概率试题答案
概率论期末试题及答案

概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。
事件的概率试题及答案

事件的概率试题及答案1. 单选题:如果一个骰子被公平地掷出,那么掷出偶数的概率是多少?A. 1/2B. 1/3C. 3/8D. 1/6答案:A2. 多选题:以下哪些事件是互斥的?A. 掷一枚硬币得到正面或反面B. 掷骰子得到1或得到6C. 掷骰子得到奇数或得到偶数D. 掷骰子得到3或得到5答案:B, D3. 判断题:如果一个事件的概率是0,那么这个事件不可能发生。
答案:正确4. 填空题:如果一个事件的概率是0.5,那么它的补事件的概率是______。
答案:0.55. 计算题:一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。
答案:5/86. 简答题:解释什么是条件概率,并给出一个例子。
答案:条件概率是指在某个条件或事件已经发生的条件下,另一个事件发生的概率。
例如,如果已知一个班级里有50%的学生是女生,那么在随机挑选一个学生是女生的条件下,这个学生是左撇子的概率,就是条件概率。
7. 应用题:一个工厂生产两种类型的零件,A型和B型。
A型零件的合格率为90%,B型零件的合格率为80%。
如果从生产线上随机抽取一个零件,发现它是合格的,那么这个零件是A型的概率是多少?答案:设事件A为零件是A型,事件B为零件合格。
根据贝叶斯定理,P(A|B) = P(B|A) * P(A) / P(B)。
已知P(A) = 0.5,P(B|A) = 0.9,P(B) = P(B|A) * P(A) + P(B|A') * P(A') = 0.9 * 0.5 + 0.8 * 0.5 = 0.85。
所以P(A|B) = 0.9 * 0.5 / 0.85 ≈ 0.529。
8. 论述题:描述概率论在现实生活中的应用,并举例说明。
答案:概率论在现实生活中有广泛的应用,例如在风险评估、保险计算、医学研究、天气预报等领域。
例如,在医学研究中,研究人员可能会使用概率论来评估某种治疗方法对特定疾病的效果,通过分析治疗组和对照组的治愈率差异,来确定治疗方法的有效性。
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率试题及答案初三

概率试题及答案初三【试题一】题目:在一个口袋中,有3个红球和2个蓝球。
如果随机抽取2个球,求抽到至少1个红球的概率。
【答案】解:设抽到至少1个红球为事件A。
首先计算抽到2个蓝球的概率,即事件A的对立事件(没有抽到红球)的概率。
抽到第一个蓝球的概率为2/5,抽到第二个蓝球的概率为1/4(因为已经抽走一个球,剩下4个球)。
所以,抽到2个蓝球的概率为:(2/5) * (1/4) = 1/10。
由于事件A和其对立事件是互斥的,所以抽到至少1个红球的概率为:P(A) = 1 - P(A的对立事件) = 1 - 1/10 = 9/10。
【试题二】题目:掷一枚均匀的硬币两次,求出现至少一次正面的概率。
【答案】解:设掷出正面为事件B。
掷硬币两次,可能出现的结果是:正正、正反、反正、反反。
事件B的对立事件是两次都掷出反面。
掷出两次反面的概率为:(1/2) * (1/2) = 1/4。
由于事件B和其对立事件是互斥的,所以至少出现一次正面的概率为:P(B) = 1 - P(B的对立事件) = 1 - 1/4 = 3/4。
【试题三】题目:在一个班级中有30名学生,其中10名男生和20名女生。
随机选取3名学生,求至少有1名男生的概率。
【答案】解:设至少有1名男生为事件C。
首先计算没有男生,即3名学生都是女生的概率。
选取3名女生的概率为:(20/30) * (19/29) * (18/28)。
所以,没有男生的概率为:(20/30) * (19/29) * (18/28) = 36/145。
由于事件C和其对立事件是互斥的,所以至少有1名男生的概率为:P(C) = 1 - P(C的对立事件) = 1 - 36/145 = 109/145。
【结束语】通过以上三道试题,我们可以看到概率的计算通常涉及到互斥事件和对立事件的概念。
在实际问题中,我们经常需要通过计算对立事件的概率来间接求解事件本身的概率。
希望这些试题能够帮助同学们更好地理解和掌握概率的基本概念和计算方法。
概率单元测试题及答案大全

概率单元测试题及答案大全一、选择题1. 一个袋子里有3个红球和2个蓝球,随机取出一个球,下列哪个事件的概率最大?A. 取出红球B. 取出蓝球C. 取出白球D. 取出黑球答案:A2. 投掷一枚公正的硬币,出现正面的概率是多少?A. 0.2B. 0.5C. 0.8D. 1答案:B3. 如果事件A和事件B是互斥的,且P(A)=0.3,P(B)=0.4,那么P(A∪B)是多少?A. 0.1B. 0.3C. 0.7D. 无法确定答案:C二、填空题4. 一个骰子有6个面,每个面出现的概率是________。
答案:1/65. 如果一个事件的概率为0,那么这个事件是________。
答案:不可能事件6. 一个事件的概率为1,表示这个事件是________。
答案:必然事件三、计算题7. 一个袋子里有5个白球和5个黑球,随机取出2个球,求取出的2个球都是白球的概率。
答案:首先计算取出第一个白球的概率为5/10,然后计算在取出第一个白球后,再取出第二个白球的概率为4/9。
所以,两个都是白球的概率为(5/10) * (4/9) = 2/9。
8. 一个班级有30个学生,其中15个男生和15个女生。
随机选择3个学生,求至少有1个女生的概率。
答案:首先计算没有女生的概率,即选择3个男生的概率为(15/30) * (14/29) * (13/28)。
然后用1减去这个概率,得到至少有1个女生的概率为1 - [(15/30) * (14/29) * (13/28)]。
四、简答题9. 什么是条件概率?请给出一个例子。
答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。
例如,如果我们知道一个班级中有50%的学生是左撇子,那么在随机选择一个学生是左撇子的条件下,这个学生是数学专业的学生的概率。
10. 请解释什么是独立事件,并给出一个例子。
答案:独立事件是指一个事件的发生不影响另一个事件发生的概率。
例如,投掷一枚公正的硬币两次,第一次的结果不会影响第二次的结果。
高考概率考试题及答案

高考概率考试题及答案一、选择题1. 某次考试中,学生A和学生B独立地答对一道题的概率分别为0.7和0.6,那么他们两人至少有一人答对这道题的概率是多少?A. 0.32B. 0.54C. 0.86D. 0.94答案:C2. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 0.6B. 0.4C. 0.33D. 0.67答案:A二、填空题3. 一个骰子连续掷两次,两次都掷出偶数的概率是______。
答案:1/34. 从一副去掉大小王的扑克牌中随机抽取一张牌,抽到黑桃的概率是______。
答案:1/4三、解答题5. 已知某工厂生产的一批产品中,次品率为2%,现随机抽取100件产品进行检查。
求至少有3件次品的概率。
解答:设X为100件产品中次品的数量,X服从二项分布B(100,0.02)。
要求至少有3件次品的概率,即P(X≥3)。
根据二项分布的性质,我们有:P(X≥3) = 1 - P(X<3) = 1 - [P(X=0) + P(X=1) + P(X=2)]计算得:P(X=0) = C(100, 0) * (0.02)^0 * (0.98)^100P(X=1) = C(100, 1) * (0.02)^1 * (0.98)^99P(X=2) = C(100, 2) * (0.02)^2 * (0.98)^98将上述概率值代入公式计算,得到P(X≥3)的值。
答案:根据上述计算过程,得出P(X≥3)的具体数值。
6. 甲乙两人进行射击比赛,甲击中目标的概率为0.8,乙击中目标的概率为0.9。
若两人同时射击,求至少有一人击中目标的概率。
解答:设A为甲击中目标的事件,B为乙击中目标的事件。
要求至少有一人击中目标的概率,即P(A∪B)。
根据概率的加法公式,我们有:P(A∪B) = P(A) + P(B) - P(A∩B)由于甲乙两人射击是相互独立的事件,所以P(A∩B) = P(A) * P(B)。
数学初中概率试题及答案

数学初中概率试题及答案1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?答案:抽到红球的概率是5/8。
2. 抛一枚公平的硬币两次,两次都正面朝上的概率是多少?答案:两次都正面朝上的概率是1/4。
3. 在一个班级中,有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,选到男生的概率是多少?答案:选到男生的概率是1/2。
4. 一个转盘被平均分成了8个部分,其中3个部分涂成红色,2个部分涂成蓝色,其余3个部分涂成绿色。
如果转动转盘,停在红色部分的概率是多少?答案:停在红色部分的概率是3/8。
5. 一个袋子里有10个球,其中7个是白球,3个是黑球。
如果随机抽取两个球,两个都是白球的概率是多少?答案:两个都是白球的概率是7/15。
6. 一个骰子有6个面,每个面上分别标有1到6的数字。
如果掷一次骰子,掷出偶数的概率是多少?答案:掷出偶数的概率是1/2。
7. 一个袋子里有6个球,其中4个是红球,2个是黄球。
如果随机抽取两个球,至少抽到一个红球的概率是多少?答案:至少抽到一个红球的概率是2/3。
8. 一个袋子里有5个球,其中3个是红球,2个是白球。
如果随机抽取一个球,抽到白球的概率是多少?答案:抽到白球的概率是2/5。
9. 一个班级有50名学生,其中25名男生和25名女生。
如果随机选择两名学生,两名都是女生的概率是多少?答案:两名都是女生的概率是1/2。
10. 一个袋子里有8个球,其中5个是红球,3个是蓝球。
如果随机抽取两个球,两个都是红球的概率是多少?答案:两个都是红球的概率是5/28。
概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学院领导
A卷
审批并签名
广州大学 2009---2010 学年第一学期考试卷
课程《概率论与数理统计》考试形式(闭卷,考试)
学院专业、班级学号姓名
题次一二三四五六总分评卷人
分数151516241416100
评分
一.填空题(每小题3分,共计15分)
1.设A与B为两事件, P(A)=P(B)=, 且P(A∪B)=, 则P(AB)=
2.设A与B为两事件, P(A)=1-P(B)=, 且P(A∪B)=, 则P(A|B)=
3.口袋中有4个白球3个黑球, 从中任取两个, 则取到同颜色球的概率为 37 4.设X服从正态分布, P(X 0)=, P(X≤2)=,则P(|X|≤2)= 5.设X与Y相互独立, D(X)=1, D(Y)=2,则协方差cov(2X+Y, X-2Y)= 2 二.单项选择题(每小题3分,共计15分)
1.设A表示事件“明天和后天都下雨”,则其对立事件A表示【 B 】
(A)“明天和后天都不下雨” (B)“明天或者后天不下雨”
(C)“明天和后天正好有一天不下雨” (D)“明天或者后天下雨”
2.设事件A与B独立且0P(A)≤P(B)1,则下列等式中有可能成立的是【 C 】(A) P(A)+P(B)=P(A∪B) (B) P(A)=P(A∩B)
(C) P(A)+P(B)=1 (D) P(B)=P(A∪B)
3.设连续随机变量X 的分布函数为F (x ), a 为正数, 则P (|X | a ) 等于【 D 】
(A) F (a ) + F (-a ) (B) F (a ) + F (-a ) -1 (C) F (a ) - F (-a ) (D) 1- F (a ) + F (-a )
4.设X 与Y 为两个随机变量,则下列选项中能说明X 与Y 独立的是【 D 】
(A) E (X+Y ) = E (X ) + E (Y ) (B) E (XY ) = E (X ) E (Y ) (C) D (X+Y ) =D (X ) + D (Y ) (D) 对a , b 有P (X ≤a ,Y ≤b )=P (X ≤a ) P (Y
≤b )
5. 设二维随机变量(X , Y ) 服从某个圆形区域上的均匀分布, 则一定有【 A 】
(A) X 与Y 不相关 (B) X 与Y 相互独立 (C) X 与Y 同分布 (D) X 与Y 都服从均匀分布 三.解答下列各题(每小题8分,共计32分)
1. 学生在做一道单项选择题时,若他知道正确答案则一定答对,否则就从4个选项
中随机选择一项作答. 设学生知道正确答案的概率是, 求他答对题目的概率. 解: 设A 表示学生答对题目, B 表示学生知道正确答案.
)|()()|()()(B A P B P B A P B P A P +=
4分
=
1+
=
8分
2. 某人投篮的命中率为. 求他投篮3次当中至少投中2次的概率. 解: 以X 表示3次投篮投中的次数, 则X ~ b (3, . P (X 2) = P (X =2) + P (X = 3)
4分 =
8分
32237.03.07.0+⨯=C
⎪⎩⎪⎨⎧<≥=1
,01,1)(2
x x x
x f
3.设有200台机器同时独立工作, 每台机器出现故障的概率为, 求至少有2台机器出现故障的概率.
解: 以X 表示出现故障的机器台数, 则X ~ b (200, .
则 X 近似服从泊松分布, 参数 =200=2. 2分
P (X 2) = 1 P (X =0) P (X = 1)
1 e
2 2e
2
4
分
= 1 3e
2
8分
4.设随机变量X 的密度函数为 , 求Y =1/X 的数学期望. 解: 4分 8分
四.(本题12分) 有4个外观完全相同的盒子, 其中2个装有气球. 随机打开一个盒
子, 若没有气球则从其余的盒子中随机选择一个打开, 如此继续, 直到发现气球为止.
(1) 求打开第3个盒子才找到气球的概率.
(2) 以X 表示找到气球时打开的盒子数, 写出X 的分布律. (3) 计算X 的数学期望和方差.
解: (1) 设A 1, A 2分别表示第1次和第2次打开空盒子. 所求概率为
6
1
3121)|()()(12121=
⨯==A A P A P A A P 4分
X
1 2 3 概 率
21 31
6
1 8分
(3)
E (X ) =1 12+2 13+3 1 6 =5 3
dx
x f x Y E ⎰∞⋅⋅=1)(1
)(2
1113=⋅=⎰∞dx x
10分
E (X 2) =12 12+22 13+32
1 6 =103
D (X )
=E (X 2)
E (X ) 2
=103 (53)
2
=59
12分
五.(本题14分) 已知 (X ,Y )服从平面区域D ={(x ,y ): x +y 1, x >0, y >0} 上的均
匀分布.
(1) 写出(X ,Y )的联合密度函数f (x ,y ). (2)分别求1
X 和Z =X +Y 的分布函数.
(3) 计算X 与Y 的相关系数.【提示: 2cov(X , Y ) =D (X +Y )
D (X )D (Y )】
解: (1)⎩⎨⎧≤+>>=其它,0;
1,0,0,2),(y x y x y x f
3分
(2) F 1X (t ) = P (1X t ) = P (X 1 t ) =区域D ∩{(x ,y ): x 1 t }的面
积 2.
当0
t 1时, D ∩{(x ,y ): x 1 t }的面积= t 22, 故
⎪⎩
⎪
⎨⎧>≤<≤=-.1,1;
10,;0,0)(21t t t t t F X 6分
F Z (t ) = P (X +Y t ) =D {(x ,y ): x + y t }的面积 2. 即
⎪⎩
⎪
⎨⎧>≤<≤=.1,1;
10,;0,0)(2t t t t t F Z 9分
(3) 由前面知1X 与Z =X +Y 同分布, 且易知X 与Y 同分布, 故
D (X +Y ) =D (1X ) =D (X ) =D (Y ), 2cov(X , Y ) =D (X +Y )
D (X )D (Y ) = D (X )
21
)(),(cov )
()(),(cov -===
X D Y X Y D X D Y X XY ρ
14分
六.(本题12分) 某种型号元件的寿命X (单位:年)服从指数分布, 其参数 =ln2.
(1) 求单个元件在使用1年后仍然有效的概率.
(2) 购买这种元件400个, 求使用1年后有效的元件数在180220之间的概率.
【提示: 利用中心极限定理】
附表:标准正态分布数值表 2/21()2z u z e du
π--∞Φ=
⎰ z 0 (z )
解: (1) 所求概率为
5.0)1(2ln 1====>--∞
-⎰e e dx e X P x λλλ
4分
(2) 以Y 表示购买的400个元件使用1年后有效的元件数, 则Y ~ b (400, . E (Y ) =400
=200, D (Y ) =400
(1 =100
6分
由中心极限定理, )
(*Y D EY
Y Y -=
近似服从标准正态分布. 故 )(10
200
2201020010200180)220180(-≤-≤-=≤≤Y P Y P = P ( 2 Y * 2) = (2) ( 2) 9
分
= 2(2)1= 21
= 12分。