(完整版)导数知识点归纳及应用
导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
导数知识点归纳及应用

导数知识点归纳及应用导数是微积分的基础知识之一,它描述了一个函数在其中一点的变化率。
导数的概念非常重要,广泛应用于科学和工程领域中的各种问题的建模和解决。
一、导数的定义及基本性质1.导数的定义:对于一个函数f(x),它的导数可以通过以下极限定义求得:f'(x) = lim ( h -> 0 ) [ f(x+h) - f(x) ] / h导数表示了函数f(x)在x点处的变化率。
如果导数存在,则称f(x)在该点可导。
2.导数的图像表示:导数可以表示为函数f(x)的图像上的斜率线,也就是切线的斜率。
3.导数的几何意义:a.函数图像在特定点的切线的斜率等于该点的导数。
b.导数为正,表示函数在该点上升;导数为负,表示函数在该点下降;导数为零,表示函数在该点取得极值。
4.基本导数公式:a.常数函数的导数为0。
b.幂函数f(x)=x^n的导数为f'(x)=n*x^(n-1)。
c. 指数函数 f(x) = a^x 的导数为 f'(x) = ln(a) * a^x。
d. 对数函数 f(x) = log_a(x) 的导数为 f'(x) = 1 / (x * ln(a))。
二、导数的计算方法1.导数的基本定义法:根据导数的定义,通过计算极限来求得导数。
2.导数的运算法则:a.和差法则:(f(x)±g(x))'=f'(x)±g'(x)。
b.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
c.商法则:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2d.复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。
3.链式法则:对于复合函数f(g(x)),可以利用链式法则求导数:(f(g(x)))'=f'(g(x))*g'(x)。
导数知识点总结及例题

导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。
这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。
对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。
利用导数的定义,我们可以计算得到函数在某一点处的变化率。
1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。
例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。
这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。
1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。
也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。
二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。
例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。
2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。
我们把这个过程称为求导,求出的导数称为导函数。
导函数的值就是原函数在对应点处的导数值。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。
这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。
三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。
(完整版)导数知识点归纳及应用

导数知识点归纳及应用●知识点归纳一、相关概念1.导数的概念函数y=f(x),如果自变量x 在x 处有增量,那么函数y 相应地有增量=f (x +0x ∆y ∆0)-f (x ),比值叫做函数y=f (x )在x 到x +之间的平均变化率,即x ∆0xy∆∆00x ∆=。
如果当时,有极限,我们就说函数y=f(x)在点x x y ∆∆xx f x x f ∆-∆+)()(000→∆x x y ∆∆处可导,并把这个极限叫做f (x )在点x 处的导数,记作f’(x )或y’|。
000x x =即f (x )==。
00lim →∆x x y∆∆0lim →∆x xx f x x f ∆-∆+)()(00说明:(1)函数f (x )在点x 处可导,是指时,有极限。
如果不存在极限,00→∆x x y ∆∆xy∆∆就说函数在点x 处不可导,或说无导数。
0(2)是自变量x 在x 处的改变量,时,而是函数值的改变量,可以是x ∆00≠∆x y ∆零。
由导数的定义可知,求函数y=f (x )在点x 处的导数的步骤:0① 求函数的增量=f (x +)-f (x );y ∆0x ∆0② 求平均变化率=;x y ∆∆xx f x x f ∆-∆+)()(00③ 取极限,得导数f’(x )=。
0xyx ∆∆→∆lim 例:设f(x)= x|x|, 则f ′( 0)= .[解析]:∵ ∴f ′( 0)=00||lim ||lim )(lim )0()0(lim0000=∆=∆∆∆=∆∆=∆-∆+→∆→∆→∆→∆x xxx x x f x f x f x x x x 2.导数的几何意义函数y=f (x )在点x 处的导数的几何意义是曲线y=f (x )在点p (x ,f (x ))000处的切线的斜率。
也就是说,曲线y=f (x )在点p (x ,f (x ))处的切线的斜率00是f’(x )。
0相应地,切线方程为y -y =f /(x )(x -x )。
导数知识点总结及其应用

导数知识点总结及其应用导数是微积分中的重要概念,它是描述函数变化率的工具,可以帮助我们求解曲线的斜率、最值、凹凸性等问题。
在数学和物理中,导数有着广泛的应用,特别是在描述物体的运动、变化以及求解最优化问题等方面。
本文将对导数的定义、性质、求导法则以及其应用进行详细的总结和讨论。
一、导数的定义导数的定义是描述函数在某一点的变化率,可以理解为函数图像在该点处的斜率。
在数学上,导数可以通过极限的概念和定义得出。
给定函数f(x),则f(x)在x=a处的导数定义为:\[ f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \]其中,f'(a)表示函数f(x)在x=a处的导数,h表示自变量的增量。
这个定义可以直观地理解为f(x)在x=a处的切线斜率。
当h趋于0时,极限就表示函数在点a处的斜率,也就是导数。
二、导数的性质1. 可导性函数在某一点可导意味着该点附近存在唯一的切线,也就是说函数在该点处光滑连续。
一般来说,几乎所有的函数都有导数,也就是可导的。
2. 连续性若函数在某一点可导,则该点处是连续的。
但反之不一定成立,即函数在某点处连续不一定可导。
3. 导数运算规则(1)常数导数若f(x)=c,c为常数,则f'(x)=0。
(2)幂函数导数若f(x)=x^n,则f'(x)=nx^{n-1}。
(3)和差导数若f(x)=g(x)+h(x),则f'(x)=g'(x)+h'(x)。
(4)积导数若f(x)=g(x)·h(x),则f'(x)=g'(x)·h(x)+g(x)·h'(x)。
(5)商导数若f(x)=\frac{g(x)}{h(x)},则f'(x)=\frac{g'(x)·h(x)-g(x)·h'(x)}{(h(x))^2}。
导数基本总结知识点汇总

导数基本总结知识点汇总一、导数的定义导数的定义是微积分中最基本的概念之一。
在几何学中,导数表示函数在某一点上的切线斜率,而在物理学中,导数表示物理量的变化率。
在数学上,导数可以理解为函数在某一点上的变化率。
在数学中,如果一个函数 f(x) 在某一点 x0 处有导数,则导数的定义如下:f'(x0) = lim(Δx->0) (f(x0+Δx) - f(x0))/Δx其中 f'(x0) 表示函数 f(x) 在点 x0 处的导数,Δx 表示自变量 x 的增量。
上述定义可以简单地理解为自变量 x 在点 x0 处的微小增量Δx 对应的函数值增量f(x0+Δx) - f(x0) 与Δx 的比值。
二、求导法则求导法则是在微积分中用来求函数导数的一套方法和规则。
常见求导法则包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则、反三角函数法则、求导法则的运算规则等。
1. 常数法则:如果有常数 k,那么 f(x) = k 的导数等于 0。
即 f'(x) = 0。
2. 幂函数法则:如果有函数 f(x) = x^n,那么 f'(x) = nx^(n-1)。
3. 指数函数法则:如果有指数函数 f(x) = a^x,那么 f'(x) = a^x*ln(a)。
4. 对数函数法则:如果有对数函数 f(x) = log_a(x),那么 f'(x) = 1/(x*ln(a))。
5. 三角函数法则:常见三角函数的导数包括 sin(x) 的导数 f'(x) = cos(x),cos(x) 的导数 f'(x) = -sin(x),tan(x) 的导数 f'(x) = sec^2(x)。
6. 反三角函数法则:常见反三角函数的导数包括 arcsin(x) 的导数f'(x) = 1/(√(1-x^2)),arccos(x) 的导数 f'(x) = -1/(√(1-x^2)),arctan(x) 的导数 f'(x) = 1/(1+x^2)。
导数知识点总结与应用

导数知识点总结与应用一、导数的定义导数的定义是一个函数在某一点的变化率,通俗地说就是函数在某一点的斜率。
数学上我们用极限的概念来定义导数,设函数y=f(x),在点x0处的导数定义为:f'(x0) = lim (Δx→0) (f(x0+Δx)- f(x0))/Δx如果这个极限存在的话,我们就称这个导数为存在的。
导数在几何意义上就是函数在某一点的切线的斜率。
二、导数的意义导数不仅仅是一个数学概念,更是反映了函数在不同点的变化情况。
导数告诉我们了函数在某一点的变化率,也就是函数在该点上的速度。
导数在物理中也有广泛的应用,比如在求物体的速度、加速度等等。
在经济学中,导数也有广泛的应用,比如在边际收益、边际成本等等。
三、导数的常用性质1、导数的和差规则:设函数f(x)和g(x)都在点x0具有导数,那么它们的和、差的导数就可以用下面的关系式来表示:(f(x)±g(x))' = f'(x)±g'(x)2、导数的数乘规则:设函数f(x)在点x0具有导数,那么它的数乘k的导数可以用下面的关系式来表示:(k*f(x))' = k*f'(x)3、导数的积法则:设函数f(x)和g(x)都在点x0具有导数,那么它们的积的导数可以用下面的关系式来表示:(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)4、导数的商法则:设函数f(x)和g(x)都在点x0具有导数,并且g(x0)≠0,那么它们的商的导数可以用下面的关系式来表示:(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/[g(x)]^2四、高阶导数由导函数可以得到二阶导数,三阶导数···,n阶导数的定义分别为f''(x) = [f'(x)]'f'''(x) = [f''(x)]'···f^(n)(x) = [f^(n-1)(x)]'几何意义上就是函数在该点的曲率、弯曲程度。
导数专题知识点总结

导数专题知识点总结导数是微积分中的重要概念,它是函数在某一点的变化率,描述了函数曲线的切线斜率。
在实际应用中,导数有着广泛的应用,如在物理学、经济学、工程学等领域中都有着重要的作用。
本文将对导数的相关知识点进行总结,包括导数的定义、性质、常见函数的导数计算、导数的应用等方面。
一、导数的定义1. 函数的变化率导数是描述函数在某一点的变化率,即函数在该点的瞬时速度。
通俗地讲,导数就是函数曲线在某一点的切线斜率。
2. 导数的定义设函数y=f(x),当自变量x在x=a的某个邻域内有增量Δx时,对应的函数值的增量Δy=f(a+Δx)-f(a),当Δx趋向于0时,相应的Δy也趋向于0,则称函数f(x)在点x=a处可导,并称导数为f'(a),即f'(a)=lim[Δx→0]{f(a+Δx)-f(a)}/Δx,如果该极限存在,则称f(x)在点x=a处可导。
3. 几何意义导数的几何意义是函数曲线在某一点的切线斜率。
当函数在某一点可导时,该点的切线斜率就是该点的导数值。
4. 导数的算符表示导数也可以表示为算符的形式,如y=f(x),则y'=dy/dx表示导数,其中dy表示y的微小增量,dx表示x的微小增量。
二、导数的性质1. 导数的加法性设函数y=f(x)和y=g(x)在点x=a处可导,则有(f(x)±g(x))'|a=f'(a)±g'(a)。
2. 导数的乘法性设函数y=f(x)和y=g(x)在点x=a处可导,则有(f(x)·g(x))'|a=f'(a)·g(a)+f(a)·g'(a)。
3. 导数的复合函数设函数y=f(g(x))和y=f(x)在点x=a处可导,则有(f(g(x)))'|a=f'(g(a))·g'(a)。
4. 导数的倒数设函数y=1/f(x)在点x=a处可导且f(a)≠0,则有(1/f(x))'|a=-f'(a)/[f(a)]^2。
导数知识点总结大全

导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。
导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。
导数也可以表示为函数的微分形式,即dy = f'(x)dx。
1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。
对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。
这意味着导数可以描述函数在某一点的变化速率和方向。
1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。
对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。
类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。
因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。
1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。
它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。
二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。
如果函数在某一点上导数存在,那么称该函数在该点上可导。
对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。
但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。
2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。
导数及其应用-知识点整理(完整,清晰)

导数及其应用基本知识点1,导数:当x ∆趋近于零时,x x f x x f ∆-∆+)()(00趋近于常数C 。
可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c x x f x x f x =∆-∆+→∆)()(lim 000,符号“→”读作“趋近于”。
函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '。
即x x f x x f x f x ∆-∆+=→∆)()(l i m)(0000'2,导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。
即若点),(00y x P 为曲线上一点,则过点),(00y x P 的切线的斜率x x f x x f x f k x ∆-∆+==→∆)()(l i m )(0000'切由于函数)(x f y =在0x x =处的导数,表示曲线在点))(,(00x f x P 处切线的斜率,因此,曲线)(x f y =在点))(,(00x f x P 处的切线方程可如下求得:(1)求出函数)(x f y =在点0x x =处的导数,即曲线)(x f y =在点))(,(00x f x P 处切线的斜率。
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:))((00'0x x x f y y -=-,如果曲线)(x f y =在点))(,(00x f x P 的切线平行于y 轴(此时导数不存在)时,由切线定义可知,切线方程为0x x =,故过点),(00y x P 的切线的方程为:))((00'0x x x f y y -=- 3,导数的四则运算法则:(1))()())()((x g x f x g x f '±'='± (2))()()()(])()([x g x f x g x f x g x f '+'='(3))()()()()()()(2x g x g x f x f x g x g x f '-'='⎥⎦⎤⎢⎣⎡4,几种常见函数的导数:(1))(0为常数C C =' (2))(1Q n nx x n n ∈='-)( (3)x x cos )(sin =' (4)x x sin )(cos -='(5)x x 1)(ln =' (6)e xx a a log 1)(log =' (7)x x e e =')( (8)a a a x x ln )(=' 5,函数的单调性:在某个区间),(b a 内,如果0)('>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)('<x f ,那么函数)(x f y =在这个区间内单调递减。
导数知识点总结与计算

导数知识点总结与计算导数是微积分中的重要概念,它描述了函数在某一点的变化率。
计算导数可以用于求解函数在某一点的切线斜率、最大值最小值以及函数的变化趋势等问题。
在实际应用中,导数也被广泛应用于物理、经济、工程等领域,因此对于导数的理解和掌握是十分重要的。
本文将对导数的基本概念、求导法则以及常见函数的导数进行总结,并进行详细的解释和示例计算,以便读者更好地掌握导数知识。
一、导数的基本概念1. 函数的导数在微积分中,函数f(x)在点x处的导数表示为f'(x),即导数是函数在某一点的变化率。
可以用极限的概念来定义函数的导数:若函数f(x)在点x处的导数存在,则f'(x)=lim (Δx→0) (f(x+Δx)-f(x))/Δx其中Δx表示自变量x的增量。
当Δx趋于0时,函数在点x处的导数即为该点的切线斜率。
2. 导数的几何意义导数可以用几何意义来解释:函数f(x)在点x处的导数即为该点处曲线的切线斜率。
当导数为正时,函数在该点处是增加的;当导数为负时,函数在该点处是减少的;当导数为零时,函数在该点处取得极值。
因此,导数可以用于描述函数在某一点的变化趋势。
3. 导数的物理意义在物理学中,导数也具有重要的物理意义。
例如,当我们知道一个物体的位移函数时,可以通过求导得到该物体的速度函数;再对速度函数求导,可以得到该物体的加速度函数。
因此,导数可以帮助我们描述物体的运动规律。
二、求导法则对于常见的函数,我们可以通过一些基本的求导法则来求解其导数。
下面将介绍求导的基本法则及其示例计算。
1. 常数函数的导数若f(x)=c,其中c为常数,则f'(x)=0。
因为常数函数在任意点的变化率均为0。
示例计算:求函数f(x)=5的导数。
解:f'(x)=0。
2. 幂函数的导数若f(x)=x^n,其中n为正整数,则f'(x)=nx^(n-1)。
即幂函数的导数等于指数与原函数的指数减一的乘积。
最新导数及其应用(知识点总结)

导数及其应用 知识点总结1、函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式:①'C 0=; ②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.7、求解函数()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间;(4)解不等式'()0f x <,解集在定义域内的部分为减区间.8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.9、求解函数极值的一般步骤:(1)确定函数的定义域 (2)求函数的导数f ’(x)(3)求方程f ’(x)=0的根(4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.。
《导数及其应用》知识点总结

《导数及其应用》知识点总结一、导数的定义与运算1.导数的定义:导数表示函数在其中一点上的变化率,定义为函数在该点处的极限值。
设函数y=f(x),则函数f(x)在点x=a处的导数记为f'(a),可以表示为以下三种形式:(1)f'(a) = lim(x→a) [f(a)-f(x)] / (a-x)(2)f'(a) = lim(h→0) [f(a+h)-f(a)] / h(3)f'(a) = dy / dx,_(x=a)2.导数的运算法则:(1)和差法则:(u±v)'=u'±v'(2)数乘法则:(ku)' = ku'(3)乘法法则:(uv)' = u'v+uv'(4)商法则:(u/v)' = (u'v-uv') / v²(5)复合函数求导法则:(f[g(x)])'=f'(g(x))*g'(x)二、导数的几何意义1.切线与法线:函数在其中一点处的导数就是函数在该点处的切线的斜率,切线方程为y-f(a)=f'(a)(x-a)。
函数在其中一点处的导数的倒数就是函数在该点处的法线的斜率,法线方程为y-f(a)=-(1/f'(a))(x-a)。
2.函数的单调性与极值:若函数在一段区间上的导数大于0,则函数在该区间上单调递增;若函数在一段区间上的导数小于0,则函数在该区间上单调递减。
函数在一个点处的导数为0,则该点为函数的驻点;函数在驻点上的导数为正,则该点为函数的极小值点;函数在驻点上的导数为负,则该点为函数的极大值点。
三、导数的应用1.函数的极值与最值:(1)求函数的极值点:将函数的导数等于0的解作为候选点,再通过计算二阶导数或进行导数的符号表来判断是否为极值点。
(2)求函数的最值:将函数的极值点和函数在定义域的两端计算的值进行比较,得出最大值或最小值。
导数的应用知识点总结

导数的应用知识点总结一、导数的定义与几何意义。
1. 导数的定义。
- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。
- 如果函数y = f(x)在开区间(a,b)内的每一点都可导,就说f(x)在区间(a,b)内可导。
这时对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数f^′(x),这样就构成了一个新的函数f^′(x),称它为函数y = f(x)的导函数,简称导数,记作y^′或f^′(x)或(dy)/(dx)等。
2. 导数的几何意义。
- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。
- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。
二、导数的基本公式与运算法则。
1. 基本公式。
- (C)^′ = 0(C为常数)- (x^n)^′ = nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′ =-sin x- (a^x)^′ = a^xln a(a>0,a≠1)- (e^x)^′ = e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)2. 运算法则。
- (u± v)^′ = u^′± v^′- (uv)^′ = u^′ v + uv^′- ((u)/(v))^′=(u^′ v - uv^′)/(v^2)(v≠0)三、导数在函数单调性中的应用。
1. 函数单调性与导数的关系。
- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,那么函数y = f(x)在这个区间内单调递增;如果f^′(x)<0,那么函数y = f(x)在这个区间内单调递减。
导数综合运算知识点总结

导数综合运算知识点总结一、导数的定义及意义:1. 导数的定义:函数f(x)在点x=a处的导数,记为f'(a),定义为极限$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$其中f'(a)表示函数f(x)在点x=a处的导数。
2. 导数的几何意义:函数f(x)在点x=a处的导数f'(a)表示函数f(x)在点x=a处的切线斜率。
也即在点x=a处,函数f(x)的变化率。
3. 导数的物理意义:如果函数f(x)表示某一物理量y关于另一物理量x的变化规律,那么函数f'(x)表示物理量y关于物理量x的变化率。
4. 导数的符号:函数f(x)在点x=a处的导数f'(a)的符号表示函数f(x)在点x=a处的增减情况。
当f'(a)>0时,函数f(x)在点x=a处是增加的;当f'(a)<0时,函数f(x)在点x=a处是减小的;当f'(a)=0时,函数f(x)在点x=a处是不变的。
二、导数的运算法则:1. 基本导数法则:(常数函数规则、幂函数规则、指数函数规则、对数函数规则、三角函数规则、反三角函数规则、双曲函数规则)。
2. 复合函数的导数法则:函数f(g(x))的导数等于f'(g(x))g'(x)。
链式法则。
3. 反函数的导数法则:如果函数y=f(x)在区间I上单调、可导,并且在区间I上f'(x)≠0,则有反函数x=f^(-1)(y)在区间J上也可导,并且在区间J上f^(-1)'(y)=1/f'(f^(-1)(y))。
4. 参数方程的导数:如果x=f(t)、y=g(t)是参数方程,且函数f(t)、g(t)在t处可导,则参数方程x=f(t)、y=g(t)的导数dx/dt=f'(t)、dy/dt=g'(t)。
5. 隐函数的导数:若函数F(x,y)=0表示隐函数,且F(x,y)在点P(x0,y0)的邻域内具有连续偏导数,则隐函数y=f(x)的导数dy/dx可用偏导数表示:dy/dx=-∂F/∂x/∂F/∂y。
完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。
函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。
但是,反过来并不成立,即函数在某点处连续并不一定可导。
导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。
因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。
导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。
函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。
函数的最值可以通过求导数来确定。
注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。
对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。
导数知识点总结及方法

导数知识点总结及方法导数是微积分中一个非常重要的概念,它在计算中起到了至关重要的作用。
导数的概念广泛应用于物理学、经济学、工程学等领域,因此掌握导数的相关知识,对于学习其他科目也具有一定的帮助。
本文将通过总结导数的相关知识点和解题方法,帮助读者更好地掌握导数的概念和运用。
一、导数的基本概念导数是某个函数在某一点处的变化率,也可以理解为函数曲线在该点处的切线斜率。
在几何上,导数就是函数图像在某一点的切线的斜率。
导数的记法通常有两种,一种是f'(x),表示函数f(x)对x的导数;另一种是dy/dx,表示函数y对x的导数。
导数的基本概念包括以下几点:1. 导数的定义导数的定义是指在函数f(x)的自变量x的取值为a处,函数值f(a)与自变量x的微小增量Δx之间的比值的极限,即f'(a)=lim(Δx→0)(f(a+Δx)-f(a))/Δx这个极限存在的条件是:极限在x=a的领域内有定义函数在x=a的领域内必须有确定的单值2. 导数的计算导数的计算是导数的定义的具体应用,可以通过求导法则和求导公式来求出函数的导数。
常见的导数计算方法包括以下几种:(1) 多项式函数的导数多项式函数的导数计算方法是将每一项分别求导,并将结果相加即可。
例如对于函数f(x)=x^n,求导后的结果为f'(x)=nx^(n-1)。
(2) 反函数的导数反函数的导数计算方法可以利用导数的求导公式,通过反函数与原函数的互为反函数的性质来求导。
例如对于函数f(x)的反函数,其导数是f'(x)的倒数。
(3) 复合函数的导数复合函数的导数计算方法是利用链式法则,将复合函数分别对内层函数和外层函数求导,然后将结果相乘。
例如对于复合函数f(g(x)),其导数为f'(g(x))g'(x)。
(4) 参数方程的导数对于参数方程x=f(t),y=g(t),其导数计算方法是将x,y分别对t求导,得到x'和y',然后将结果相除得到dy/dx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数知识点归纳及应用●知识点归纳 一、相关概念 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: ① 求函数的增量y ∆=f (x 0+x ∆)-f (x 0); ② 求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;③ 取极限,得导数f’(x 0)=xyx ∆∆→∆lim 。
例:设f(x)= x|x|, 则f ′( 0)= . [解析]:∵0||lim ||lim )(lim )0()0(lim0000=∆=∆∆∆=∆∆=∆-∆+→∆→∆→∆→∆x xxx x x f x f x f x x x x ∴f ′( 0)=0 2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
例:在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 ( )A .3B .2C .1D .0[解析]:切线的斜率为832/-==x y k 又切线的倾斜角小于4π,即10<<k 故18302<-<x 解得:338383<<-<<-x x 或 故没有坐标为整数的点 3.导数的物理意义如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s '(t )。
如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v ′(t )。
例。
汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )答:A 。
练习:已知质点M 按规律322+=t s 做直线运动(位移单位:cm ,时间单位:s )。
(1) 当t=2,01.0=∆t 时,求ts∆∆;A .B .C .D .(2) 当t=2,001.0=∆t 时,求ts∆∆; (3) 求质点M 在t=2时的瞬时速度。
答案:(1)8.02s cm (2)8.002s cm ;(3)8s cm 二、导数的运算1.基本函数的导数公式: ①0;C '=(C 为常数) ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=;⑧()1l g log a a o x e x'=.例1:下列求导运算正确的是( ) A .(x+211)1xx+=' B .(log 2x)′=2ln 1x C .(3x )′=3x log 3e D . (x 2cosx)′=-2xsinx [解析]:A 错,∵(x+211)1xx-=' B 正确,∵(log 2x)′=2ln 1x C 错,∵(3x )′=3x ln3 D 错,∵(x 2cosx)′=2xcosx+ x 2(-sinx)例2:设f 0(x ) = sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x ) = f n ′(x ),n ∈N ,则f 2005(x )= ( )A .sinxB .-sinxC .cos xD .-cosx[解析]:f 0(x ) = sinx ,f 1(x )=f 0′(x )=cosx ,f 2(x )=f 1′(x )= -sinx ,f 3(x )=f 2′(x )= -cosx , f 4(x ) = f 3′(x )=sinx ,循环了则f 2005(x )=f 1(x )=cosx2.导数的运算法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:='⎪⎭⎫⎝⎛v u 2''v uv v u -(v ≠0)。
例:设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,)()()()(x g x f x g x f '-'>0.且g(3)=0.则不等式f(x)g(x)<0的解集是 ( ) A . (-3,0)∪(3,+∞) B . (-3,0)∪(0, 3) C . (-∞,- 3)∪(3,+∞) D . (-∞,- 3)∪(0, 3) [解析]:∵当x <0时,)()()()(x g x f x g x f '-'>0 ,即0)]()([/>x g x f∴当x <0时,f(x)g(x)为增函数,又g(x)是偶函数且g(3)=0,∴g(-3)=0,∴f(-3)g(-3)=0 故当3-<x 时,f(x)g(x)<0,又f(x)g(x)是奇函数, 当x>0时,f(x)g(x)为减函数,且f(3)g(3)=0 故当30<<x 时,f(x)g(x)<0 故选D3.复合函数的导数形如y=f [x (ϕ])的函数称为复合函数。
复合函数求导步骤: 分解——>求导——>回代。
法则:y '|X = y '|U ·u '|X 或者[()]()*()f x f x ϕμϕ'''=. 练习:求下列各函数的导数: (1);sin 25x xx x y ++=(2));3)(2)(1(+++=x x x y(3);4cos 212sin 2⎪⎭⎫⎝⎛--=x x y (4).1111xxy ++-=解:(1)∵,sin sin 23232521x x x xx x x x y ++=++=-∴y ′.cos sin 2323)sin ()()(232252323x x x x x x x x x x-----+-+-='+'+'=(2) y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6,∴y ′=3x 2+12x+11.(3)∵y=,sin 212cos 2sin x x x =⎪⎭⎫ ⎝⎛--∴.cos 21)(sin 21sin 21x x x y ='='⎪⎭⎫ ⎝⎛='(4)xx x x x xxy -=+--++=++-=12)1)(1(111111 ,∴.)1(2)1()1(21222x x x x y -=-'--='⎪⎭⎫ ⎝⎛-=' 三、导数的应用 1.函数的单调性与导数(1)设函数)(x f y =在某个区间(a ,b )可导,如果'f )(x 0>,则)(x f 在此区间上为增函数;如果'f 0)(<x ,则)(x f 在此区间上为减函数。
(2)如果在某区间内恒有'f 0)(=x ,则)(x f 为常数。
例:函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2) [解析]:由x x x f 63)(2/-=<0,得0<x<2∴函数13)(23+-=x x x f 是减函数的区间为(0,2)2.极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 例:函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 [解析]:∵323)(2/++=ax x x f ,又3)(-=x x f 在时取得极值∴0630)3(/=-=-a f 则a =53.最值:在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。
但在开区间(a ,b )内连续函数f (x )不一定有最大值,例如3(),(1,1)f x x x =∈-。
(1)函数的最大值和最小值是一个整体性的概念,最大值必须是整个区间上所有函数值中的最大值,最小值必须在整个区间上所有函数值中的最小值。
(2)函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附件的函数值得出来的。
函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点处必定是极值。
例:函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 . [解析]:由33)(2'-=x x f =0,得1±=x ,当1-<x 时,)(/x f >0,当11<<-x 时,)(/x f <0,当1>x 时,)(/x f >0, 故)(x f 的极小值、极大值分别为1)1(3)1(-==-f f 、, 而1)0(17)3(=-=-f f 、故函数13)(3+-=x x x f 在[-3,0]上的最大值、最小值分别是3、-17。