摩擦焊通用技术条件 焊接
摩擦焊
应用
应用
摩擦焊接以其优质、高效、节能、无污染的技术特色,在航空、航天、核能、兵器、汽车、电力、海洋开发、 机械制造等新技术和传统产业部门得到了愈来愈广泛的应用。下面以摩擦焊接在航空航天工业与汽车工业中的应 用举例说明。
擦而粘结、焊合的现象是很普遍的。在金属的切削加工和机器的高速转动过程中, 常常发现两个金属零件表面,由于摩擦生热而焊接在一起的情况。例如:在车削加工时,车刀上产生积屑瘤;在 钻削加工时,钻头和工件常常粘结在一起;滑动轴承由于烧轴而卡住等等。当然,这些情况一直是人们努力避免 的事故。做为一种焊接现象来分析,它们的过程并不是完善的,焊接质量也并不理想。但是,我们通过对这些粘 结、焊合现象的分析,有助于了解摩擦焊的实质。
工艺发展
工艺发展
摩擦焊工艺方法已由传统的几种形式发展到二十多种,极大地扩展了摩擦焊接的应用领域。被焊零件的形状 由典型的圆截面扩展到非圆截面(线性摩擦焊)和板材(搅拌摩擦焊),所焊材料由传统的金属材料拓宽到粉末 合金、复合材料、功能材料、难熔材料,以及陶瓷—金属等新型材料及异种材料领域。
谢谢观看
随着现代高性能军用航空发动机的不断更新,其主要性能指标推重比亦不断提高。同时对发动机的结构设计、 材料及制造工艺均提出了更高的要求。从70年代起,以美国GE公司为代表,在军用航空发动机转子部件(盘+盘、 盘+轴)制造中,率先成功地采用了惯性摩擦焊接技术。美国Textron Lycoming公司生产的新型大功率T55涡轮 喷气发动机的前盘与前轴、后轴的连接都是采用盘+轴一体的摩擦焊接结构。P&W公司将摩擦焊接列为80年代发动 机制造中的五项重大焊接技术之一;德国MTU公司正在开展高压压气机转子等大型部件的摩擦焊接技术研究;法 国海豚发动机也将摩擦焊接推广应用于减速器锥形齿轮的焊接,等等。国外一些先进的航空发动机制造公司已将 摩擦焊接作为焊接高推重比航空发动机转子部件的主导的、典型的和标准的工艺方法。普遍认为摩擦焊是可靠、 再现性好和可信赖的焊接技术。
摩擦焊接工艺(3篇)
第1篇一、引言摩擦焊接是一种利用摩擦热加热金属并施加压力以实现焊接连接的工艺。
它具有操作简单、焊接质量稳定、焊接速度快、成本低等优点,广泛应用于汽车、航空、航天、造船、铁路等行业。
本文将对摩擦焊接工艺的原理、设备、工艺参数及焊接质量等方面进行详细介绍。
二、摩擦焊接原理摩擦焊接的原理是利用摩擦产生的热量将金属表面加热至塑性状态,然后在一定压力下使两金属表面相互接触并发生塑性变形,从而实现焊接连接。
摩擦焊接过程中,金属表面的接触面积逐渐增大,摩擦产生的热量也不断增加,直至焊接接头形成。
1. 摩擦生热摩擦焊接过程中,通过摩擦产生的热量使金属表面温度升高,热量传递至金属内部,使金属达到塑性状态。
摩擦热的大小与摩擦系数、摩擦速度、摩擦时间等因素有关。
2. 塑性变形摩擦焊接过程中,摩擦产生的热量使金属表面达到塑性状态,金属表面发生塑性变形。
在压力作用下,金属表面相互接触,形成一定的接触面积,为焊接接头提供结合力。
3. 焊接接头形成随着摩擦焊接过程的进行,金属表面接触面积逐渐增大,塑性变形程度加深,焊接接头逐渐形成。
焊接接头质量取决于摩擦焊接过程中的工艺参数和金属材料的性能。
三、摩擦焊接设备摩擦焊接设备主要包括摩擦焊接机、夹具、焊接电源等。
1. 摩擦焊接机摩擦焊接机是摩擦焊接过程中的核心设备,其主要功能是产生摩擦力、实现摩擦焊接过程。
摩擦焊接机可分为机械式、液压式、电磁式等类型。
2. 夹具夹具用于固定焊接件,保证焊接过程中的定位精度。
夹具的设计应满足以下要求:具有较高的定位精度、良好的耐磨性、易于操作和调整。
3. 焊接电源焊接电源为摩擦焊接提供能量,常见的焊接电源有直流电源、交流电源等。
焊接电源的电压、电流等参数应根据焊接工艺和金属材料选择。
四、摩擦焊接工艺参数摩擦焊接工艺参数主要包括摩擦时间、摩擦压力、焊接速度、预热温度等。
1. 摩擦时间摩擦时间是指摩擦焊接过程中摩擦头与工件接触的时间。
摩擦时间过长,会导致焊接接头质量下降;摩擦时间过短,则无法产生足够的摩擦热。
摩擦焊
摩擦焊1摩擦焊接概述:摩擦焊接是在轴向压力与扭矩作用下,利用焊接接触端面之间的相对运动及塑性流动所产生的摩擦热及塑性变形热使接触面及其近区达到粘塑性状态并产生适当的宏观塑性变形,然后迅速顶锻而完成焊接的一种压焊方法。
摩擦焊的分类2摩擦焊原理简介:摩擦焊是利用金属焊接表面摩擦生热的一种热压焊接法。
摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。
此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。
当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。
摩擦焊接是一种优质、高效、节能的固态连接技术,被广泛应用于航空、航天、石油、汽车等领域中。
在摩擦焊接过程中,主轴转速、焊接压力、焊接时间以及焊接变形量是影响焊接质量的重要工艺参数。
对这些参数实现精确的检测和控制,是获得优质焊接接头的保障。
因此,研制一套控制精度高、响应速度快、具有丰富的数据处理能力且易于升一级和扩充的开放式控制系统具有重要意义。
摩擦焊流程示意图摩擦焊具有下列优点:(1)焊接质量好而稳定。
由于摩擦焊是一种热压焊接法,摩擦不仅能消除焊接表面的氧化膜, 同时在较大的顶锻压力作用下, 还能挤碎和挤出由于高速摩擦而产生的塑性变形层中氧化了的部分和其它杂质, 并使焊缝金属得到锻造组织。
(2)摩擦焊不仅能焊接黑色金属、有色金属、同种异种金属, 而且还能焊接非金属材料, 如塑料、陶瓷等。
(3)对具有紧凑的回转断面的工件的焊接,都可用摩擦焊代替闪光焊、电阻焊及电弧焊。
并可简化和减少锻件和铸件, 充分利用轧制的棒材和管材。
(4)焊件尺寸精度高。
采用摩擦焊工艺生产的柴油发动机预燃烧室, 全长最大误差为士0.1毫米。
摩擦焊资料
(2)效率高。对焊件准备通常要求不高,焊接设备自动化程度高,可在流水线上生产,每件 焊接时间以秒计,一般只需零点几秒至几十秒,是其它焊接方法如熔焊、钎焊不能相比的;
(3)节能、节材、低耗。所需功率仅及传统焊接工艺的 1/5~1/15,不需焊条、焊剂、钎料、 保护气体,不需填加金属,也不需消耗电极;
(4)焊接性好。特别适合异种材料的焊接,与其它焊接方法相比,摩擦焊有得天独厚的优势, 如钢和紫铜、钢和铝、钢和黄铜等等;
不锈钢和铁焊接产品
PDF 文件使用 "pdfFactory Pro" 试用版本创建 ÿ
20 钢和 45 钢焊接
不锈钢和铁
摩擦焊接主要型号有:
a、连续驱动摩擦焊机:C25、C50、C100、 C200、C250、C320、C500、C630、C800、
C1200
b、惯性摩擦焊机:CG63
c、可根据用户产品的具体要求进行个性化设计最大顶锻力 (KN)从 0.5T-130T(1、
增加位 移控制。2、增加计算机监测系统。3、增加计算机闭环控制系统)
附:主要产品及参数
最大顶锻力 主轴转速
焊机型号
KN
r/min
摩擦焊
特种焊接方法与工艺大作业——摩擦焊焊接技术姓名:***学号: 20班级: 10焊接天津滨海职业学院2011年12月摩擦焊焊接技术一、摩擦焊的定义摩擦焊(Friction Welding,FW)是利用焊件接触的端面相对运动中相互摩擦所产生的热,使端面达到热塑性状态,然后迅速顶锻,完成焊接的一种固相焊接方法。
二、摩擦焊的基本原理摩擦焊焊接过程是在压力的作用下,相对运动的待焊材料之间产生摩擦,使界面及附近温度升高并达到热塑性状态,随着顶锻力的作用,界面氧化膜破碎,材料发生塑性变形与流动,通过界面元素扩散及再结晶冶金反应而形成接头。
焊接过程不加填充金属,不需焊剂,也不用保护气体,全部焊接过程只需几秒钟。
两焊件结合面之间在较高的压力下高速旋转相互摩擦产生了两个重要的效果:一是破坏了结合面的氧化膜或其他污物,使纯净金属暴露出来;另一个是摩擦生热,使结合面很快形成热塑性层。
在随后的摩擦扭矩和轴向压力作用下这些破碎的氧化物和部分塑性层被挤出结合面外形成飞边,剩余的塑性变形金属就构成了焊缝金属,最后的顶锻使焊缝金属获得进一步锻造,形成了质量良好的焊接接头。
三、摩擦焊的特点(1)焊接施工时间短,生产效率高。
(2)焊接热循环引起的焊接变形小,焊后尺寸精度高,不用焊后校形和消除应力。
(3)机械化、自动化程度高,焊接质量稳定。
当给定焊接条件后,操作简单,不需要特殊的焊接技术人员。
(4)适合各类异种材料的焊接,对常规熔化下不能焊接的铝-钢、铝-铜、钛-铜、金属间化合物-钢等都可以进行焊接。
(5)可以实现同直径、不同直径的棒材和管材的焊接。
(6)焊接时不产生烟雾、弧光以及有害气体等,不污染环境。
同时,与闪光焊相比,电能节约5-10倍。
四、摩擦焊的应用目前我国摩擦焊技术的应用比较广泛,可焊接直径3.0~120mm的工件以及8000mm²的大截面管件,同时还开发了相位焊和径向摩擦焊技术,以及搅拌摩擦焊技术。
不仅可焊接钢、铝、铜,而且还成功焊接了高温强度级相差很大的异种钢和异种金属,以及形成低熔点共晶和脆性化合物的异种金属。
(焊接课件先进连接技术)摩擦焊
10:42
23
(2)不稳定摩擦阶段(t2) 不稳定摩擦阶段是摩擦加热过程的一个主要阶段, 该阶段从摩擦加热功率显著增大的b点起,越过功率峰值c点,到功率稳定值的 d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表面, 使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所降低, 而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。这些因 素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面的温度 继续增高时,金属的塑性增高,而强度和韧性都显著下降,摩擦加热功率也迅 速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点呈现出最 大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升高到 1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械挖 掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑性 状态的局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。 随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气 隔开。
10:42
18
1.2.7 搅拌摩擦焊
搅拌摩擦焊(FSW)是英国焊接 研究所(简称TWI)于1991年发
明的一种用于低熔点合金板材焊
接的固态连接技术。它是由摩擦
焊派生发展起来的。由于这种工
艺能进行板材的对接,并具有固
相焊接接头独特的优点,因而在
焊接高强度铝合金板材方面获得
成功。
搅拌摩擦焊的工作原理如图9所
10:42
24
(4)停车阶段(t4) 停车阶段是摩擦加热过程至顶 锻焊接过程的过渡阶段,是从主轴和工件一起开始停 车减速的e′点起,到主轴停止转动的g点止。从图10 可知,实际的摩擦加热时间从a点开始,到g点结束, 即tƒ=t1+t2+t3+t4。尽管顶锻压力从ƒ点施加,但由 于工件并未完全停止旋转,所以g′点以前的压力,实 质上还是属于摩擦压力。顶锻开始后,随着轴向压力 的增大,转速降低,摩擦扭矩增大,并再次出现峰值, 此值称为后峰值扭矩。同时,在顶锻力的作用下,接 头中的高温金属被大量挤出,工件的变形量也增大。 因此,停车阶段是摩擦焊接的重要过程,直接影响接 头的焊接质量,要严格控制。
焊接通用技术条件.
焊接通用技术条件SDZ018-85本标准适用于水利电力系统一般机械及钢结构产品的手工电弧焊和埋弧自动焊。
凡产品图样或技术文件中无特殊要求时,均应符合本标准的规定。
1 一般技术要求1.1 焊接工作应配备专职的焊接技术人员、焊接检查和检验人员。
1.2 焊工应经专门的技术训练,从事Ⅰ、Ⅱ类焊缝焊接的工人,需按SDZ009-84《手工电弧焊及埋弧自动焊焊工考试规则》或其他有关焊工考试规则进行考试,并取得第三方公证单位认可的焊工合格证。
1.3 焊接原材料和焊接材料的型号、规格和订货要求应符合图样和技术文件规定,材料的代用应执行代用制度。
材料进厂时,应按材料标准的规定检查验收,必要时可进行抽检复验。
对无牌号、规格、无质量保证书的原材料和焊接材料,只有经过检验和鉴定,确定其规格、型号、质量状态后,方可使用。
1.3.1 焊接材料的选用,应根据母材的化学成份、机械性能、焊接接头的抗裂性、焊前预热、焊后热处理及使用条件等因素综合考虑。
参照表1选用。
表1 焊接材料的选用及预热、焊后热处理规范注:回火加热速度不大于200℃/小时,保温时间一般为0.04时/毫米,最低不少于两小时,以2.5~3℃/分钟的速度缓冷至300℃后空冷。
1.3.1.1 同种钢材之间的焊接,焊接材料的选用,一般应符合下列要求:a.焊接接头的机械性能应与母材相当;b.工艺性能良好;c.低碳钢及低合金钢焊接的焊条应符合GB981-76《低碳钢及低合金高强度钢焊条》的要求。
1.3.1.2 异种钢之间的焊接,焊接材料的选用应符合下列要求:a.两侧均非奥氏体不锈钢时,可根据合金元素含量较低(或强度等级较低)的一侧钢材选用。
b.其中一侧是奥氏体不锈钢时,可选用含镍、铬量比不锈钢更高的焊条(焊丝)。
1.4 焊前准备。
1.4.1 焊接前必须根据材料的可焊性、结构特点、设计要求、设备能力、使用条件及施工环境等因素编制合理的焊接工艺。
1.4.2 首次使用的钢种以及改变焊接材料类型、焊接方法和焊接工艺,必须在施工前进行焊接工艺试验。
焊接标准大全-焊接国家标准汇总
焊接标准大全-焊接国家标准汇总焊接国家标准总汇标准号标准名称焊接基础通用标准GB/T3375--94 焊接术语GB324--88 焊缝符号表示法GB5185--85 金属焊接及钎焊方法在图样上的表示代号GB12212--90 技术制图焊缝符号的尺寸、比例及简化表示法GB4656--84 技术制图金属结构件表示法GB985--88 气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式和尺寸GB986--88 埋弧焊焊缝坡口的基本形式与尺寸GB/T12467.1—1998 焊接质量要求金属材料的熔化焊第1部分:选择及使用指南GB/Tl2468.2--1998 焊接质量保证金属材料的熔化焊第2部分:完整质量要求GB/Tl2468.3--1998 焊接质量保证金属材料的熔化焊第3部分:一般质量要求GB/Tl2468.4--1998 焊接质量保证金属材料的熔化焊第4部分:基本质量要求GB/T12469--90 焊接质量保证钢熔化焊接头的要求和缺陷分级GBl0854--90 钢结构焊缝外形尺寸GB/T16672—1996 焊缝----工作位置----倾角和转角的定义焊接材料标准焊条GB/T5117--1995 碳钢焊条GB/T5118--1995 低合金钢焊条GB/T983—1995 不锈钢焊条GB984--85 堆焊焊条GB/T3670--1995 铜及铜合金焊条GB3669--83 铝及铝合金焊条GBl0044--88 铸铁焊条及焊丝GB/T13814—92 镍及镍合金焊条GB895--86 船用395焊条技术条件JB/T6964—93 特细碳钢焊条JB/T8423—96 电焊条焊接工艺性能评定方法GB3429--82 碳素焊条钢盘条JB/DQ7388--88 堆焊焊条产品质量分等JB/DQ7389--88 铸铁焊条产品质量分等JB/DQ7390--88 碳钢、低合金钢、不锈钢焊条产品质量分等JB/T3223--96 焊接材料质量管理规程焊丝GB/T14957—94 熔化焊用钢丝GB/T14958--94 气体保护焊用钢丝GB/T8110--95 气体保护电弧焊用碳钢、低合金钢焊丝GBl0045--88 碳钢药芯焊丝GB9460--83 铜及铜合金焊丝GBl0858--89 铝及铝合金焊丝GB4242--84 焊接用不锈钢丝GB/T15620--1995 镍及镍合金焊丝JB/DQ7387--88 铜及铜合金焊丝产品质量分等焊剂GB5293--85 碳素钢埋弧焊用焊剂GBl2470--90 低合金钢埋弧焊焊剂钎料、钎剂GB/T6208--1995 钎料型号表示方法GBl0859---89 镍基钎料GBl0046--88 银基钎料GB/T6418--93 铜基钎料GB/T13815--92 铝基钎料GB/T13679--92 锰基钎料JB/T6045--92 硬钎焊用钎剂GB4906--85 电子器件用金、银及其合金钎焊料GB3131--88 锡铅焊料GB8012--87 铸造锡铅焊料焊接用气体GB6052--85 工业液体二氧化碳GB4842--84 氩气GB4844--84 氮气GB7445--87 氢气GB3863--83 工业用气态氧GB3864--83 工业用气态氮GB6819--86 溶解乙炔GBlll74--89 液化石油气GBl0624--89 高纯氩GBl0665--89 电石其它GB12174--90 碳弧气刨用碳棒焊接质量试验及检验标准钢材试验GBl954--80 镍铬奥氏体不锈钢铁素体含量测定方法GB6803--86 铁素体钢的无塑性转变温度落锤试验方法G132971--82 碳素钢和低合金钢断口试验方法焊接性试验GB4675.1--84 焊接性试验斜Y型坡口焊接裂纹试验方法GB4675.2—84 焊接性试验搭接接头(CTS)焊接裂纹试验方法GB4675.3--84 焊接性试验T型接头焊接裂纹试验方法GB4675.4--84 焊接性试验压板对接(FISCO)焊接裂纹试验方法GB4675.5—84 焊接热影响区最高硬度试验方法GB9447--88 焊接接头疲劳裂纹扩展速率试验方法GB/T13817--92 对接接头刚性拘束焊接裂纹试验方法GB2358--80 裂纹张开位移(COD)试验方法GB7032--86 T型角焊接头弯曲试验方法GB9446--88 焊接用插销冷裂纹试验方法GB4909.12—85 裸电线试验方法镀层可焊性试验焊球法GB2424.17--82 电工电子产品基本环境试验规程锡焊导则GB4074.26—83 漆包线试验方法焊锡试验JB/ZQ3690 钢板可焊性试验方法SJl798--81 印制板可焊性测试方法力学性能试验GB2649--89 焊接接头机械性能试验取样方法GB2650--89 焊接接头冲击试验方法GB2651—89 焊接接头拉伸试验方法GB2652—89 焊缝及熔敷金属拉伸试验方法GB2653--89 焊接接头弯曲及压扁试验方法GB2654--89 焊接接头及堆焊金属硬度试验方法GB2655--89 焊接接头应变时敏感性试验方法GB2656--81 焊接接头和焊缝金属的疲劳试验方法焊接材料试验GB3731--83 涂料焊条效率、金属回收率和熔敷系数的测定GB/T3965--1995 熔敷金属中扩散氢测定方法焊接检验GB/T12604.1--90 无损检测术语超声检测GB/T12604.2--90 无损检测术语射线检测GB/T12604.3--90 无损检测术语渗透检测GB/T12604.4--90 无损检测术语声发射检测GB/T12604.5--90 无损检测术语磁粉检测GB/T12604.6--90 无损检测术语涡流检测GB5618--85 线型象质计GB3323--87 钢熔化焊对接接头射线照相和质量分级GB/T12605--90 钢管环缝熔化焊对接接头射线透照工艺和质量分级GB/T14693--93 焊缝无损检测符号GBll343--89 接触式超声斜射探伤方法GBll345--89 钢焊缝手工超声波探伤方法和探伤结果的分级GBll344--89 接触式超声波脉冲回波法测厚GB2970--82 中厚钢板超声波探伤方法JBll52--81 锅炉和钢制压力容器对接焊缝超声波探伤GB/T15830—1995 钢制管道对接环缝超声波探伤方法和检验结果的分级GB827--80 船体焊缝超声波探伤GBl0866--89 锅炉受压元件焊接接头金相和断口检验方法GBll809---89 核燃料棒焊缝金相检验JB/T9215--1999 控制射线照相图像质量的方法JB/T9216--1999 控制渗透探伤材料质量的方法JB/T9217--1999 射线照相探伤方法JB/T9218--1999 渗透探伤方法JB3965--85 钢制压力容器磁粉探伤EJ187--80 磁粉探伤标准JB/T6061--92 焊缝磁粉检验方法和缺陷磁痕的分级JB/T6062--92 焊缝渗透检验方法和缺陷迹痕的分缀EJl86---80 着色探伤标准JB/ZQ3692 焊接熔透量的钻孔检验方法JB/ZQ3693 钢焊缝内部缺陷的破断试验方法GBll373--89 热喷涂涂层厚度的无损检测方法EJ188--80 焊缝真空盒检漏操作规程JBl612--82 锅炉水压试验技术条件GB9251--88 气瓶水压试验方法GB9252--88 气瓶疲劳试验方法GBl2135---89 气瓶定期检查站技术条件GBl2137--89 气瓶密封性试验方法GBll639--89 溶解乙炔气瓶多孔填料技术指标测定方法GB7446--87 氢气检验方法GB4843--84 氩气检验方法GB4845--84 氮气检验方法JB4730—94 压力容器无损检测DL/T820-2002 管道焊接接头超声波检验技术规程DL/T821-2002 钢制承压管道对接焊接接头射线检验技术规程DL/T541-94 钢熔化焊角焊缝射线照相方法和质量分级JB4744—2000 钢制压力容器产品焊接试板的力学性能检验焊接质量GB6416--86 影响钢熔化焊接头质量的技术因素GB6417--86 金属熔化焊焊缝缺陷分类及说明TJl2.1--81 建筑机械焊接质量规定JB/T6043--92 金属电阻焊接接头缺陷分类JB/ZQ3679 焊接部位的质量JB/ZQ3680 焊缝外观质量JB/TQ330--83 通风机焊接质量检验GB999--82 船体焊缝表面质量检验方法A-4 焊接方法及工艺标准GBl2219--90 钢筋气压焊GBll373--89 热喷涂金属件表面预处理通则JB/Z261--86 钨极惰性气体保护焊工艺方法JB/Z286--87 二氧化碳气体保护焊工艺规程JB/ZQ3687 手工电弧焊的焊接规范SDZ019--85 焊接通用技术条件J134251—86 摩擦焊通用技术条件ZBJ59002.1--88 热切割方法和分类ZBJ59002.2--88 热切割术语和定义ZBJ59002.3--88 热切割气割质量和尺寸偏差ZBJ59002.4—88 热切割等离子弧切割质量和尺寸偏差ZBJ59002.5--88 热切割气割表面质量样板JB/ZQ3688 钢板的自动切割ZBK540339--90 汽轮机铸钢件补焊技术条件NJ431—86 灰铸铁件缺陷焊补技术条件GBll630--89 三级铸钢锚链补焊技术条件GB/Z66--87 铜极金属极电弧焊JB/TQ368—84 泵用铸钢件焊补JB/TQ369---84 泵用铸铁件焊补HB/Z5l34--79 结构钢和不锈钢熔焊工艺JB/T6963—93 钢制件熔化焊工艺评定JB4708--2000 钢制压力容器焊接工艺评定JB4709—2000 钢制压力容器焊接规程DL/T752-2001 火力发电厂异种钢焊接技术规程DL/T819-2002 火力发电厂焊接热处理技术规程DL/T868-2004 焊接工艺评定规程DL/T869—2004 火力发电厂焊接技术规程焊接设备标准GB2900-22--85 电工名词术语电焊机GB8118--87 电弧焊机通用技术条件GB8366--87 电阻焊机通用技术条件GBl0249--88 电焊机型号编制方法GBl0977--89 摩擦焊机GB/T13164--91 埋弧焊机ZBJ64001--87 TIG焊焊炬技术条件ZBJ64003--87 弧焊整流器ZBJ64004188 MIG/MAG弧焊机ZBJ64005--88 电阻焊机控制器通用技术条件ZBJ64006--88 弧焊变压器ZBJ64008--88 电阻焊机变压器通用技术条件ZBJ64009--88 钨极惰性气体保护弧焊机(TIG焊机)技术条件ZBJ64016--89 MIG/MAG焊枪技术条件ZBJ64021—89 送丝装置技术条件ZBJ64022--89 引弧装置技术条件ZBJ64023--89 固定式点凸焊机JB5249--91 移动式点焊机JB5250--91 缝焊机ZBJ33002--90 焊接变位机ZBJ33003--90 焊接滚轮架JB5251--91 固定式对焊机JB685--92 直流弧焊发电机JB/DQ5593.1—90 电焊机产品质量分等总则JB/DQ5593.2--90 电焊机产品质量分等弧焊变压器.JB/DQ5593.3--90 电焊机产品质量分等便携式弧焊变压器JB/DQ5593.4--90 电焊机产品质量分等弧焊整流器JB/DQ5593.5--90 电焊机产品质量分等MIG/MAG弧焊机JB/DQ5593.6--90 电焊机产品质量分等TIG焊机JB/DQ5593.7--90 电焊机产品质量分等原动机弧焊发电机组JB/DQ5593.8--90 电焊机产品质量分等TIG焊焊炬JB/DQ5593.9--90 电焊机产品质量分等电焊机冷却用风机JB/DQ5593.10-90 电焊机产品质量分等MIG/MAG焊焊枪JB/DQ5593.11-90 电焊机产品质量分等电阻焊机控制器JB/DQ5593.12-90 电焊机产品质量分等摩擦焊机JB/Z152--81 电焊机系列型谱JB2751--80 等离子弧切割机JBJ33001—87 小车式火焰切割机JBl0860--89 快速割嘴GB5110--85 射吸式割炬JB/T5102--91 坐标式气割机JB5101--91 气割机用割炬JB6104--92 摇臂仿形气割机GB5107--85 焊接和气割用软管接头焊接安全与卫生标准GB9448—88 焊接与切割安全GBl0235--88 弧焊变压器防触电装置GB8197--87 防护屏安全要求GBl2011--89 绝缘皮鞋焊工培训与考试标准GB6419--86 潜水焊工考试规则JJl2.2--87 焊工技术考试规程EJ/Z3--78 焊工培训及考试规程DL/T679--1999 焊工技术考核规程JB/TQ338--84 通风机电焊工考核标准GB/T15169--94 钢熔化焊手焊工资格考试方法SDZ009--84 手工电弧焊及埋弧焊焊工考试规则JBll52--88 机械部焊工技术等级标准国家质量监督检验检疫总局锅炉压力容器压力管道焊工考试与管理规则(船舶)焊工考试规则冶金建设工程焊工考试规则。
特种焊接技术摩擦焊
1连续驱动摩擦焊的工艺参数
连续驱动摩擦焊的工艺参数主要包括主轴转速 摩擦压力、摩 擦时间、顶锻压力、顶锻时间、变形量等; 1转速与摩擦压力 直接影响摩擦扭矩、摩擦加热功率、接头温 度场、塑性层温度以及摩擦变形速度) 当工件直径一定时;接合面上任一点的摩擦速度与转速成正比。 为了使变形层加热到焊接温度,平均摩擦速度必须高于最低摩 擦速度。
4)根据焊接环境可分为空间摩擦焊和水下摩擦焊。
摩擦焊的各种方式
a普通型 b)两件异向旋转型 c)中间旋转型双接头) d)两头工件同向旋转型(双接头) e) 中间两工件旋转型(双焊件) f)径向焊接型 g)轨道式摩擦焊
二 常规摩擦焊方法
1 连续驱动摩擦焊 2 惯性摩擦焊 3 相位摩擦焊 4 径向摩擦焊 5 摩擦堆焊 6线性摩擦焊 7嵌入式摩擦焊 8超塑性摩擦焊 9第三体摩擦焊
4 21 传统摩擦焊的工艺过程 422 传统摩擦焊的工艺及参数 423 典型材料的摩擦焊接工艺 424 传统摩擦焊设备 425 传统摩擦焊质量控制与安全技术
4 21 传统摩擦焊的工艺过程
一 传统摩擦焊焊接过程 二 摩擦焊加热功率及其温度
一 传统摩擦焊焊接过程
摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊 接过程两部分;
➢ 刀具制造业:钻头 立铣刀、丝锥、绞刀; ➢ 机器制造业:轴类零件、管子、螺杆、顶杆; ➢ 汽车、拖拉机制造业:半轴、齿轮轴; ➢ 石油化工行业中石油钻杆;高压阀门的阀体,管道等;锅
炉制造中蛇形管对接; ➢ 轻工纺织机械中小型轴类、辊类、管类零件焊接; ➢ 电工行业铜铝接线端子焊接;
4 2 传统摩擦焊的工艺与设备
九种摩擦焊原理优缺点应用范围与焊接过程分析
九种摩擦焊原理优缺点应用范围与焊接过程分析摩擦焊是一种通过激活两个接触面之间的摩擦热量来进行焊接的方法。
在摩擦焊过程中,通过旋转和施加压力,将两个接触面摩擦加热至熔化或软化状态,然后迅速施加压力,实现焊接的连接。
1.滚压摩擦焊原理:两个工件在高温高压下相互滚动和压缩,使达到熔融点,然后停止滚压,则工件迅速冷却,并形成焊缝。
优点:焊接速度快、无需填充材料、焊接强度高。
缺点:对工件材料要求高、只适用于多孔体焊接。
应用范围:广泛应用于金属工业,如摩托车、汽车等行业。
2.摩擦搅拌焊原理:通过锥形工具在摩擦状态下插入两个工件内部,同时旋转,搅拌并混合两个工件的材料,然后冷却形成焊缝。
优点:无需填充材料、焊接速度快、焊缝质量好。
缺点:只适用于焊接薄板材料。
应用范围:适用于铝材料焊接。
3.摩擦摩擦焊原理:通过两个工件表面的摩擦,产生高温,使工件表面的金属熔化,停止摩擦后迅速冷却形成焊缝。
优点:焊接速度快、能焊接非常硬的材料。
缺点:只适用于焊接圆材。
应用范围:适用于焊接管材。
4.摩擦摩擦焊原理:通过两个工件表面摩擦产生的热量,使工件表面的金属熔化,然后迅速施加力,使金属冷却形成焊缝。
优点:焊接速度快、焊缝强度高、焊接过程不易受到外界环境影响。
缺点:只适用于焊接圆材。
应用范围:适用于装配、制造等行业。
5.摩擦摩擦焊原理:通过锥形工具在工件表面进行摩擦,产生高温,迅速施加力使金属冷却形成焊缝。
优点:焊接速度快、焊缝质量好。
缺点:对工件表面质量要求高。
应用范围:广泛应用于航空、航天、船舶等行业。
6.摩擦熔焊原理:通过锥形工具在工件表面进行摩擦,产生高温,然后迅速施加力使金属熔化冷却形成焊缝。
优点:焊接速度快、焊缝质量好、适用于焊接不同材料的工件。
缺点:对工件要求高。
应用范围:适用于更加复杂的工件或材料。
7.轴向摩擦焊原理:通过摩擦热和压力引起的瞬时局部熔化,使工件获得焊接。
优点:焊接速度快、焊接过程中无渣、焊缝质量好。
汽车用铝及铝合金搅拌摩擦焊技术条件
汽车用铝及铝合金搅拌摩擦焊技术条件1 范围本标准规定了汽车用铝及铝合金搅拌摩擦焊接的一般要求、焊前准备、焊接工艺、焊后检验和试验以及安全要求等。
本标准适用于汽车常用牌号和状态的铝及铝合金的搅拌摩擦焊接。
其他系列铝合金搅拌摩擦焊接也可参照本标准。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 1173 铸造铝合金GB/T 2651 焊接接头拉伸试验方法GB/T 2653 焊接接头弯曲试验方法GB/T 2654 焊接接头硬度试验方法GB/T 3190 变形铝及铝合金化学成分GB/T 3246.2 变形铝及铝合金制品组织检验方法第2部分:低倍组织检验方法GB/T 3323 金属熔化焊焊接接头射线照相GB/T 3375 焊接术语GB/T 3880 一般工业用铝及铝合金板、带材GB/T 6892 一般工业用铝及铝合金挤压型材GB/T 11345 焊缝无损检测超声检测技术、检测等级和评定GB/T 18851.1 无损检测渗透检测第1部分:总则GB/T 27551 金属材料焊缝破坏性试验断裂试验3 术语和定义GB/T 27552 金属材料焊缝破坏性试验焊接接头显微硬度试验GB/T 32259 焊缝无损检测熔焊接头目视检测GB/T 34630 搅拌摩擦焊铝及铝合金3 术语和定义GB/T 34630 搅拌摩擦焊铝及铝合金界定的术语和定义适用于本标准。
3.1 搅拌摩擦焊friction stir welding,FSW利用高速旋转的搅拌头插入被焊材料后沿焊接方向运动,搅拌头与焊接材料产生摩擦热,使材料达到热塑性状态,实现工件间固相连接的焊接方法,见图1。
说明:1——母材;2——搅拌头;3——轴肩;4——搅拌针;5——焊缝表面;6——后退侧;7——前进侧;8——匙孔。
a——搅拌头旋转方向(顺时针/逆时针方向);b——搅拌头下压;c——轴向压力;d——焊接方向;e——搅拌头上提。
特种焊接技术摩擦焊
二、常规摩擦焊方法 三、摩擦焊的特点
一、摩擦焊的分类
摩擦焊方法的种类很多,其分类方法通常有两种:
一是根据焊件的相对运动形式分类; 二是按焊接过程的工艺特点分类
1.按焊件相对运动形式进行分类
1)焊件绕轴旋转:连续驱动摩擦焊、惯性摩擦焊、混
合型旋转摩擦焊、相位控制摩擦焊等; 2)焊件不运动:径向摩擦焊、搅拌摩擦焊; 3)其他运动形式:摩擦堆焊、线性摩擦焊、轨道摩擦 焊等。
4.2 传统摩擦焊的工艺与设备
4.2.1 传统摩擦焊的工艺过程
4.2.2 传统摩擦焊的工艺及参数 4.2.3 典型材料的摩擦焊接工艺 4.2.4 传统摩擦焊设备 4.2.5 传统摩擦焊质量控制与安全技术
4.2.1 传统摩擦焊的工艺过程
一 传统摩擦焊焊接过程
二 摩擦焊加热功率及其温度
一 传统摩擦焊焊接过程
4.1.1 摩擦焊的基本原理
两焊件接合面之间在较高的压力 下高速旋转相互摩擦产生了两个 重要的效果: 一是破坏了接合面的氧化膜或其 他污物,使纯净金属暴露出来; 另一个是摩擦产热,使接合面很 快形成热塑性层。
摩擦焊接头是在被焊金属熔点以下形 成的,所以摩擦焊属于固相焊接方法。
4.1.2 摩擦焊的分类及特点
7.嵌入式摩擦焊
8.超塑性摩擦焊 9.第三体摩擦焊
1. 连续驱动摩擦焊
2. 惯性摩擦焊
3. 相位摩擦焊
相位摩擦焊主要用于相对位置有要求的工件,如六方
钢、八方钢、汽车操纵杆等,要求焊件焊后棱边对齐、 方向对正或相位满足要求。 在实际应用中,主要有机械同步相位摩擦焊、插销配 合摩擦焊和同步驱动摩擦焊。
最后摩擦焊接表面温度将升 到200~300℃左右
摩擦焊介绍
共三十一页
摩擦焊焊接(hànjiē)工艺特点
(1)焊接施工时间短,生产效率高。 (2)焊接热循环引起的焊接变形小,焊后尺寸精度高,不用焊后校形
和消除应力。
(3)机械化、自动化程度高,焊接质量稳定。当给定焊接条件后,操
作简单,不需要特殊的焊接技术人员。 (4)适合(shìhé)各类异种材料的焊接,对常规熔化下不能焊接的铝-钢、
共三十一页
摩擦(mócā)的焊接过程
共三十一页
摩擦焊接 过程 (hànjiē)
(1)初始摩擦阶段
从两工件开始接触的A点 开始,到摩擦加热功率显著增 大的B点为止。摩擦开始时, 由于摩擦焊接(hànjiē)表面存在 氧化膜、油、灰尘和吸附着一 些气体,使得摩擦系数小,随 后摩擦压力逐渐增大,摩擦加 热功率慢慢增加使得焊件表面 的温度上升。
共三十一页
摩擦 焊接过程 (mócā)
总之,在整个摩擦焊接过程中,待焊 的金属表面经历了从低温到高温摩擦加热, 连续发生了塑性变形、机械挖掘、粘接和 分子连接的过程变化,形成了一个存在于 全过程的高速摩擦塑性变形层,摩擦焊接 时的产热、变形和扩散现象都集中在变形 层中。在停车阶段(jiēduàn)和顶锻焊接过程中, 摩擦表面的变形层和高温区金属被部分挤 碎排出,焊缝金属经受锻造,形成了质量 良好的焊接接头
轨道摩擦焊是一种新发展起来的焊接方法,主要用于焊接非圆断 面工件。
摩擦焊接技术基础知识PPT课件
18
2. 表面准备
端面平整 垂直度满足要求(不垂直度小于直径的10%) 厚氧化层、镀铬层等去除 粗糙度和清洁度要求不严格
19
3. 工艺参数选用
转速与摩擦压力:直接影响扭矩、加热功率、温度
场、摩 低碳、低合金钢摩 擦压力41~83MPa
4
摩擦焊过程
5
摩擦焊特点
固态焊接,避免熔化和凝固产生的缺陷 适合于异种材料的焊接 生产效率高(十几秒) 易于实现机械化和自动化 工作环境好 但是焊件形状和截面尺寸受限,一次性
投资大。
6
连 续 驱 动 摩 擦 焊
(恒 速)
7
惯 性 摩 擦 焊
(变 速)
8
搅 拌 摩 擦 焊
9
搅拌摩擦焊
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
27
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
10
已用于铝合金薄壁压力容器的焊接
11
特种连接方法-special joining technology
线 性 摩 擦 焊
可用于方形、圆形、多边形截面或不规则构件的焊接
12
特种连接方法-special joining technology
嵌 入 摩 擦 焊
用于电力、真空和低温应用行业中铝-铜、铝-钢等接头
讲师:XXXXXX
摩擦焊
搅拌摩擦焊的接头形式
搅拌摩擦焊工艺
搅拌摩擦焊接参数主要包括 搅拌头转速 n 、焊接速度 v 、 搅拌头仰角和轴肩压力。
以下各图是对铝镁合金的搅 拌摩擦焊接头的检测结果。
摩擦焊工艺参数
连续驱动摩擦的主要工艺参数为转速、摩擦压力、摩 擦时间、摩擦变形量、停车时间、顶锻时间、顶锻压 力、顶锻变形量,其中摩擦变形量和顶锻变形量(总 和为缩短量)是其他参数的综合反映。
转速与摩擦压力 直接影响摩擦扭矩、摩擦加热功
率、接头温度场、塑性层厚度以及摩擦变形速度等, 是摩擦焊接最主要的工艺参数。
挪威采用搅拌摩擦焊技术制造船用宽幅铝合金型材
欧洲Fokker宇航公司将搅拌摩擦焊技术用于Ariane 5发动机主承力框的制 造,承力框的材料为7075-T7351,主体结构由12块整体加工的带翼状加强 的平板连接而成,结构制造中用搅拌摩擦焊代替了螺栓连接,为零件之间的 连接和装配提供了较大的裕度,并可减轻结构重量,提高生产效率。
摩擦焊的特点
优点 焊接接头质量高:属固相焊,避免了熔焊时的裂缝、 缺点
气孔等缺陷,接头组织致密,夹杂物呈弥散分布; 焊件的结构形状与焊接位置受限; 工件变形小,尺寸精度高; 对焊件的加工与夹持要求较高; 适合于大多数同种或异种金属的焊接; 接头有飞边,焊后需进行机械加工去除; 易于实现机械化、自动化; 设备一次性投资费用高。 高效、节能、环保。
Eclipse 500型商用喷气客机的搅拌摩擦焊焊接构件
嵩嵩
日本日立公司采用搅拌摩擦焊技术拼接双面铝合金型材来 制造自支撑结构的铝合金车厢。
摩擦焊通用重点技术条件检验
---------摩擦焊通用技术条件检查--------
1焊接质量检查人员需经必要旳技术培训和考核,并要严格遵守检查操作规程,对旳掌握焊缝质量检查原则。
2焊件质量检查项目见表1。
如另有特殊检查规定期,应在工艺文献中注明。
表1摩擦焊接头质量检查
3焊后需进行热解决旳产品,拉伸、弯曲、冲击试样应与产品同炉热解决。
4当调节焊机、维修焊机、每次故障、参数报警等状况发生时要做质量检查(检查项目按工艺文献拟定)。
待质量合格后,方可继续生产。
5正常生产时,除进行百分之百旳外观检查外,每批焊件取一组试样进行破坏性检查(检查项目按工艺文献规定拟定,每批不超过1000件)。
检查成果如有某项不合格时,对该不合格项目做加倍复检;如果仍不合格,该批产品为不合格。
6外观检查
6.1焊件飞边大小适中,沿圆周方向均匀分布,焊缝金属封闭良好。
6.2焊件几何形状、尺寸应符合工艺文献规定(犹如轴度、直线度、圆度、长度和直径等)。
6.3焊件焊缝直径至少应比母材直径大0.5~1mm。
6.4去掉飞边后,焊件表面不容许有裂纹。
7管状焊件应按技术文献规定进行气压、水压和压扁等检查。
摩擦焊
焊接时,移动夹具先施加预紧力预夹紧圆环,旋转夹具夹
持管子,移动夹具移动到合适位置,然后管子高速旋转, 达到预定转速,对环件施加摩擦压力,摩擦界面产生的摩 擦热把接头区域加热到焊接温度,圆周表面产生塑性变形 ,在顶锻压力作用下,经过表面激活、扩散和再结晶,最 终形成焊接接头。
在径向摩擦焊焊接过程中,内部不产生飞边,焊接时间非
在相对摩擦的条件下,结合面的氧化膜或其他污染层首
先被破坏,同时摩擦产生的摩擦热及塑性变形热使得结 合面很快形成热塑化层,然后,在轴向压力和摩擦转矩 作用下,已破碎的氧化物和部分塑化层被挤出结合面而 形成飞边,最后剩余的热塑化金属构成焊缝金属,在一 段时间的顶缎压力作用下使焊缝金属获得进一步锻造, 形成质量良好的焊接接头。
3.径向摩擦焊 径向摩擦焊原理 径向摩擦焊是一种典型的摩擦焊技术。
早期的径向摩擦焊主要采用径向加压实现管道的轴向摩 擦焊接,它的原理是利用锥面环旋转并加压,实现两根管子 的轴向连接。 真正的径向摩擦焊是从80年代末开始,在圆周面上进行 摩擦焊接的工艺。通过特殊装置改变摩擦面的方向,焊 件由相对旋转加压变为相对固定加压,如下图所示:
常短,因此母材通常不熔化,焊缝为锻造组织,接头不会 产生焊工艺的焊接缺陷。 径向摩擦焊生成热主要来源是:具有高速相对旋转的圆 环和薄壁套管与轴类和管类零件接触面间的摩擦热;焊 接过程中产生的塑性变形热,其中摩擦热是形成生成热的 主体。这些生成热将参与焊接的部件加热到高温状态,并 通过施加径向顶缎你来实现焊件的焊合动和工艺特点进行分类。 1、按工件相对运动形式分类如下: 焊件绕线旋转可分为:连续驱动摩擦焊、惯性摩擦焊、混合 型旋转摩擦焊、相位摩擦焊等。 焊件不运动可分为:径向摩擦焊和搅拌摩擦焊。 其他运动可分为:摩擦堆焊、线性摩擦焊和轨道摩擦焊等。 2、按工艺特点进行分类如下: 界面温度可分为:高温摩擦焊、低温摩擦焊和超塑性摩擦焊 。 工艺措施可分为:气体保护摩擦焊、感应加热摩擦焊、导电 加热摩擦焊和封闭摩擦焊。 复合工艺可分为:钎层摩擦焊、嵌入摩擦焊和第三体摩擦焊 。
摩擦焊接技术基础知识
焊接过程的智能化
新热源的不断开发 (L+PA)
焊接设备的不断更新(逆变电源)
特种连接方法的选择
考虑因素: 母材性能(热物理性能) 产品结构类型(尺寸、简复) 工件厚度(厚薄) 焊接位置(平、立、仰、全) 生产条件(成本、设备、人员)
水下焊接: 近海油田,水下建筑,水下管道越 来越多,水下焊接已经有迫切需要,现在焊接技术, 已经能够解决一部分水下焊接的问题,水下焊接一 般还是采用弧焊的办法,分为两种,干法和湿法。 所谓湿法,就是潜水员下去,拿了焊条在水下进行 焊接,靠电弧产生的热量,能够排出一部分水,产 生气体,形成一个空泡,然后在空泡里面进行焊接, 但是这样的深度,一般在几十米深度。还有一种是 干法的水下焊接,就是有一个装置容器,潜下去以 后把水排开,然后进行焊接。现在西方国家已经能 够焊到三百米水深,我们国家能够达到二百米左右。
摩擦焊接技术 Friction Technology
目的及要求
原理、特点、应用场合
焊接方法
产品要求 焊接设备 工艺参数
固相焊
摩擦焊
效率高 、质量好
适于机械化
航空航天、仪表、电子
摩擦焊
Friction welding
外力下,利用工件接触面之间的相对摩擦和塑性流动所产生 的热量,使接触面金属产生宏观塑性变形,相互扩散和动态
焊
搅拌摩擦焊
已用于铝合金薄壁压力容器的焊接
特种连接方法-special joining technology
线 性 摩 擦 焊
可用于方形、圆形、多边形截面或不规则构件的焊接
特种连接方法-special joining technology
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---------摩擦焊通用技术条件焊接------
1 新产品或老产品更换材料时,在正式投入生产前必须进行焊接工艺试验,并对选定的焊接参数、焊接工艺进行工艺评定,编写工艺文件,制定操作规程,然后方能投入生产。
2 重要产品生产时,应按表1规定的项目填写数据并存档。
表1 摩擦焊接规范
3 坯件应牢固夹紧,不得沿轴向或旋转方向打滑。
同轴度应按焊机精度和工件要求确定。
4 坯件的伸出量应根据坯件材料和尺寸确定。
刚度应满足防止焊接时产生振动的要求。
5 焊接有空淬裂纹倾向的材料时,一般应在焊后采取保温缓冷措施(方法按工艺文件规定)。
6 焊接时,环境温度应在0℃以上。