=g(n),故f(n)=O(g(n))分析:此类题目不易直接看出阶的高低,可用几个数字代入观察结果。

如依次用n=1, 21, 22, 23, 26, 28, 210 (3) f(n)= n ; g(n)= log2nf(n)=Ω(g(n))(4) f(n)= nlogn+n; g(n)= lognf(n)=Ω(g(n))(5) f(n)= 10 ; g(n)= log10f(n)=Θ(g(n))(6) f(n)= log2n ; g(n)= lognf(n)=Ω(g(n))(7) f(n)= 2n ; g(n)= 100 n2f(n)=Ω(g(n))(8) f(n)= 2n ; g(n)= 3nf(n)=O(g(n))。

计算机算法设计与分析第1章算法概述

计算机算法设计与分析第1章算法概述
课程安排

理论课:1~10周,40学时 周二(5-6)、周五(1-2)
上机: 18学时



期末考试: 闭卷笔试,第 11周
上课点名三次不到者取消考试资格; 迟到或作业缺交,一次扣10分(平时成绩)。
1
教学目的和要求
本课程是计算机类专业的专业基础课程; 通过课程学习和上机实践,对计算机常用算 法有一个较全面的了解,掌握通用算法的一 般设计方法; 学会对算法的时间、空间复杂度分析,掌握 提高算法效率的方法和途径。
24
三、算法复杂性分析

本课程主要对算法的时间复杂性进行分析。
关于算法的复杂性,有两个问题要弄清楚:
(1)用怎样的一个量(指标)来表达一个算法的
复杂性;

(2)对于一个算法,怎样具体计算它的复杂性。
25
1、算法的三种时间复杂性

算法的最坏、最好和平均时间复杂性 (1)最坏情况下的时间复杂性 Tmax(n) = max{ T(I) | size(I)=n } (2)最好情况下的时间复杂性
8
图1.1 算法的概念图
(一)算法的性质

1、算法具有某些特性,如下几条:
(1)输入:有零个或多个外部提供的量作为算
法的输入。

(2)输出:算法产生至少一个量作为输出。这 些输出是和输入有某种特定关系的量。
9
(一)算法的性质

(3)确定性:组成算法的每条指令是清晰,无
歧义的。

(4)有限性(有穷性):算法中每条指令的执

29
2、算法的时间复杂性计算
int search(int A[ ], int m, int c) { int i=1; while( A[i]<c && i<m ) i=i+1; if (A[i]==c) return i; else return 0; }

算法设计与分析-王-第1章-算法设计基础

算法设计与分析-王-第1章-算法设计基础

2)有没有已经解决了的类似问题可供借鉴?
1.4 算法设计的一般过程
在模型建立好了以后,应该依据所选定的模型对问 题重新陈述,并考虑下列问题: (1)模型是否清楚地表达了与问题有关的所有重要
的信息?
(2)模型中是否存在与要求的结果相关的数学量? (3)模型是否正确反映了输入、输出的关系? (4)对这个模型处理起来困难吗?
程序设计研究的四个层次:
算法→方法学→语言→工具
理由2:提高分析问题的能力
算法的形式化→思维的逻辑性、条理性
1.2 算法及其重要特性
一、算法以及算法与程序的区别
例:欧几里德算法——辗转相除法求两个自然数 m 和 n 的最大公约数
m n
欧几里德算法
r
1.2 算法及其重要特性
欧几里德算法
① 输入m 和nห้องสมุดไป่ตู้如果m<n,则m、n互换;
对不合法的输入能作出相适应的反映并进行处理。 (2) 健壮性(robustness): 算法对非法输入的抵抗能力, 即对于错误的输入,算法应能识别并做出处理,而不是 产生错误动作或陷入瘫痪。 (3)可读性:算法容易理解和实现,它有助于人们对算 法的理解、调试和修改。 (4) 时间效率高:运行时间短。 (5) 空间效率高:占用的存储空间尽量少。
算法设计与分析
Design and Analysis of Computer Algorithms
高曙
教材:

算法设计与分析(第二版),清华大学出版社,王红梅, 胡明 编著
参考书目:

Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,机械工 业出版社,2012

《算法设计与分析》(全)

《算法设计与分析》(全)
巢湖学院计算机科学与技术系
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论

算法设计与分析基础

算法设计与分析基础

2023/12/21
20
LingJie/GDUT
1.2.6 详细表述该算法的方法
• 可以用到的工具有自然语言(nature
language)、伪代码(pseudocode)以及程序 流程图(flow chart)等。
• 当对一个问题有了概要的理解后,下面的工作
就是把这个问题的想法进行细化。所谓的细化 就是把它们表示成算法的步骤。
令执行顺序以及同步等问题。并行算法的设计 有相应的理论,这里仅考虑串行算法。
2023/12/21
17
LingJie/GDUT
1.2.3 选择精确或者近似的算法
• 解决问题下一步要考虑的是使用精确的还是近
似的算法。并不是每一个可解的问题都有精确 的算法,例如求一个数的平方根,求非线性方 程的解等。有时候一个问题有精确的解法但是 算法的执行效率很差,例如旅行家问题。因此 如果待处理的问题涉及到上述那些方面,则要 考虑是选择精确的还是近似的算法。
2023/12/21
10
LingJie/GDUT
-- 2* 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
-- 2 3*
5
7
9
11
13
15
17
19
21
23
25
-- 2 3
5*
7
11
13
17
19
23
25
-- 2 3
5
7
11
13
第一步:找出m的所有质因数。 第二步:找出n的所有质因数。 第三步:从第一步求得的m的质因数分解式和第二步求得的n
的质因数分解式中,找出所有公因数。 第四步:将第三步找到的公因数相乘,结果为所求的

大学_计算机算法设计与分析第4版(王晓东著)课后答案下载

大学_计算机算法设计与分析第4版(王晓东著)课后答案下载

计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。

全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。

主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。

书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。

为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。

(陈慧南 第3版)算法设计与分析——第1章课后习题答案

(陈慧南 第3版)算法设计与分析——第1章课后习题答案
此时i1即在本次循环中先执行swapa0a1将第二个元素与第一个元素互换下面执行perma1n根据假设可知该语句产生以a1为第一个元素余下k1个元素的全排列
第一章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术
1-4 证明等式 gcd(m,n)=gcd(n mod m, m) 对每对正整数 m 和 n,m>0 都成立。
1-13 写一个递归算法和一个迭代算法计算二项式系数:
#include<stdio.h> int Coef_recursive(int n,int m);//递归算法 int Coef_iteration(int n,int m);//迭代算法 int Factorial(int n);//计算 n 的阶乘 int main() { int n,m;
1-12 试用归纳法证明程序 1-7 的排列产生器算法的正确性。
证明:主函数中,程序调用 perm(a,0,n),实现排列产生器。 ① 当 n=1 时,即数组 a 中仅包含一个元素。函数内 k=0,与(n-1)=0 相等,因此函 数内仅执行 if(k==n-1)下的 for 语句块,且只执行一次。即将 a 数组中的一个元 素输出,实现了对一个元素的全排列。因此当 n=1 时,程序是显然正确的; ② 我们假设程序对于 n=k-1 仍能够满足条件, 将 k-1 个元素的全排列产生并输出; ③ 当 n=k 时,程序执行 else 下语句块的内容。首先执行 swap(a[0],a[0]),然后执 行 Perm(a,1,n),根据假设②可知,该语句能够产生以 a[0]为第一个元素,余下 (k-1)个元素的全排列; 然后再次执行 swap(a[0],a[0]), 并进行下一次循环。 此时 i=1, 即在本次循环中, 先执行 swap(a[0],a[1]), 将第二个元素与第一个元素互换, 下面执行 Perm(a,1,n), 根据假设②可知, 该语句产生以 a[1]为第一个元素, 余下(k-1)个元素的全排列; 以此类推,该循环每一次将各个元素调到首位,通过执行语句 Perm(a,1,n)以及 基于假设②,能够实现产生 k 个元素的全排列。 因此 n=k 时,程序仍满足条件。 ④ 综上所述,该排列器产生算法是正确的,证毕。

中科院计算机算法分析与设计_习题1-2_答案

中科院计算机算法分析与设计_习题1-2_答案

2)证明:除结点v外,只有当结点w满足s[w]=0时才被压入栈中,因此每 个结点至多有一次被压入栈中,搜索不会出现重叠和死循环现象,对于每
template<class T> bool MinMax(T a[], int n, int& Min, int& Max) { if(n<1) return false; Min=Max=0; //初始化 for(int i=1; i<n; i++){ if(a[Min]>a[i]) Min=i; if(a[Max]<a[i]) Max=i; } return true; } 最好,最坏,平均比较次数都是 2*(n-1)
2-连通
割点
4 5
D E
4 5
(1,2,3,4,0,0,0) (1,1,1,4,1,0,0)
{(C,D)};
C
6
F
6
(1,1,1,4,1,6,0)
7
G
7
(1,1,1,4,1,5,5)
(E,A), {(G,E),(F,G), (E,F)} (B,C), (A,B) {(E,A),(B,C),(A,B)}
3.设G是具有n个顶点和m条边的无向图,如果G是连通的,而且满足m = n-1,
证明G是树。 4.假设用一个n×n的数组来描述一个有向图的n×n邻接矩阵,完成下面工作

1)编写一个函数以确定顶点的出度,函数的复杂性应为 2)编写一个函数以确定图中边的数目,函数的复杂性应为 3)编写一个函数删除边(i,j),并确定代码的复杂性。 5.实现图的D-搜索算法。要求用ALGEN语言写出算法的伪代码, 或者用一种计算机高级语言写出程序。 ; (n)

算法设计与分析王红梅第1章绪论

算法设计与分析王红梅第1章绪论

2021/6/12
}
15
清华大学出版社
算法设计与分析
⑷ 伪代码——算法语言
伪代码(Pseudocode):介于自然语言和 程序设计语言之间的方法,它采用某一程序 设计语言的基本语法,操作指令可以结合自 然语言来设计。
优点:表达能力强,抽象性强,容易理解
使用方法:7 ± 2
2021/6/12
16
清华大学出版社
欧几里德算法
1. r = m % n; 2. 循环直到 r 等于0
2.1 m = n; 2.2 n = r; 2.3 r = m % n; 3. 输出 n ;
2021/6/12
算法设计与分析
17
清华大学出版社
算法设计与分析
1.1.4 算法设计的一般过程
1.理解问题
2.预测所有可能的输入
3. 在精确解和近似解间做选择
算法设计与分析
1.1 算法的基本概念
1.1.1 为什么要学习算法 1.1.2 算法及其重要特性 1.1.3 算法的描述方法 1.1.4 算法设计的一般过程 1.1.5 重要的问题类型
2021/6/12
5
清华大学出版社
算法设计与分析
1.1.1 为什么要学习算法
理由1:算法——程序的灵魂
➢ 问题的求解过程:
14
清华大学出版社
算法设计与分析
#include <iostream.h>
int CommonFactor(int m, int n)

{ int r=m % n;

while (r!=0)

{ m=n;

n=r;

r=m % n; }

算法设计与分析知识点

算法设计与分析知识点

第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。

2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。

3、算法的时间复杂度的上界,下界,同阶,低阶的表示。

4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。

5、常用的几种数据结构:线性表、树、图。

第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。

递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。

递归元的递减方式~有两种:1、减法,即n -b,的形式。

2、除法,即n / b,的形式。

2、D(n)为常数c:这时,T(n) = 0(n P)。

D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。

对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。

计算机算法设计与分析(第5版)第1章

计算机算法设计与分析(第5版)第1章
• 其中I是问题的规模为n的实例,p(I)是实 例I出现的概率。
算法渐近复杂性
• T(n) , as n ; • (T(n) - t(n) )/ T(n) 0 ,as n; • t(n)是T(n)的渐近性态,为算法的渐近复杂性。 • 在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶
问题求解(Problem Solving)
理解问题 精确解或近似解
选择数据结构 算法设计策略
设计算法 证明正确性
分析算法 设计程序
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
算法的时间复杂性
项留下的主项。它比T(n) 简单。
渐近分析的记号
• 在下面的讨论中,对所有n,f(n) 0,g(n) 0。 • (1)渐近上界记号O • O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
0 f(n) cg(n) } • (2)渐近下界记号 • (g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
• (1)最坏情况下的时间复杂性 • Tmax(n) = max{ T(I) | size(I)=n } • (2)最好情况下的时间复杂性 • Tmin(n) = min{ T(I) | size(I)=n } • (3)平均情况下的时间复杂性
• Tavg(n) = p(I )T (I ) size(I )n

for x > -1,
x ln(1 x) x 1 x

for any a > 0,
Hale Waihona Puke log b nlim

算法分析与设计(习题答案)

算法分析与设计(习题答案)

算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。

频率计数是指计算机执行程序中的某一条语句的执行次数。

多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。

指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。

2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。

3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。

4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。

5. 解:①n=11; ②n=12; ③n=982; ④n=39。

第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。

2. 解:通过分治算法的一般设计步骤进行说明。

3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。

算法设计与分析 第1章

算法设计与分析 第1章

例1 f(n) = 2n + 3 = O(n) 当n≥3时,2n+3≤3n,所以,可选c = 3,n0 = 3。对于n≥n0,f(n) = 2n + 3≤3n,所以,f(n) = O(n),即2n + 3O(n)。这意味着,当n≥3 时,例1的程序步不会超过3n,2n + 3 = O(n)。
例2 f(n) = 10n2 + 4n + 2 = O(n2) 对于n≥2时,有10n2 + 4n + 2≤10n2 + 5n,并 且当n≥5时,5n≤n2,因此,可选c = 11, n0 = 5;对于n≥n0,f(n) = 10n2 + 4n + 2≤11n2,所 以f(n) = O(n2)。
算法设计与分析
湖南人文科技学院计算机系 授课:肖敏雷
邮箱:minlei_xiao@
关于本课程
课程目的:计算机算法设计与分析导引

不是一门试验或程序设计课程 也不是一门数学课程
教材:计算机算法设计与分析-王晓东 前导课:数据结构+程序设计 参考资料:

算法设计与分析—C++语言描述 陈慧南编 电子工业出版社 计算机算法基础(第三版) 余祥宣 华中科技大学
渐近时间复杂度 使用大O记号及下面定义的几种渐近表示法 表示的算法时间复杂度,称为算法的渐近时间复 杂度(asymptotic complexity)。 只要适当选择关键操作,算法的渐近时间复 杂度可以由关键操作的执行次数之和来计算。一 般地,关键操作的执行次数与问题的规模有关, 是n的函数。 关键操作通常是位于算法最内层循环的语句。
当 n≥n0 时 , 有 f(n)≥cg(n) , 则 记 做 f(n)=Ω

计算机算法设计与分析--第1章 算法概述

计算机算法设计与分析--第1章 算法概述
12
③确认算法。算法确认的目的是使人们确信这一算 法能够正确无误地工作,即该算法具有可计算性。 正确的算法用计算机算法语言描述,构成计算机程 序,计算机程序在计算机上运行,得到算法运算的 结果; ④ 分析算法。算法分析是对一个算法需要多少计算 时间和存储空间作定量的分析。分析算法可以预测 这一算法适合在什么样的环境中有效地运行,对解 决同一问题的不同算法的有效性作出比较; ⑤ 验证算法。用计算机语言描述的算法是否可计算、 有效合理,须对程序进行测试,测试程序的工作由 调试和作时空分布图组成。
16
算法描述
1. 从第一个元素开始,该元素可以认为已 经被排序 2. 取出下一个元素,在已经排序的元 素序列中从后向前扫描 3. 如果该元素(已排序)大于新元素, 将该元素移到下一位置 4. 重复步骤3,直到找到已排序的元素 小于或者等于新元素的位置 5. 将新元素插入到该位置中 6. 重复步骤2
15
1.3 算法示例—插入排序算法
算法的思想:扑克牌游戏
a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1
= = = = = = =
5,2,4,6,1,3 5,2,4,6,1,3 2,5,4,6,1,3 2,4,5,6,1,3 2,4,5,6,1,3 1,2,4,5,6,3 1,2,3,4,5,6
8
算法≠程序
算法描述:自然语言,流程图,程序设计
语言,伪代码 用各种算法描述方法所描述的同一算法, 该算法的功用是一样的,允许在算法的描述 和实现方法上有所不同。
本书中采用类C++伪代码语言描述算法
9
人们的生产活动和日常生活离不开算法, 都在自觉不自觉地使用算法,例如人们到 商店购买物品,会首先确定购买哪些物品, 准备好所需的钱,然后确定到哪些商场选 购、怎样去商场、行走的路线,若物品的 质量好如何处理,对物品不满意又怎样处 理,购买物品后做什么等。以上购物的算 法是用自然语言描述的,也可以用其他描 述方法描述该算法。

算法设计与分析(第2版)-郑宗汉-第1章-1

算法设计与分析(第2版)-郑宗汉-第1章-1
参考书:算法导论(原书第3版) ,Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, lifford Stein, 殷建平 等译, 机械工业出版社, 第1版,2013年7月
2021/3/10
5
第1章 算法的基本概念
References
1973. 5. A. V. Aho, J. D. Ullman等. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974. 6. A. V. Aho, J. D. Ullman等. Data Structures and Algorithms. Addison-Wesley,
1983.4. 7. S. Baase. Computer Algorithms: Introduction to Design and Analysis.
Addison-Wesley, second edition, 1988. 8. E. Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms.
2021/3/10
12
第1章 算法的基本概念 1.1.1 算法的定义和特性
最大公约数问题:求两个正整数m和n的最大公约数
设计:
确可定行性性::
输入: 输出: 第一步: 第二步:
2021/3/10
8
第1章 算法的基本概念
学习要求
深刻理解每一类算法的思想及其实现 能熟练运用所学知识解决实际问题 培养提高计算思维能力
2021/3/10
9
第1章 算法的基本概念

清华大学第二版算法分析与设计课件第一章pdf

清华大学第二版算法分析与设计课件第一章pdf
Algorithm
An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.
• Theoretical analysis • Empirical analysis
Optimality
Design and Analysis of Algorithms - Chapter 1 7
Algorithm design strategies
Brute force Divide and conquer Decrease and conquer Transform and conquer
Instance: The sequence <5, 3, 2, 8, 3> Algorithms:
• • • • Selection sort Insertion sort Merge sort (many others)
Design and Analysis of Algorithmsign and Analysis of Algorithms - Chapter 1
2
Notion of algorithm
problem
algorithm
input
“computer”
output
Algorithmic solution
Design and Analysis of Algorithms - Chapter 1 3
9
What is an algorithm?

算法分析与设计试题答案

算法分析与设计试题答案

算法分析与设计习题第一章算法引论一、填空题:1、算法运行所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂度和空间复杂度。

2、多项式10()m m A n a n a n a =+++的上界为O(n m )。

3、算法的基本特征:输入、输出、确定性、有限性。

4、如何从两个方面评价一个算法的优劣:时间复杂度、空间复杂度。

5、计算下面算法的时间复杂度记为: O(n 3) 。

for(i=1;i<=n;i++)for(j=1;j<=n;j++){c[i][j]=0;for(k=1;k<=n;k++)c[i][j]= c[i][j]+a[i][k]*b[k][j];}6、描述算法常用的方法:自然语言、伪代码、程序设计语言、流程图、盒图、PAD 图。

7、算法设计的基本要求:正确性 和 可读性。

8、计算下面算法的时间复杂度记为: O(n 2) 。

for (i =1;i<n; i++){ y=y+1;for (j =0;j <=2n ;j++ )x ++;}9、计算机求解问题的步骤:问题分析、数学模型建立、算法设计与选择、算法表示、算法分析、算法实现、程序调试、结果整理文档编制。

10、算法是指解决问题的 方法或过程 。

二、简答题:1、按照时间复杂度从低到高排列:O( 4n 2)、O( logn)、O( 3n )、O( 20n)、O( 2)、O( n 2/3),O( n!)应该排在哪一位?答:O( 2),O( logn),O( n 2/3),O( 20n),O( 4n 2),O( 3n ),O( n!)2、什么是算法?算法的特征有哪些?答:1)算法:指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。

通俗讲,算法:就是解决问题的方法或过程。

2)特征:1)算法有零个或多个输入;2)算法有一个或多个输出; 3)确定性 ; 4)有穷性3、给出算法的定义?何谓算法的复杂性?计算下例在最坏情况下的时间复杂性?for(j=1;j<=n;j++) (1)for(i=1;i<=n;i++) (2) {c[i][j]=0; (3)for(k=1;k<=n;k++) (4)c[i][j]= c[i][j]+a[i][k]*b[k][j]; } (5)答:1)定义:指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机B+合并排序算法(c2=50),则计算机B花的时间为:
11/60
1.1.2 算法及其重要性质
• 算法是指解决问题的一种方法或一个过程。
• 算法是若干指令的有穷序列,满足性质:
(1)输入:有外部提供的量作为算法的输入。
(2)输出:算法产生至少一个量作为输出。
(3)确定性:组成算法的每条指令是清晰,无歧义的。 (4)有限性:算法中每条指令的执行次数是有限的,执行每条 指令的时间也是有限的。
7/60
1.1 算法的基本概念
• • • • • 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 为什么要学习算法 算法及其重要性质 算法的描述方法 问题求解的一般过程 重要的问题类型
8/60
1.1.1
为什么要学习算法
理由1:算法——程序的灵魂 问题的求解过程: 分析问题→设计算法→编写程序→整理结果 程序设计研究的四个层次: 算法→方法学→语言→工具 理由2:提高分析问题的能力 算法的形式化→思维的逻辑性、条理性
20/60
⑷ 伪代码——算法语言
伪代码(Pseudocode):介于自然语言和 程序设计语言之间的方法,它采用某一程序 设计语言的基本语法,操作指令可以结合自 然语言来设计。 优点:表达能力强,抽象性强,容易理解
21/60
欧几里德算法 1. r = m % n; 2. 循环直到 r 等于0 2.1 m = n; 2.2 n = r; 2.3 r = m % n; 3. 输出 n ;
25/60
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
26/60
算法的时间复杂性
• (1)最坏情况下的时间复杂性
Tmax(n) = max{ T(I) | size(I)=n }
• (2)最好情况下的时间复杂性
4/60
参考书2
算法导论(原书第3版)
Thomas H.Cormen 等著, 殷建平 等译
机械工业出版社
5/60
课程主要内容
第1章 算法概述 第2章 递归与分治策略 第3章 动态规划 第4章 贪心算法 第5章 回溯法 第6章 分支限界法
6/60
第1章 算法概述
学习要点:
•1.1 理解算法的基本概念。 •1.2 掌握算法的复杂性分析。 •1.3 理解NP完全性理论相关知识。
• f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n));
34/60
• (2)反身性:
• f(n)= (f(n));
• f(n)= O(f(n)); • f(n)= (f(n)). • (3)对称性: • f(n)= (g(n)) g(n)= (f(n)) . • (4)互对称性: • f(n)= O(g(n)) g(n)= (f(n)) ;
35/60
• (5)算术运算:
• O(f(n))+O(g(n)) = O(max{f(n),g(n)}) ;
• O(f(n))+O(g(n)) = O(f(n)+g(n)) ;
• O(f(n))*O(g(n)) = O(f(n)*g(n)) ;
• O(cf(n)) = O(f(n)) ; • g(n)= O(f(n)) O(f(n))+O(g(n)) = O(f(n)) 。
⑤ 重新执行第②步。
16/60
⑵ 流程图
优点:流程直观 缺点:缺少严密性、灵活性
使用方法:描述简单算法
注意事项:注意抽象层次
17/60
欧几里德算法
开始 输入m和n
r=m % n r=0
N
Y
m=n;n=r 输出n 结束
18/60
⑶ 程序设计语言
优点:能由计算机执行
缺点:抽象性差,对语言要求高
使用方法:算法需要验证 注意事项:将算法写成子函数
• 算法——非递归算法、递归算法
• 例:顺序搜索算法
template<class Type> int seqSearch(Type *a, int n, Type k)
{
for(int i=0;i<n;i++) if (a[i]==k) return i;
return -1;
}
42/60
非递归算法分析的一般步骤:
19/60
欧 几 里 德 算 法
#include <iostream.h> int CommonFactor(int m, int n) { int r=m % n; while (r!=0) { m=n; n=r; r=m % n; } return n; } void main( ) { cout<<CommonFactor(63, 54)<<endl; }
14/60
1.1.3 算法的描述方法
⑴ 自然语言
优点:容易理解
缺点:冗长、二义性
使用方法:粗线条描述算法思想
注意事项:避免写成自然段
15/60
欧几里德算法
① 输入m 和n; ② 求m除以n的余数r;
③ 若r等于0,则n为最大公约数,算法结束;
否则执行第④步;
④ 将n的值放在m中,将r的值放在n中;
9/60
算法应用
• • • • • • • ™ 人类基因数据库分析 因特网信息管理 ™ 电子商务:加密/解密,保护隐私 ™ 火车、航班调度 ™ 大科学计算 ™ 应用软件 ™ 实际应用。。。
10/60
算法可以看做一项技术
• ™ 算法可以看作是一项技术
• 例 对于排序问题(问题规模:n=106)
插入排序算法:复杂度c1n2 合并排序算法:复杂度c2nlog2n 计算机A每秒能执行10亿条指令 计算机B每秒能执行1000万条指令 计算机A+插入排序算法(c1=2),则计算机A花的时间为:
• (1)Tmax(n) = max{ T(I) | size(I)=n }=O(n)
• (2)Tmin(n) = min{ T(I) | size(I)=n }=O(1)
• (3)在平均情况下,假设:
(a) 搜索成功的概率为p ( 0 p 1 );
(b) 在数组的每个位置i ( 0 i < n )搜索成功的概率相同 均为 p/n。
31/60
渐近分析记号在等式和不等式中的意义
• f(n)= (g(n))的确切意义是:f(n) (g(n))。
• 一般情况下,等式和不等式中的渐近记号(g(n))表示(g(n)) 中的某个函数。 • 例如:2n2 + 3n + 1 = 2n2 + (n) 表示 • 2n2 +3n +1=2n2 + f(n),其中f(n) 是(n)中某个函数。
0 f(n) cg(n) }
• (2)渐近下界记号
(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有: 0 cg(n) f(n) }
29/60
• (3)非紧上界记号o
o(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对
38/60
算法分析中常见的复杂性函数
• 最常见的多项式时间算法的渐近时间复杂度 O(1)<O(log n)<O(n)<O(nlog n)<O(n2)<O(n3)
• 最常见的指数时间算法的渐近时间复杂度
O(2n)<O(n!)<O(nn)
39/60
小规模数据
40/60
中等规模数据
41/60
1.2.3 非递归算法的分析
44/60
template<class Type> void insertion_sort(Type *a, int n) { Type key; // cost for (int i = 1; i < n; i++){ // c1 key=a[i]; // c2 int j=i-1; // c3 while( j>=0 && a[j]>key ){ // c4 a[j+1]=a[j]; // c5 j--; // c6 } a[j+1]=key; // c7 } }
12/60
例:欧几里德算法——辗转相除法求两 个自然数 m 和 n 的最大公约数
m
n
欧几里德算法
r
13/60
算法与程序的区别
• 程序是算法用某种程序设计语言的具体实现。
• 程序可以不满足算法的性质(4)。
• 例如操作系统,是一个在无限循环中执行的程序,因而不
是一个算法。
• 操作系统的各种任务可看成是单独的问题,每一个问题由 操作系统中的一个子程序通过特定的算法来实现。该子程 序得到输出结果后便终止。
• t(n)是T(n)的渐近性态,为算法的渐近复杂性。
• 在数学上, t(n)是T(n)的渐近表达式,是T(n)
略去低阶项留下的主项。它比T面的讨论中,对所有n,f(n) 0,g(n) 0。
• (1)渐近上界记号O
O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
1. 决定用哪个(或哪些)参数作为算法问题规模的 度量 2. 找出算法中的基本语句 3. 检查基本语句的执行次数是否只依赖于问题规模 4. 建立基本语句执行次数的求和表达式 5. 用渐进符号表示这个求和表达式
• 关键:建立一个代表算法运行时间的求和表达式, 然后用渐进符号表示这个求和表达式。
43/60
所有n n0有:0 f(n)<cg(n) } 等价于 f(n) / g(n) 0 ,as n。
相关文档
最新文档