2019-2020学年浙江省湖州市南浔区八年级(上)期末数学试卷

合集下载

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(2)

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(2)

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(2)一、选择题1.下列分式变形正确的是( )A .2322153102a bc ac ab c b -= B .2242442x x x x x -+=++- C .232322p q p q mn m mn++= D .()()(1)(1)(1)b a a b a b a x b x ab x +--=---2.某单位向一所希望小学赠送1080件文具,现用A ,B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个,设B 型包装箱每个可以装x 件文具,根据题意列方程为( )A. B.C.D.3.PM2.5是大气中直径小于或等于0.0000025m 的颗粒物,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量有较大的影响.在这里将数字0.0000025用科学计数法表示为( ) A .0.25×10﹣5 B .0.25×10﹣6 C .2.5×10﹣5 D .2.5×10﹣6 4.数4831-能被30以内的两位整数整除的是( ) A.28,26B.26,24C.27,25D.25,235.下列各式中计算正确的是( )A .t 10÷t 9=tB .(xy 2)3=xy 6C .(a 3)2=a 5D .x 3x 3=2x 6 6.下列运算正确的是( ) A .236326a a a -⋅=- B .()632422a aa÷-=-C .326()a a -=D .326()ab ab =7.点A 、B 均在由边长为1的正方形组成的网格的格点上,建立平面直角坐标系如图所示。

若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA QB +的值最小的点,则OP OQ ⋅=( )A.4B.6.3C.6.4D.58.在平面直角坐标系中,点A 坐标为(2,2),点P 在x 轴上运动,当以点A ,P 、O 为顶点的三角形为等腰三角形时,点P 的个数为( ) A .2个B .3个C .4个D .5个9.如图,Rt ABC 沿直线边BC 所在的直线向右平移得到DEF ,下列结论中不一定正确的是( )A .DEF 90∠=B .BE CF =C .CE CF =D .ABEH DHCF S S =四边形四边形10.如图,BC ∥EF ,BC=BE ,AB=FB ,∠1=∠2,若∠1=55°,则∠C 的度数为( )A.25°B.55°C.45°D.35°11.如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有( )①DF 平分∠BDE ;②△BFD 是等腰三角形;;③△CED 的周长等于BC 的长. A .0个; B .1个; C .2个;D .3个. 12.如图,在中,已知是边上的高线,平分,交于点,,,则的面积等于( )A. B. C. D.13.如图,已知∠AOB=∠BOC=∠COD ,下列结论中错误的是( )A.OB 、OC 分别平分AOC ∠、BOD ∠B.AOD AOB AOC ∠=∠+∠C.12BOC AOD AOB ∠=∠-∠ D.()12COD AOD BOC ∠=∠-∠ 14.如图,在Rt △ABC 中,∠ACB=90°,∠A=55°,点D 是AB 延长线上的一点.∠CBD 的度数是( )A.125°B.135°C.145°D.155°15.如图,AD ,CE 为△ABC 的角平分线且交于O 点,∠DAC=30°,∠ECA=35°,则∠ABO 等于( )A.25°B.30°C.35°D.40°二、填空题 16.若分式11x + 有意义,则x 的取值范围为___________ 17.因式分解:()()22x y y x y +-+=______.18.如图,点 P 是∠AOB 内一点,PE ⊥OA ,PF ⊥OB ,垂足分别为 E 、F ,若 PE =PF ,且∠OPF =72°,则∠AOB 的度数为__________.19.在长度为2、5、6、8的四条线段中,任取三条线段,可构成__________个不同的三角形. 20.如图,在△ABC 中,AB =AC =4,∠A =30°,那么S △ABC =______.三、解答题21.先阅读下面的材料,然后回答问题: 方程1122x x +=+的解为12x =,212x =; 方程1133x x +=+的解为13x =,213x =; 方程1144x x +=+的解为14x =,214x =; …(1)观察上述方程的解,猜想关于x 的方程1155x x +=+的解是___; (2)根据上面的规律,猜想关于x 的方程11x a x a+=+的解是___;(3)猜想关于x 的方程x −1112x =的解并验证你的结论; (4)在解方程:21013y y y ++=+时,可将方程变形转化为(2)的形式求解,按要求写出你的变形求解过程。

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)
【解析】 28.(1)证明:连接 OC, ∵DE 与⊙ O 切于点 C, ∴OC⊥ DE. ∵AD⊥ DE,∴ OC∥ AD.∴∠ 2=∠ 3. ∵OA=OC,∴∠ 1=∠ 3. ∴∠ 1=∠ 2,即 AC 平分∠ DAB. (2)解:∵ AB=4, B 是 OE的中点, ∴OB=BE=2, OC=2. ∵CF⊥ OE, ∴∠ CFO= 90o, ∵∠ COF= ∠ EOC,∠ OCE= ∠ CFO, ∴△ OCE∽△ OFC,
第1页共6页
A. 21 B . 15 C . 13 D. 11 9. 某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀 速流出.那么该倒置啤酒瓶内水面高度 h 随水流出的时间 t 变化的图象大致是( )
A.
B.
C.
D.
10. 下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是
D
.﹣ 5+a<﹣ 5+b
33
2. 若点 P 是第二象限内的点,且点 P 到 x 轴的距离是 4,到 y 轴的距离是 3,则点 P 的坐标
是( )
A.(﹣ 4,3) B .( 4,﹣ 3) C .(﹣ 3, 4) D .( 3,﹣ 4)
3. 某种出租车的收费标准:起步价 7 元(即行驶距离不超过 3 千米都需付 7 元车费),超
第4页共6页
22. 不等式组的所有整数解是 1、 2、 3. 23. ( 1) 900, 4 小时两车相遇.( 2)所以线段 BC所表示的 y 与 x 之间的函数关系式为: y=225x ﹣ 900( 4≤ x≤ 6)( 3)第二列快车比第一列快车晚出发 0.75 小时
24.(1) 、 2 13 ; (2) 、 8 ; (3) 、5.5 秒或 6 秒或 6.6 秒 3

2019—2020年最新浙教版八年级数学上学期期末考试达标测试题及答案解析.docx

2019—2020年最新浙教版八年级数学上学期期末考试达标测试题及答案解析.docx

第一学期八年级数学期末考试卷一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求1、一次函数y=3x+6的图象经过( ▲ )A. 第1、2、3象限B. 第2、3、4象限C. 第1、2、4象限D. 第1、3、4象限2、在平面直角坐标系中.点P (1,-2)关于y 轴的对称点的坐标是( ▲ ) A .(1,2) B .(-1,-2) C .(-1,2) D .(-2,1)3、下列各式中,正确的是( ▲ ) A .3222-= B .842= C .()255-= D .2(5)-=-54、.把不等式组的解集表示在数轴上,下列选项正确的是( ▲ )A B C D 5、把方程x 2-4x -6=0配方,化为(x+m )2=n 的形式应为( ▲ ). A.(x -4)2=6 B.(x -2)2=4 C.(x -2)2=10 D.(x -2)2=06、如图所示,在下列条件中,不能证明△ABD ≌△ACD 的是 ( ▲ ) A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC7、不等式2+x <6的正整数解有( ▲ ) 第6题图A 、1个B 、2个C 、3 个D 、4个8、如图,在△ABC 中,∠ACB=90°, D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB. 若∠B=20°,则∠DFE 等于( ▲ ) A .30° B .40° C .50° D .60°第8题图9、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ▲ ) A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠10、一次长跑中,当小明跑了1600米时,小刚跑了1400米, 小明、小刚在此后所跑的路程y (米)与时间t (秒)之间 的函数关系如图,则这次长跑的全程为( ▲ )米. A 、2000米 B 、2100米 C 、2200米 D 、2400米 二、填空题(每小题3分,共24分)11、在Rt △ABC 中,∠C=Rt ∠,∠A=70°,则∠B=__▲ ___. 12、函数5y x =-中自变量x 的取值范围是__▲ _____. 13、边长为2的等边三角形的高为 ▲ .14、方程x 2-6x +8=0的两个根是等腰三角形的底和腰,则这个三角形的周长为____ ▲___.15、如图将一副三角尺如图所示叠放在一起,若AB=4cm ,则阴影部分的面积是__▲___cm 2.16、将正比例函数y=x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是__▲___.第15题图第17题图17、如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为___▲______.18、已知过点()1,1的直线()y ax b a 0=+≠不经过第四象限.设2s a b =+,则s 的取值范围是___▲______ 三、解答题(6小题、共46分)19、(6分) 如图,已知在△ABC 中,∠A=120º,∠B=20º,∠C=40º,请在三角形的边上找一点P ,并过点P 和三角形的一个顶点画一条线段,将这个三角形分成两个等腰三角形.(要求两种不同的分法并写出每个等腰三角形的内角度数)CAB CAB20、(12分)(1) 解不等式: 3x -2(1+2x) ≥1 (2)计算:12)326242731(⋅-+(3) 解方程:2x 2﹣4x ﹣1=021、(5分)如图,已知1011A B -(,),(,),把线段AB 平移,使点B 移动到点D (3,4)处,这时点A 移动到点C 处. (1)写出点C 的坐标___▲____;(2)求经过C 、D 的直线与y 轴的交点坐标.22、(6分)如图,在ABC △中,2C B ∠=∠,D 是BC 上的一点,且AD AB ⊥,ACD EB点E 是BD 的中点,连结AE . (1)说明AEC C ∠=∠成立的理由;(2)若 6.5AC =,5AD =,那么ABE △的周长是多少?23、(8分)某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类 别 电视机洗衣机进价(元/台) 1800 1500 售价(元/台)20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(不考虑除进价之外的其它费用)(1) 如果商店将购进的电视机与洗衣机销售完毕后获得利润为y 元,购进电视机x 台,求y 与x 的函数关系式(利润=售价-进价) (2)请你帮助商店算一算有多少种进货方案?(3)哪种进货方案待商店将购进的电视机与洗衣机销售完毕后获得利润最多?并求出最多利润.24(9分)如图①所示,直线L :5y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点。

浙教版2019--2020学年度第一学期期末考试八年级数学试卷

浙教版2019--2020学年度第一学期期末考试八年级数学试卷

试卷第1页,总6页绝密★启用前浙教版2019--2020学年度第一学期期末考试八年级数学试卷考试时间:100分钟;满分120分钟 一、单选题1.(3分)下面所给的交通标志中,轴对称图形是( )A .B .C .D .2.(3分)如图,小亮同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是 ( )A .带①去B .带②去C .带③去D .带①和②去3.(3分)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A .8米B .10米C .12米D .14米4.(3分)不等式组2x<0{2x 1-≥的解集在数轴上表示为A .B .C .D .5.(3分)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P 的对应试卷第2页,总6页点P'的坐标是( )A .(﹣1,2)B .(﹣9,6)C .(﹣1,6)D .(﹣9,2)6.(3分)如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O .若∠BOC =130°,则∠A 的度数为( )A .100°B .90°C .80°D .70°7.(3分)已知M (a ,3)和N (4,b )关于x 轴对称,则(a +b )2020的值为( )A .1B .﹣1C .72020D .﹣720208.(3分)如图,若“马”所在的位置的坐标为(-2,-1),“象”所在位置的坐标为(-1,1),则“兵”所在位置的坐标为( )A .(-2,1)B .(-2,2)C .(1,-2)D .(2,-2)9.(3分)下列四点中,在函数y=3x+2的图象上的点是( ) A .(-1,1)B .(-2,-4)C .(2,0)D .(0,-1.5)10.(3分)如图,在圆柱的截面ABCD 中,AB=16,BC=12,动点P 从A 点出发,沿着圆柱的侧面移动到BC 的中点S 的最短距离为 .试卷第3页,总6页A .10B .12C .20D .14二、填空题11.(4分)函数y=x-3的定义域是____________________. 12.(4分)等腰三角形有一个角为80°,那么它的底角的度数为________. 13.(4分)如图,△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C , 则∠1+∠2=______ .14.(4分)直线-y 2x 4=+与两坐标轴所围成的三角形面积为__________. 15.(4分)一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一份,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题. 16.(4分)已知点()1,1A a a -+在x 轴上,则a 等于________. 17.(4分)如图,直线y =12x +3与坐标轴交于A ,B 两点,在射线AO 上有一点P ,当△APB 是以AP 为腰的等腰三角形时,点P 的坐标是_____.18.(4分)如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .试卷第4页,总6页三、解答题19.(8分)解不等式组:3122(1)1x x x -⎧<⎪⎨⎪+≥-⎩.20.(8分)由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图)。

南浔区初二期末数学试卷

南浔区初二期末数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. √3C. πD. -√52. 已知a,b是实数,且a+b=0,则下列选项中正确的是()A. a=0,b=0B. a=0,b≠0C. a≠0,b=0D. a≠0,b≠03. 在直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)4. 下列等式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 + b^2 = (a - b)^2C. a^2 + b^2 = 2abD. a^2 - b^2 = (a + b)(a - b)5. 已知一次函数y=kx+b的图象经过点(1,-2),且k<0,则下列选项中正确的是()A. b>0B. b<0C. k>0D. k<06. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°7. 若一个数的平方根是±2,则这个数是()A. 4B. -4C. 8D. -88. 下列函数中,是反比例函数的是()A. y=x^2B. y=2x+1C. y=1/xD. y=√x9. 已知等腰三角形ABC的底边AB=6cm,腰AC=8cm,则三角形ABC的面积是()A. 24cm²B. 30cm²C. 36cm²D. 42cm²10. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰梯形C. 长方形D. 梯形二、填空题(每题5分,共50分)11. 若a=-3,则a²的值是______。

12. 下列各数中,负数是______。

13. 在直角坐标系中,点P(2,-3)到原点O的距离是______。

14. 一次函数y=2x-3的图象与x轴的交点坐标是______。

2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)

2019-2020学年浙教新版八年级(上)期末数学试卷 (解析版)

2019-2020学年浙教新版八年级(上)期末数学试卷一、选择题(共10小题).1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>36.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.49.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是.14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=度.15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是cm.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点最近;(2)第四次相遇时甲与最近顶点的距离是厘米.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.参考答案一、选择题(每小题3分.共30分)1.(3分)点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.2.(3分)函数y=中,自变量x的取值范围是()A.x≥B.x≥﹣C.x>D.x>﹣解:∵函数y=,∴2x+3≥0,∴x≥﹣,故选:B.3.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.解:为△ABC中BC边上的高的是A选项.故选:A.4.(3分)下列说法中错误的是()A.2x<6的解集是x<3B.﹣x<﹣4的解集是x<4C.x<3的整数解有无数个D.x<3的正整数解有有限个解:A、2x<6的解集是x<3,故此选项正确;B、﹣x<﹣4的解集是x>4,故此选项错误;C、x<3的整数解有无数个,故此选项正确;D、x<3的正整数解有1,2两个,故此选项正确;故选:B.5.(3分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是()A.k<0 B.k>0 C.k<3 D.k>3解:根据一次函数的性质,对于y=(k﹣3)x+2,当k﹣3>0时,即k>3时,y随x的增大而增大.故选:D.6.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.(3分)三角形的边长都是整数,并且唯一的最长边是7,则这样的三角形共有()A.3个B.6个C.9个D.11个解:当2边长分别为7,6时,1<第3边<7,可取2,3,4,5,6共5个数;当2边长为7,5时,2<第3边<7,可取3,4,5,6共4个数;当2边长为7,4时,3<第3边<7,可取4,5,6共3个数;当2边长为7,3时,4<第3边<7,可取5,6共2个数;当2边长为7,2时,5<第3边<7,可取6共1个数;去掉重合的7,6,5;7,6,4;7,6,3;7,6,2,4组,这样的三角形共有5+4+3+2+1﹣4=11(组).故选:D.8.(3分)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.4解:设可买x支笔则有:3x+4×2≤21即3x+8≤213x≤13x≤所以x取最大的整数为4,她最多可买4支笔.故选:D.9.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二、填空题(每小题4分,共24分)11.(4分)若点P(m﹣2,m+1)在第二象限,则m的取值范围是﹣1<m<2.解:∵点P(m﹣2,m+1)在第二象限,∴,解得,﹣1<m<2,故答案为:﹣1<m<2.12.(4分)根据数量关系“x的2倍与5的差是非负数”列出不等式是2x﹣5≥0.解:根据题意,得2x﹣5≥0.故答案是:2x﹣5≥0.13.(4分)直线y=x+1与直线y=﹣x+3的交点坐标是(1,2).解:联立,解这个方程组得,所以,交点坐标为(1,2).故答案为:(1,2).14.(4分)如图,△ABC的BC边上有一小球P,将小球沿着与AB平行的方向击出,撞到点M后反弹,撞击到点N又反弹撞击到点D,若∠ADN=105°,则∠A=25度.解:由光的反射可知∠PMC=∠AMN,又PM∥AB,∴∠PMC=∠A,∴∠A=∠AMN,又∠BNM为△AMN的外角,且∠BNM=∠AND,∴∠BNM=∠A+∠AMN=2∠A,即∠AND=2∠A,在△ADN中,∠ADN=105°,则180°﹣∠ADN=∠A+∠AND=3∠A,即3∠A=75°,所以∠A=25°.故答案为:25°15.(4分)已知关于x的一元一次不等式x﹣1<a有3个正整数解,则a的取值范围是2<a≤3cm.解:∵关于x的一元一次不等式x﹣1<a有3个正整数解,∴关于x的一元一次不等式x﹣1<a的3个正整数解,只能是3、2、1,∴a的取值范围是:3<a+1≤4,即2<a≤3.故答案为:2<a≤3.16.(4分)如图,已知等边三角形ABC的边长为12cm,甲,乙两动点同时从顶点A出发,甲以1厘米/秒的速度沿等边三角形的边按顺时针方向移动,乙以3厘米/秒的速度沿等边三角形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动.(1)第一次相遇时甲离顶点C最近;(2)第四次相遇时甲与最近顶点的距离是C厘米.解:(1)设出发x秒后甲乙第一次相遇,根据题意得:x+3x=12×3,解得x=9,所以第一次相遇时甲离顶点C最近;(2)第二次相遇的时间为:9+36÷(2+4)=16(秒),第三次相遇的时间为:16+36÷(3+5)=20.5(秒),第四次相遇的时间为:20.5+36÷(4+5)=24.5(秒),甲所走路程为:9+2×(16﹣9)+3×(20.5﹣16)+4×(24.5﹣20.5)=52.5(cm),52.5﹣12×4=4.5(cm),所以第四次相遇时甲离顶点C最近.故答案为:(1)C;(2)C.三、解答题(共66分)17.(6分)解下列方程或不等式(组):(1)3(x﹣1)+4≥2x;(2)解:(1)3(x﹣1)+4≥2x,去括号,得3x﹣3+4≥2x,移项及合并同类项,得x≥﹣1,故原不等式的解集是x≥﹣1;(2),由不等式①,得x<8,由不等式②,得x>,故原不等式组的解集是<x<8.18.(6分)已知某一次函数,当x=3时,y=﹣2;当x=2时,y=﹣3,求这个一次函数的解析式.解:设一次函数解析式为y=kx+b,将x=3,y=﹣2;x=2,y=﹣3代入得:,解得:k=1,b=﹣5,则一次函数解析式为y=x﹣5.19.(6分)已知:如图,B,D,E,C在同一直线上,AB=AC,AD=AE.求证:BD=CE.【解答】证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).20.(8分)如图,直线AB与x轴,y轴分别相交于点A(6,0),B(0,8),M是OB 上一点,若将△ABM沿AM折叠,则点B恰好落在x轴上的点B'处.求:(1)点B'的坐标;(2)△ABM的面积.解:(1)∵A(6,0),B(0,8),∴OA=6,OB=8,∴AB ===10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴OM=3,BM=OB﹣OM=5,∴S△ABM =×BM×AO =×5×6=15.21.(8分)某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料原料维生素C及价格维生素C(单位/千克)600 400原料价格(元/千克)9 5现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?解:(1)依题意,得600x+400(20﹣x)≥480×20,解得x≥8.∴至少需要购买甲种原料8千克,答:至少需要购买甲种原料8千克.(2)根据题意得:y=9x+5(20﹣x),即y=4x+100,∵k=4>0,∴y随x的增大而增大,∵x≥8,∴当x=8时,y最小,y=4×8+100=132,∴购买甲种原料8千克时,总费用最少,是132元,答:购买甲种原料8千克时,总费用最少,是132元.22.(10分)如图,在△ABC中,AB=AC=20,D是BC上一点,且AD⊥AC.(1)若∠B=30°,求证:BC=3BD;(2)若BC=32,求BD的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C=30°,∵AD⊥AC,∴∠DAC=90°,∴∠ADC=60°,∵∠ADC=∠B+∠BAD,∴∠B=∠BAD=30°,∴DB=DA,∵CD=2AD,∴BC=3BD.(2)解:过点A作AH⊥BC于H.∵AB=AC=20,AH⊥BC,∴BH=CH=16,∵cos∠C==,∴=,∴CD=25,∴BD=BC﹣CD=32﹣25=7.∴CD=BH﹣DH=16﹣9=7.23.甲,乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲,乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?(3)当甲的登山时间为t分钟时,甲乙之间的路程为20米,求满足条件的t值.解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600),所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲;(3)∵点A(8,120),点O(0,0),∴AB解析式为y=15x,当0<t≤8时,20t﹣15t=20,∴t=4,当8<t<10时,20t﹣(40t﹣200)=20,∴t=9,当10≤t<30时,40t﹣200﹣20t=20,∴t=11,综上所述:当t=4或9或11时,甲乙之间的路程为20米.24.(12分)如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴,y轴正半轴交于点M,N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC 边落在x轴的正半轴上,点A恰好落在线段MN上,如图3,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB,AC分别与线段MN交于点E,F,在△ABC 平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s).(1)如图1,求等边△ABC的边长;(2)如图2,当点B运动到(1,0)时,点Q是MN上一动点,求2BQ+QN的最小值;(3)如图3,点P沿折线B→A→C运动的过程中,是否存在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.解:(1)如图1中,∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3cm.(2)如图2中,作NT∥OB,过点Q作QR⊥NT于R,过点B作BH⊥NT于H.在Rt△MON中,∵∠OMN=30°,OM=6cm,∴ON=OM•tan30°=2(cm),∵∠NOB=∠ONH=∠BHN=90°,∴四边形OBHN是矩形,∴BH=ON=2(cm),∵NT∥OB,∴∠MNT=∠OMN=30°,∵QR⊥NT,∴QR=NQ,∴2BQ+NQ=2(BQ+NQ)=2(BQ+QR),∵BQ+QR≥BH,∴BQ+QR≥2,∴2BQ+NQ≥4,∴2BQ+NQ的最小值为4.(3)存在,有4种情况:如图3中,①当点P在线段AB上时,点P在AB上运动的时间为s,∵△PEF为等腰三角形,∠PEF=90°,∴PE=EF,∵∠A=60°,∠AFE=30°,∴EF=AE=(3﹣BE)=(3﹣)=t,∴=t或=t,解得t=或>(故舍去),②当点P在AF上时,若PE=PF时,点P为EF的垂直平分线与AC的交点,此时P为直角三角形PEF斜边AF的中点,∴PF=AP=2t﹣3,∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,∴0<t<3,在直角三角形中,cos30°=,∴=,解得:t=2,若FE=FP,AF===t,则t﹣(2t﹣3)=t,解得:t=12﹣6;③当PE=EF,P在AF上时无解,④当P点在CF上时,AP=2t﹣3,AF=t,则PF=AP﹣AF=t﹣3=EF,所以t﹣3=t,解得t=12+6>3,不合题意,舍去.综上,存在t值为或12﹣6或2时,△PEF为等腰三角形.。

2019-2020学年浙江省湖州市南浔区八年级(上)期末数学试卷

2019-2020学年浙江省湖州市南浔区八年级(上)期末数学试卷

2019-2020学年浙江省湖州市南浔区八年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列一次函数中,常数项是3的是()A.y=x﹣3B.y=x+3C.y=3x D.y=﹣3x2.(3分)如图,已知△ABC中,AD是BC边上的中线,则下列结论不一定正确的是()A.B.BD=CD C.D.3.(3分)在平面直角坐标系中,点P(﹣2,1)关于x轴对称的点的坐标是()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)4.(3分)如图,已知直角三角形的两条直角边长分别为1和2,以斜边为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.B.C.D.5.(3分)一块三角形玻璃被打碎后,店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃,能够全等的依据是()A.ASA B.AAS C.SAS D.SSS6.(3分)下列命题中,假命题是()A.对于任何实数x,都有x2≥0B.内错角相等C.对顶角相等D.两点确定一条直线7.(3分)解不等式时,去分母步骤正确的是()A.1+x≤1+2x+1B.1+x≤1+2x+6C.3(1+x)≤2(1+2x)+1D.3(1+x)≤2(1+2x)+68.(3分)如图所示,一艘游船上的雷达可扫描探测到其它小艇的位置,每相邻两个圆之间的距离是1km(最小圆半径是1km),则下列关于小艇A、B的位置的描述,正确的是()A.小艇A在游船的北偏东60°,且距游船3km处B.游船在小艇A的南偏西60°,且距小艇A3km处C.小艇B在游船的北偏西60°,且距游船2km处D.游船在小艇B的南偏东30°,且距小艇B2km处9.(3分)如图,直线y=ax+b与x轴交于点A(4,0),与直线y=mx交于点B(2,n),则关于x的不等式组0<ax﹣b<mx的解集为()A.﹣4<x<﹣2B.x<﹣2C.x>4D.2<x<410.(3分)勾股定理是人类最伟大的科学发明之一.如图1,以直角三角形ABC的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,三个阴影部分面积分别记为S1,S2,S3,若已知S1=1,S2=2,S3=3,则两个较小正方形纸片的重叠部分(四边形DEFG)的面积为()A.5B.5.5C.5.8D.6二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点A(3,﹣4)在第象限.12.(4分)函数y=﹣2x﹣1与y轴的交点坐标是.13.(4分)根据数量关系:x的2倍与1的和大于x,可列不等式:.14.(4分)已知等腰三角形有一边长为5,一边长为2,则周长为.15.(4分)已知关于x的不等式组恰好有2个整数解,则整数a的值是.16.(4分)如图,已知等腰△ABC中,AB=AC=5,BC=8,E是BC上的一个动点,将△ABE沿着AE折叠到△ADE处,再将边AC折叠到与AD重合,折痕为AF,当△DEF是等腰三角形时,BE的长是.三、解答题(本题有8小题,共66分)17.(6分)解不等式组:,并把解集表示在数轴上.(温馨提示:请把图画在答题卷相对应的图上)18.(6分)已知一次函数y=﹣3x+b,当x=3时,y=﹣8.(1)求b的值,并求出函数图象与x轴的交点坐标;(2)判断点P(﹣1,2)在不在该一次函数图象上.19.(6分)如图,已知点B,F,E,C在同一条直线上,AB∥CD,且AB=CD,∠A=∠D.求证:BE=CF.20.(8分)已知:在平面直角坐标系xOy中,△ABC如图所示.(1)将△ABC进行平移,使得点A平移到点O,作出平移后的△OB'C',并求出平移的距离(温馨提示:请把图画在答题卷相对应的图上);(2)若△ABC上有一点P(a,b),平移后的对应点为P',则P'的坐标是(用含a,b的代数式表示).21.(8分)如图,已知在△ABC中,AB=AC,过AB边上一点D作DE⊥BC于点E,延长ED,与CA的延长线交于点F.(1)求证:AF=AD.(2)若D是AB的中点,DE=2,求DF的长.22.(10分)甲乙两位老师同住一小区,该小区与学校相距2000米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,骑行若干米到达还车点后,立即步行走到学校.已知乙骑车的速度为170米/分,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给的信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求直线BC的解析式;(3)在图2中,画出当20≤x≤25时,s关于x的函数的大致图象.23.(10分)如图1,在平面直角坐标系xOy中,直线y=kx+8分别交x轴,y轴于A、B两点,已知A点坐标(6,0),点C在直线AB上,横坐标为3,点D是x轴正半轴上的一个动点,连结CD,以CD为直角边在右侧构造一个等腰Rt△CDE,且∠CDE=90°.(1)求直线AB的解析式以及C点坐标;(2)设点D的横坐标为m,试用含m的代数式表示点E的坐标;(3)如图2,连结OC,OE,请直接写出使得△OCE周长最小时,点E的坐标.24.(12分)已知在△ABC中,AB=AC,过点B引一条射线BM,D是BM上一点.(1)如图1,∠ABC=60°,射线BM在∠ABC内,∠ADB=60°,求证:∠BDC=60°.请根据以下思维框图,写出证明过程.(2)如图2,已知∠ABC=∠ADB=30°.①当射线BM在∠ABC内,求∠BDC的度数.②当射线BM在BC下方,请问∠BDC的度数会变吗?若不变,请说明理由;若改变,请直接写出∠BDC的度数.(3)在第(2)题的条件下,作AF⊥BD于点F,连结CF,已知BD=6,CD=2,求△CDF的面积.。

浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)

浙教版2019-2020学年八年级数学上学期期末考试试题(含答案)

2019-2020学年八年级数学上学期期末考试试卷一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,42.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<03.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是.14.在直角三角形中,一个锐角为57°,则另一个锐角为.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是.16.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD=.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为m2.三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.参考答案与试题解析一、精心选一选(每小题4分,共48分)1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2=3,不能组成三角形,故B选项错误;C、1+2>2,能组成三角形,故C选项正确;D、1+2<4,能组成三角形,故D选项错误;故选:C.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<0【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、m≤0时,不等式不成立,故A错误;B、a<0时,不成立,故B错误;C、两边都乘以﹣1,不等号的方向改变,故C错误;D、两边都减a,不等号的方向不变,故D正确;故选:D.3.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)【考点】点的坐标.【分析】笑脸盖住的点在第二象限内,那么点的横坐标小于0,纵坐标大于0,比较选项即可.【解答】解:笑脸盖住的点在第二象限内,则其横坐标小于0,纵坐标大于0,那么结合选项笑脸盖住的点的坐标可能为(﹣2,3).故选B.4.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45° D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.5.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【考点】全等三角形的性质.【分析】要求∠F的大小,利用△ABC≌△DEF,得到对应角相等,然后在△DEF 中依据三角形内角和定理,求出∠F的大小.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选B.6.已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°【考点】等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其顶角的度数.【解答】解:∵等腰三角形的一个底角为80°,∴顶角=180°﹣80°×2=20°.故选A.7.直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的性质进行判断即可.【解答】解:∵直线y=﹣x﹣2中,k=﹣1<0,b=﹣2<0,∴此函数的图象在二、三、四象限.故选A.8.不等式x+2<6的正整数解有()A.1个 B.2个 C.3 个D.4个【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4,故不等式x+2<6的正整数解为1,2,3,共3个.故选C.9.小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A.B.C.D.【考点】函数的图象.【分析】由题意,0到20分钟,小明离家越来越远,在20分钟时,离家最远,为900米;在超市购物用了10分钟,即20到30分钟期间,离家距离没变,为900米;15分钟返回家中,即在30到45分钟期间,离家越来越近,在45分钟时,离家距离为0.过程清楚,问题解决.【解答】解:由题意,图形应有三个阶段,①从家到超市,时间为0﹣﹣20分钟;②在超市购物,20﹣﹣30分钟;③从超市到家,30﹣﹣45分钟.A、图显示20到45分钟时,距家都是900米,实际上45分钟时已经到家了,距离应为0;故错误.B、图显示20到45分钟时,离家越来越近,实际上,20到30分钟时一直在超市;故错误.C、图显示不出20到30分钟时,离家一直是900米来,故错误.D、图显示的符合三个阶段,是正确的.综上所述,故选D.10.下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有()A.4个 B.3个 C.2个 D.1个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①有一个角为60°的等腰三角形是等边三角形,故①正确;②等腰直角三角形一定是轴对称图形,故②正确;③有一条直角边对应相等的两个直角三角形全等,故③错误;④到线段两端距离相等的点在这条线段的垂直平分线上,故④正确;故选:B.11.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.12.八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.B.y=x+ C.D.【考点】待定系数法求一次函数解析式;正方形的性质.【分析】直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P作PC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出点A的坐标,根据待定系数法即可得到该直线l的解析式.【解答】解:直线l和八个正方形的最上面交点为P,过P作PB⊥OB于B,过P 作PC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过P点的一条直线l将这八个正方形分成面积相等的两部分,∴三角形ABP面积是8÷2+1=5,∴BP•AB=5,∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l经过(0,0.5),(4,3)设直线方程为y=kx+b,则,解得.∴直线l解析式为y=x+.故选B.二、细心填一填(每小题4分,共24分)13.函数y=中自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式进行计算即可求解.【解答】解:根据题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.14.在直角三角形中,一个锐角为57°,则另一个锐角为33°.【考点】直角三角形的性质.【分析】利用直角三角形的两锐角互余可求得答案.【解答】解:∵直角三角形的两锐角互余,∴另一锐角=90°﹣57°=33°,故答案为:33°.15.一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是k <2.5.【考点】一次函数的性质.【分析】根据已知条件“一次函数y=(2k﹣5)x+2中y随x的增大而减小”知,2k ﹣5<0,然后解关于k的不等式即可.【解答】解:∵一次函数y=(2k﹣5)x+2中y随x的增大而减小,∴2k﹣5<0,解得,k<2.5;故答案是:k<2.516.如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD= 6.5.【考点】勾股定理的逆定理;直角三角形斜边上的中线.【分析】由△ABC的三边长,利用勾股定理的逆定理判断出三角形为直角三角形,且AC为斜边,再由D为斜边上的中点,得到BD为斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即可求出BD的长.【解答】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=25+144=169,AC2=132=169,即AB2+BC2=AC2,∴△ABC为以AC为斜边的直角三角形,又∵D为AC的中点,即BD为斜边上的中线,∴BD=AC=6.5.故答案为:6.5.17.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是45cm2,AB=16cm,AC=14cm,则DE=3.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再利用△ABC的面积列方程求解即可.【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC面积是45cm2,∴×16•DE+×14•DF=45,解得DE=3cm.故答案为:3.18.一块直角三角形绿地,两直角边长分别为3m,4m,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m的直角边,则扩充后等腰三角形绿地的面积为8或10m2.【考点】勾股定理的应用;等腰三角形的性质.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AC=CD,②AD=AB,2种情况进行讨论.【解答】解:∵两直角边长为3m,4m,∴由勾股定理得到:AB==5m.①如图1:当AC=CD=8m时;∵AC⊥CB,此时等腰三角形绿地的面积:×4×4=8(m2);②如图2,延长AC到D使AD等于5m,此时AB=AD=5m,此时等腰三角形绿地的面积:×5×4=10(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或10m2;故答案为:8或10三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.解不等式组,并把解表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两不不等式得到x≥﹣1和x<3,再利用数轴表示解集,然后写出不等式组的解集.【解答】解:解不等式(1)得x≥﹣1,解不等式(2)得x<3在数轴上表示为所以不等式组的解集为﹣1≤x<3.20.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.【考点】全等三角形的判定与性质.【分析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【解答】解:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=20°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=65°.21.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【考点】作图—应用与设计作图.【分析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BD=AB或AB=AD,连接即可得解.【解答】解:(1)如图1,①、②,画一个即可;(2)如图2,①、②,画一个即可.22.已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣时,函数y的值;(3)当y<1时,自变量x取值范围.【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】(1)设这个一次函数的解析式为y=kx+b(k≠0),根据点的坐标利用待定系数法即可求出一次函数解析式;(2)将x=﹣代入一次函数解析式中求出y值即可;(3)由y<1可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)设这个一次函数的解析式为y=kx+b(k≠0),把(﹣4,9)、(6,﹣1)代入y=kx+b中,,解得:,∴这个一次函数的解析式为y=﹣x+5.(2)当x=﹣时,y=﹣(﹣)+5=.(3)∵y=﹣x+5<1,∴x>4.23.如图,AB∥CD,CE平分∠ACD交AB于E点.(1)求证:△ACE是等腰三角形;(2)若AC=13cm,CE=24cm,求△ACE的面积.【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)如图,证明∠AEC=∠ACE,即可解决问题.(2)如图,作辅助线;求出AG的长度,运用三角形的面积公式,即可解决问题.【解答】(1)证明:如图,∵AB∥CD,∴∠AEC=∠DCE,又∵CE平分∠ACD,∴∠ACE=∠DCE,∴∠AEC=∠ACE,∴△ACE为等腰三角形.(2)过A作AG⊥CE,垂足为G;∵AC=AE,∴CG=EG=CE=12(cm);∵AC=13(cm),由勾股定理得,AG=5(cm);=×24×5=60(cm2).∴S△ACE24.随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?【考点】一次函数的应用.【分析】(1)设生产甲礼品x万件,乙礼品万件,根据收入=售价×产量列出函数关系式即可;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,根据成本不超过1380万元求出x的取值范围,然后根据利润=(售价﹣成本)×销量,列出函数关系式,求y的最大值;【解答】解:(1)设生产甲礼品x万件,乙礼品万件,由题意得:y=(22﹣15)x+(18﹣12)=x+600;(2)设生产甲礼品x万件,乙礼品万件,所获得的利润为y万元,由题意得:15x+12≤1380,∴x≤60,利润y=(22﹣15)x+(18﹣12)=x+600,∵y随x增大而增大,∴当x=60万件时,y有最大值660万元.这时应生产甲礼品60万件,乙礼品40万件.25.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P1(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)如图2,已知C是直线上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.【考点】一次函数综合题.【分析】(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|﹣﹣0|≥|0﹣y|,得出点A与点B的“非常距离”最小值为|﹣﹣0|,即可得出答案;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0= x0+2,据此可以求得点C的坐标;【解答】解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.【考点】三角形综合题.【分析】(1)由AB∥x轴,可找出四边形ABCO为长方形,再根据△APB为等腰三角形可得知∠OAP=45°,从而得出△AOP为等腰直角三角形,由此得出结论;(2)由全等三角形的性质和等腰三角形的性质可得出结论,注意分类讨论;(3)由等腰直角三角形的性质和全等三角形的性质即可得出结论.【解答】解:(1)过点B作BC⊥x轴于点C,如图1所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.t=4÷1=4(秒),故t的值为4.(2)点M的坐标为(4,7)或(6,﹣4)或(10,﹣1)或(0,4);(3)∠OA'B=45°,不发生变化;理由如下:∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.在△PAO和△BPC中,,∴△PAO≌△BPC(AAS),∴AO=PC,BC=PO.∵点A(0,4),点P(t,0)∴PC=AO=4,BC=PO=t,CO=PC+PO=4+t∴点B(4+t,t);∴点B在直线y=x﹣4上又∵点A关于x轴的对称点为A'(0,﹣4)也在直线y=x﹣4上,∴∠OA'B=45°.2017年2月6日。

浙江省湖州市南浔区2019-2020学年八年级上学期期末数学试题(word无答案)

浙江省湖州市南浔区2019-2020学年八年级上学期期末数学试题(word无答案)

浙江省湖州市南浔区2019-2020学年八年级上学期期末数学试题(word无答案)一、单选题(★★) 1 . 下列一次函数中,常数项是的是()A.B.C.D.(★★) 2 . 如图,已知中,是边上的中线,则下列结论不一定正确的是()A.B.C.D.(★★) 3 . 在平面直角坐标系中,点关于轴对称的点的坐标是()A.B.C.D.(★★) 4 . 如图,已知直角三角形的两条直角边长分别为和,以斜边为半径画弧,交数轴正半轴于点,则点表示的数是()A.B.C.D.(★★) 5 . 一块三角形玻璃被打碎后,店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃,能够全等的依据是()A.B.C.D.(★★) 6 . 下列命题中,假命题是()A.对于任何实数,都有B.内错角相等C.对顶角相等D.两点确定一条直线(★★) 7 . 解不等式时,去分母步骤正确的是()A.B.C.D.(★★) 8 . 如图所示,一艘游船上的雷达可扫描探测到其它小艇的位置,每相邻两个圆之间的距离是(最小圆半径是),则下列关于小艇、的位置的描述,正确的是()A.小艇在游船的北偏东,且距游船处B.游船在小艇的南偏西,且距小艇处C.小艇在游船的北偏西,且距游船处D.游船在小艇的南偏东,且距小艇处(★★) 9 . 如图,直线与轴交于点,与直线交于点,则关于的不等式组的解为()A.B.C.D.(★★) 10 . 勾股定理是人类最伟大的科学发明之一.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,三个阴影部分面积分别记为,,,若已知,,,则两个较小正方形纸片的重叠部分(四边形)的面积为()A.B.C.D.二、填空题(★★) 11 . 点在第___________象限.(★★) 12 . 函数与轴的交点坐标是___________.(★★) 13 . 根据数量关系:的倍与的和大于,列出不等式___________.(★★) 14 . 等腰三角形的一边长为2,另一边长为5,则它的周长是 ______ .(★★) 15 . 已知关于的不等式组恰好有个整数解,则整数的值是___________.(★★) 16 . 如图,已知等腰中,,,是上的一个动点,将沿着折叠到处,再将边折叠到与重合,折痕为,当是等腰三角形时,的长是___________.三、解答题(★★) 17 . 解不等式组:,并把解集表示在数轴上.(★★) 18 . 已知一次函数,当时,.(1)求的值,并求出函数图象与轴的交点坐标;(2)判断点在不在该一次函数图象上.(★★) 19 . 如图,已知点,,,在同一条直线上,,且,.求证:.(★★) 20 . 已知:在平面直角坐标系中,如图所示.(1)将进行平移,使得点平移到点,作出平移后的,并求出平移的距离;(2)若上有一点,平移后的对应点为,则的坐标是___________ (用含,的代数式表示).(★★) 21 . 如图,已知在中,,过边上一点作于点,延长,与的延长线交于点.(1)求证:.(2)若是的中点,,求的长.(★★) 22 . 甲乙两位老师同住一小区,该小区与学校相距米.甲从小区步行去学校,出发分钟后乙再出发,乙从小区先骑公共自行车,骑行若干米到达还车点后,立即步行走到学校.已知乙骑车的速度为米/分,甲步行的速度比乙步行的速度每分钟快米.设甲步行的时间为(分),图1中线段与折线分别表示甲、乙离小区的路程(米)与甲步行时间(分)的函数关系的图象;图2表示甲、乙两人之间的距离(米)与甲步行时间(分)的函数关系的图象(不完整),根据图1和图2中所给的信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求直线的解析式;(3)在图2中,画出当时,关于的函数的大致图象.(★★★★) 23 . 如图1,在平面直角坐标系中,直线分别交轴,轴于、两点,已知点坐标,点在直线上,横坐标为,点是轴正半轴上的一个动点,连结,以为直角边在右侧构造一个等腰,且.(1)求直线的解析式以及点坐标;(2)设点的横坐标为,试用含的代数式表示点的坐标;(3)如图2,连结,,请直接写出使得周长最小时,点的坐标.(★★) 24 . 已知在中,,过点引一条射线,是上一点.(1)如图1,,射线在内,,求证:.请根据以下思维框图,写出证明过程.(2)如图2,已知.①当射线在内,求的度数.②当射线在下方,请问的度数会变吗?若不变,请说明理由;若改变,请直接写出的度数.(3)在第(2)题的条件下,作于点,连结,已知,,求的面积.。

2019--2020学年浙江省八年级上册数学(浙教版)《三角形的初步认识》期末试题分类——解答题

2019--2020学年浙江省八年级上册数学(浙教版)《三角形的初步认识》期末试题分类——解答题

2019--2020学年浙江省八年级上册数学(浙教版)《三角形的初步认识》期末试题分类——解答题一.解答题1.(2019秋•拱墅区期末)如图,点E在边BC上,∠1=∠2,∠C=∠AED,BC=DE.(1)求证:AB=AD;(2)若∠C=70°,求∠BED的度数.2.(2019秋•南浔区期末)如图,已知在△ABC中,AB=AC,过AB边上一点D作DE⊥BC 于点E,延长ED,与CA的延长线交于点F.(1)求证:AF=AD.(2)若D是AB的中点,DE=2,求DF的长.3.(2019秋•南浔区期末)如图,已知点B,F,E,C在同一条直线上,AB∥CD,且AB=CD,∠A=∠D.求证:BE=CF.4.(2019秋•江干区期末)已知∠α,线段a,b,请按要求作图并回答问题;(1)作△ABC,使∠C=α,AC=b,BC=a;(2)已知∠α=45°,a=4√2,b=7,求△ABC的面积.5.(2019秋•西湖区期末)如图,点C是∠AOB的边OB上的一点,按下列要求画图并回答问题.(1)过点C画OA的垂线,交OA与点D.(2)过点C画OB的垂线,交OA与点E.(3)比较线段CD,CE,OE的大小,并用“<”连接.6.(2019秋•椒江区期末)如图,平面上有线段AB和点C,按下列语句要求画图与填空:(1)作射线AC;(2)用尺规在线段AB的延长线上截取BD=AC;(3)连接BC;(4)有一只蚂蚁想从点A爬到点B,它应该沿路径(填序号)(①AB,②AC+CB)爬行最近,这样爬行所运用到的数学原理是.7.(2019秋•温州期末)我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB,按要求画图.(1)在图1中画一条格点线段CD将AB平分.(2)在图2中画一条格点线段EF.将AB分为1:3.8.(2019秋•温岭市期末)已知图中有A、B、C、D四个点,现已画出A、B、C三个点,已知D点位于A的北偏东30°方向,位于B的北偏西45°方向上.(1)试在图中确定点D的位置;(2)连接AB,并在AB上求作一点O,使点O到C、D两点的距离之和最小;(3)第(2)小题画图的依据是.9.(2019秋•富阳区期末)如图,在△ABC中,AC<AB<BC,AD是高线,∠B=α,∠C =β.(1)用直尺与圆规作三角形内角∠BAC的平分线AE;(不写作法,保留作图痕迹)(2)在(1)的前提下,判断①∠EAD=β−12α,②∠EAD=12(β−α)中哪一个正确?并说明理由.10.(2019秋•上城区期末)如图,已知平面上有三点A,B,C.(1)按要求画图:画线段AB,直线BC;(2)在线段BC上找一点E,使得CE=BC﹣AB;(3)过点A作BC的垂线,垂足为点D,找出AB,AC,AD,AE中最短的线段,并说明理由.11.(2019秋•滨江区期末)已知:如图,CD=BE,DG⊥BC于点G,EF⊥BC于点F,且DG=EF.(1)求证:△DGC≌△EFB;(2)连结BD,CE.求证:BD=CE.12.(2019秋•柯桥区期末)如图,已知A、B、C、D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.①画线段AB;②画直线AC;③过点D画AC的垂线,垂足为F.13.(2019秋•越城区期末)已知:如图,AB=AD,BC=DC,E、F分别是DC、BC的中点.(1)求证:∠D=∠B;(2)当AE=2时,求AF的值.14.(2019秋•苍南县期末)已知:如图,∠ACB=∠DCE,AC=BC,CD=CE,AD交BC 于点F,连结BE.(1)求证:△ACD≌△BCE.(2)延长AD交BE于点H,若∠ACB=30°,求∠BHF的度数.15.(2019秋•余杭区期末)如图,已知点A,B,C,D,请按要求画出图形.(1)画直线AB和射线CB;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(要求保留作图痕迹)(3)在直线AB上确定一点P,使PC+PD的和最短,并写出画图的依据.16.(2019秋•长兴县期末)如图,平面内有三个点A,B,C,请你根据下列要求完成作图(作图工具不限).(1)画直线AB,射线CB,线段AC;(2)过点C作直线l⊥直线AB,垂足为D.17.(2019秋•嘉兴期末)已知:如图,点F,B,E,C在同一条直线上,AC=DF,BF=EC,∠F=∠C.(1)求证:△ABC≌△DEF.(2)若∠F+∠FED=80°,求∠A的度数.18.(2019秋•鄞州区期末)如图是由24个小正方形组成的网格图,每一个正方形的顶点都称为格点,△ABC的三个顶点都是格点.请按要求完成下列作图,每个小题只需作出一个符合条件的图形.(1)在图1网格中找格点D,作直线AD,使直线AD平分△ABC的面积;(2)在图2网格中找格点E,作直线AE,使直线AE把△ABC的面积分成1:2两部分.19.(2019秋•温州期末)如图,在平面内有A,B,C三点.(1)请按要求作图:画直线AC,射线BA,线段BC,取BC的中点D,过点D作DE ⊥AC于点E.(2)在完成第(1)小题的作图后,图中以A,B,C,D,E这些点为端点的线段共有条.20.(2019秋•奉化区期末)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE,BE,延长AE交BC的延长线于点F.(1)求证:△DAE≌△CFE;(2)若BE⊥AF,求证:AB=BC+AD.21.(2019秋•新昌县期末)如图,已知点A,D,B,E在同一条直线上,∠A=∠E,∠ADF =∠EBC,AC=EF.求证:AB=DE.22.(2019秋•余姚市期末)如图,已知AB∥DE,∠B=∠E,BC=EF,求证:AF=CD.23.(2019秋•下城区期末)如图,AB∥CD,AB=CD,点E和点F在线段BC上,∠A=∠D.(1)求证:AE=DF.(2)若BC=16,EF=6,求BE的长.24.(2019秋•义乌市期末)如图所示,在三角形ABC和三角形DEF中,B,F,C,E在同一直线上,∠A=∠D,∠B=∠E,BF=EC,求证:AC=DF.25.(2019秋•吴兴区期末)已知:如图,点A,D,B,E在同一条直线上,∠ABC=∠EDF,AD=BE,BC=DF.求证:AC=EF.2019--2020学年浙江省八年级上册数学(浙教版)《三角形的初步认识》期末试题分类——解答题参考答案与试题解析一.解答题(共25小题)1.【答案】见试题解答内容【解答】解:(1)∵∠1=∠2,∴∠CAB=∠EAD,又∵∠C=∠AED,BC=DE.∴△ABC≌△ADE(AAS),∴AB=AD;(2)∵△ABC≌△ADE,∴AC=AE,∴∠C=∠AEC=70°,∵∠AED=∠C=70°,∴∠BED=180°﹣70°﹣70°=40°.2.【答案】见试题解答内容【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵DE⊥BC,∴∠F+∠C=90°,∠B+∠BDE=90°,∴∠F=∠BDE,∵∠BDE=∠ADF,∴∠F=∠ADF,∴AF=AD.(2)解:作AG⊥DF于点G,∵AD =AF ,∴DF =2DG =2FG ,∵D 是AB 的中点,∴AD =BD ,∵∠ADG =∠BDE ,∠AGD =∠BED =90°,∴△ADG ≌△BDE (AAS ),∴DG =DE =2,∴DF =4.3.【答案】见试题解答内容【解答】证明:∵AB ∥CD ,∴∠B =∠C ,在△ABF 和△DCE 中{∠B =∠CAB =CD ∠A =∠D∴△ABF ≌△DCE (ASA )∴BF =CE ,∴BF +EF =CE +EF ,即BE =CF .4.【答案】见试题解答内容【解答】解:(1)如图,△ABC 为所作;(2)作AH⊥BC于H,如图,∵∠B=45°,∴△ACH为等腰直角三角形,∴AH=√22AC=√22×4√2=4,∴S△ABC=12×BC×AH=12×7×4=14.5.【答案】见试题解答内容【解答】解:(1)如图所示:D为所求;(2)如图所示:E为所求;(3)CD<CE<OE(从直线外一点到这条直线所作的垂线段最短).6.【答案】见试题解答内容【解答】解:(1)如图所示,射线AC即为所求;(2)如图所示,线段BD即为所求;(3)如图所示,线段BC即为所求;(4)有一只蚂蚁想从点A爬到点B,它应该沿路径AB爬行最近,这样爬行所运用到的数学原理是两点之间,线段最短.故答案为:①;两点之间,线段最短.7.【答案】见试题解答内容【解答】解:(1)如图,线段CD即为所求.(2)如图,线段EF即为所求,注意有两种情形.8.【答案】见试题解答内容【解答】解:(1)如图,点D即为所求.(2)如图,点O即为所求.(3)第(2)小题画图的依据是两点之间线段最短.故答案为两点之间线段最短.9.【答案】见试题解答内容【解答】解:如图,(1)AE即为∠BAC的平分线;(2)②∠EAD=12(β−α)正确,理由如下:在(1)的前提下,∵AE为∠BAC的平分线,∴∠EAB=∠EAC=12∠BAC,=12(180°﹣α﹣β)=90°−12α−12β,∵AD是高线,∴∠ADC=90°,∴∠DAC=90°﹣∠C=90°﹣β,∴∠EAD=∠EAC﹣∠DAC=90°−12α−12β−(90°﹣β)=12(β﹣α).所以②∠EAD=12(β−α)正确.10.【答案】见试题解答内容【解答】解:如图,(1)线段AB,直线BC即为所求;(2)点E 即为所求,使得CE =BC ﹣AB ;(3)过点A 作BC 的垂线,垂足为点D ,根据垂线段最短可知:AB ,AC ,AD ,AE 中最短的线段为AD .11.【答案】见试题解答内容【解答】(1)证明:∵DG ⊥BC ,EF ⊥BG∴∠DGC =∠EFB =90°.在Rt △DGC 和Rt △EFB 中,{CD =BE DG =EF∴Rt △DGC ≌Rt △EFB (HL );(2)∵Rt △DGC ≌Rt △EFB ,∴∠BCD =∠CBE ,∵BC =CB ,CD =BE ,∴△BDC ≌△CEB (SAS ),∴BD =CE .12.【答案】见试题解答内容【解答】解:①如图所示:线段AB 即为所求;②如图所示:直线AC 即为所求;③如图所示:点F 即为所求.13.【答案】见试题解答内容【解答】证明:(1)在△ADC 和△ABC 中,{AD =AB AC =AC CD =CB∴△ADC ≌△ABC (SSS )∴∠D =∠B ;(2)∵E 、F 分别是DC 、BC 的中点,BC =DC ,∴DE =BF ,在△ADE 和△ABF 中,{DE =BF ∠D =∠B AD =AB∴△ADE ≌△ABF (SAS ),∴AF =AE =2.14.【答案】见试题解答内容【解答】证明:(1)∵∠ACB =∠DCE ,∴∠ACB +∠DCB =∠DCE +∠DCB ,即∠ACD =∠BCE ,在△ACD 和△BCE 中,{AC =BC ∠ACD =∠BCE CD =CE∴△ACD ≌△BCE (SAS );(2)∵△ACD ≌△BCE ,∴∠A =∠B ,∵∠BFH =∠AFC ,∴∠BHF =∠ACB ,∵∠ACB =30°,∴∠BHF =30°.15.【答案】见试题解答内容【解答】解:如图所示,(1)直线AB和射线CB即为所求作的图形;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(3)在直线AB上确定一点P,使PC+PD的和最短.16.【答案】见试题解答内容【解答】解:(1)如图,直线AB,射线CB,线段AC为所作;(2)如图,直线l为所作.17.【答案】见试题解答内容【解答】证明:(1)∵BF=EC,∴FE=CB,且∠F=∠C,AC=DF,∴△ABC≌△DEF(SAS)(2)∵∴△ABC≌△DEF,∴∠A=∠D,∵∠F+∠FED=80°,∴∠D=180°﹣80°=100°,∴∠A=100°.18.【答案】见试题解答内容【解答】解:(1)如图,取格点D,作射线AD,射线AD即为所求.(2)取格点E,连接AE,射线AE即为所求.19.【答案】见试题解答内容【解答】解:(1)如图所示:直线AC,射线BA,线段BC,取BC的中点D,过点D作DE⊥AC于点E即为所求作的图形;(2)图中以A,B,C,D,E这些点为端点的线段共有8条.故答案为8.20.【答案】见试题解答内容【解答】解:(1)∵AD∥BC,∴∠D=∠ECF,∠DAE=∠F,∵点E为CD的中点,∴ED=EC,∴△DAE≌△CFE(AAS);(2)∵△DAE≌△CFE,∴AE=EF,AD=CF,∵BE⊥AF,∴AB=BF,∵BF=BC+CF,CF=AD,∴AB=BC+AD.21.【答案】见试题解答内容【解答】证明:∵∠ADF=∠EBC,∴∠FDE =∠CBA .在△ACB 和△EFD 中,{∠A =∠E∠CBA =∠FDE AC =EF,∴△ACB ≌△EFD (AAS ). ∴AB =ED .22.【答案】见试题解答内容【解答】证明:∵AB ∥DE , ∴∠A =∠D .在△ABC 和△DEF 中,{∠A =∠D∠B =∠E BC =EF,∴△ABC ≌△DEF (AAS ). ∴AC =DF .∴AC +CF =DF +CF .∴AF =CD .23.【答案】见试题解答内容【解答】(1)证明:∵AB ∥CD , ∴∠B =∠C ,在△ABE 和△DCF 中,{∠A =∠DAB =DC ∠B =∠C,∴△ABE ≌△DCF (ASA ), ∴AE =DF .(2)解:∵△ABE ≌△DCF , ∴BE =CF ,BF =CE ,∵BF +CE =BC ﹣EF =16﹣6=10, ∴2BF =10,∴BF =5,∴BE =BF +EF =5+6=11.24.【答案】见试题解答内容【解答】证明:∵BF =EC ,∴BC =EF ,在△ABC 和△DEF 中 {∠A =∠D∠B =∠E BC =EF,∴△ABC ≌△DEF (AAS ), ∴AC =DF .25.【答案】见试题解答内容【解答】证明:∵AD =BE , ∴AD +BD =BE +BD , ∴AB =DE ,在△ABC 和△EDF 中 {AB =DE ∠ABC =∠EDF BC =DF,∴△ABC ≌△EDF (SAS ), ∴AC =EF .。

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(1)

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(1)

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(1)一、选择题1.当x =1时,下列式子无意义的是( )A .B .C .D . 2.计算(﹣3a ﹣1)﹣2的结果是( )A .6a 2B .C .-D .9a 2 3.已知a =2﹣2,b =(π﹣2)0,c =(﹣1)3,则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <cC.c <a <bD.a <c <b 4.下面计算正确的是( )A .()235a a =B .246a a a ⋅=C .624a a a -=D .336a a a += 5.若()222a b X a ab b -+=++,则整式X 的值为( )A.abB.0C.2abD.3ab 6.已知代数式-m 2+4m -4,无论m 取任何值,它的值一定是( )A .正数B .负数C .非正数D .非负数 7.如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(OC 1)>,连接BC ,以线段BC 为边在第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是( )A .点E 的坐标随着点C 位置的变化而变化B .()0,3C .(D .( 8.在ABC △中,A x ︒∠=,B y ︒∠=,60C ︒∠≠.若1802y x ︒=-,则下列结论正确的是( ) A .AC AB =B .AB BC = C .AC BC =D .,,AB BC AC 中任意两边都不相等9.下列图形是轴对称图形的是( )A .B .C .D .10.在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为( )A .50°B .40°C .30°D .25°11.如图,把一张长方形的纸片ABCD 沿EF 折叠,若∠AED′=40°,则∠DEF 的度数为( )A.40°B.50°C.60°D.70° 12.如图,在ABC ∆中,90C ∠=︒,10AB =,AD 是ABC ∆的一条角平分线.若3CD =,则ABD ∆的面积为( )A .3B .10C .12D .1513.如图,直线,相交于点,,平分,若,则的度数为( )A. B. C. D.14.十二边形的内角和是多少度( )A .900° B.1440° C.1800° D.1980°15.将含30°角的三角板ABC 如图放置,使其三个顶点分别落在三条平行直线上,其中∠ACB=90°,当∠1=60°时,图中等于30°的角的个数是( )A .6个B .5个C .4个D .3个 二、填空题16.已知1a =,1b =,则代数式11a b+的值为________. 17.如图,AB 的垂直平分线分别交AB ,AC 于点D ,E ,AC=9,AE :EC=2:1,则点B 到点E 的距离是_____.18.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .【答案】a=519.如图所示,直线a ∥b ,∠1=35°,∠2=90°,则∠3的度数为________。

浙江省湖州市南浔区2019-2020八年级上学期期末数学试卷 及答案解析

浙江省湖州市南浔区2019-2020八年级上学期期末数学试卷 及答案解析

浙江省湖州市南浔区2019-2020八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.有下列函数:①y=2x;②y=−x−100;③y=2−3x;④y=x2−1.其中是一次函数的有()A. 1个B. 2个C. 3个D. 4个2.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,那么下列结论错误的是()A. ∠A+∠DCB=90°B. ∠ADC=2∠BC. AB=2CDD. BC=CD3.在平面直角坐标系中,点P(2,−5)关于x轴对称的点的坐标为()A. (−2,5)B. (2,5)C. (−2,−5)D. (2,−5)4.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A. −√2B. −1+√2C. −1−√2D. 1−√25.如图,某同学把一块三角形状的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是带③去,依据是三角形的全等判定()A. SASB. ASAC. SSSD. AAS6.下列命题中是假命题的是()A. 直角三角形的两个锐角互余B. 对顶角相等C. 两条直线被第三条直线所截,同位角相等D. 三角形任意两边之和大于第三边7.解不等式x+23>1−x−32时,去分母后结果正确的为()A. 2(x+2)>1−3(x−3)B. 2x+4>6−3x−9C. 2x+4>6−3x+3D. 2(x+2)>6−3(x−3)8.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南偏东75°方向5km处9.如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,83),则kx+b<4x+4的解集为()A. x>−13B. x<−13C. x<1D. x>110.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载。

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(3)

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(3)

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(3)一、选择题1.下列式子中,a 取任何实数都有意义的是( )A. B. C. D.2.若分式方程233x a x x +=--有增根,则a 的值是( ) A .﹣3 B .3 C .1 D .03.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x •y=8D .x 2+y 2=36 4.某次列车平均提速/vkm h ,用相同的时间,列车提速前行驶skm ,提速后比提速前多行驶50km ,提速前列车的平均速度为多少?若设提速前这次列车的平均速度为/xkm h ,则根据行驶时间的等量关系可以列出的方程为( ) A.50s s x x v +=+ B.50s s x x v -=- C.50s s x x v +=- D.50s s x x v-=+ 5.下面是一位同学做的四道题,其中正确的是( )A .m 3+m 3=m 6B .x 2•x 3=x 5C .(﹣b )2÷2b =2bD .(﹣2pq 2)3=﹣6p 3q 6 6.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅ 4 y 3B .( x+1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x+16=( x ﹣4)2 7.下列手机手势解锁图案中,是轴对称图形的是( )A. B. C. D.8.如图,直线l 1∥l 2,将等边三角形如图放置,若∠α=35°,则∠β等于( )A .35°B .30°C .25°D .15°9.如图,Rt ABC ∆中,90BAC ∠=,AB AC =,将ABC ∆绕点C 顺时针旋转40得到出'''A B C ∆,'CB 与AB 相交于点D ,连接'AA ,则''B A A ∠的度数为( )A .10B .15C .20D .3010.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A.1个B.2个C.3个D.4个11.在等腰ABC 中,5AB =,底边8BC =,则下列说法中正确的有( )()1AC AB =;()26ABC S =;()3ABC 底边上的中线为4;()4若底边中线为AD ,则ABD ACD ≅.A.1个B.2个C.3个D.4个12.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N.若正方形ABCD 的边长为6,则重叠部分四边形EMCN 的面积为( )A.9B.12C.16D.3213.下列正多边形的组合中,不能够铺满地面的是( )A .正三角形和正方形B .正三角形和正六边形C .正方形和正六边形D .正方形和正八边形 14.已知一个多边形的内角和是外角和的3倍,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形 15.若(a ﹣4)2+|b ﹣8|=0,则以a 、b 为边长的等腰三角形的周长为( )A .18B .16C .16或20D .20二、填空题16.若a:b:c=1:2:3,则33a b c a b c+-=-+____________ 17.若x 2+kx+25是一个完全平方式,则k 的值是____________.【答案】±10.18.如图,△ABC ≌△DBE ,A 、D 、C 在一条直线上,且∠A=60°,∠C=35°,则∠DBC=______°.19.如图,小亮从点O 出发,前进5m 后向右转30°,再前进5m 后又向右转30°,这样走n 次后恰好回到点O 处,小亮走出的这个n 边形的每个内角是__________°,周长是___________________m.20.如图,ABC ∆中, 90ACB ∠=,AC BC <,将ABC ∆沿EF 折叠,使点A 落在直角边BC 上的D 点处,设EF 与AB AC 、边分别交于点E F 、,如果折叠后CDF ∆与BDE ∆均为等腰三角形,那么B ∠=__________.三、解答题21.解方程:(1)212=-x x ; (2)22111-=--x x x . 22.化简2211222x y xy xy xy ⎛⎫--÷ ⎪⎝⎭ 23.如图,在△ABC 中,AB=AC ,∠B=30°,点D 从点B 出发,沿B→C 方向运动到点C(D 不与B ,C 重合),连接AD ,作∠ADE=30°,DE 交线段AC 于点E.设∠B4D=x°,∠AED=y°.(1)当BD=AD 时,求∠DAE 的度数;(2)求y 与x 的关系式;(3)当BD=CE 时,求x 的值.24.如图所示,有一边长为(1)图中黑白方砖共有 块;(2)求一块方砖的边长.25.如图,操场上有两根旗杆间相距12m ,小强同学从B 点沿BA 走向A ,一定时间后他到达M 点,此时他测得CM 和DM 的夹角为90°,且CM DM =,已知旗杆AC 的高为3m ,求另一旗杆BD 的高度.【参考答案】***一、选择题16.-217.无18.2519.150, 6020.或三、解答题21.(1)x =43;(2)x =1是增根,分式方程无解. 22.原式24x y =--. 23.解:(1)90°.(2) y=30+x.(3) x=y -30=45.【解析】【分析】(1)根据等腰三角形的性质得到∠C=∠B=30°,∠BAD=∠B =30°,利用三角形的内角和计算出∠BAC=120°,从而可以计算出∠DAE=90°;(2)利用三角形的内角和计算出∠BAC=120°,从而∠DAE=120°-x°,利用三角形的内角和表示∠AED=30°+x°,即y=30+x ;(3)先需要证明△ABD ≌△DCE ,得出AD=DE,从而得出∠DAE=∠AED=y°,利用三角形的内角和计算出y ,从而计算出x.【详解】解:(1)∵AB=AC, ∠B=30°,∴∠C=∠B =30°,∴∠BAC=180°-∠C-∠B=120°,∵BD=AD, ∠B=30°,∴∠BAD=∠B =30°,∴∠DAE=∠BAC-∠BAD=90°.(2) ∵AB=AC, ∠B=30°,∴∠C=∠B =30°,∴∠BAC=180°-∠C-∠B=120°,∴∠DAE=∠BAC-∠BAD=120°-x°,∴∠AED=180°-∠DAE-∠ADE=30°+x°,即y=30+x.(3) ∵∠C=30°, ∠AED=30°+x°,∴∠EDC=∠AED-∠C= x°,∴∠EDC=∠BAD,又∵∠C=∠B,BD=CE,∴△ABD≌△DCE(AAS),∴AD=DE,∴∠DAE=∠AED=y°∵∠DAE+∠AED+∠ADE=180°∴2y°+30°=180°即y°=75°,∴x=y-30=45.【点睛】(1)第一问是根据等腰三角形等边对等角,以及三角形的内角和这两个定理的运用,在一个三角形中如果边相等,它们对应的角也相等;(2)第二问在计算时,和第一问类似,模仿第一问的方法,用含有x,y的关系式,表示相应的角;(3)本题的关键是能想到证明△ABD≌△DCE,在证明全等时要能借助第二问,计算出∠EDC=x°,从而得出∠EDC=∠BAD,一般做题时,后面的问题需要在前面问题的结论的基础上去解决.24.(1)黑白方砖共有32块;(2)一块方砖的边长为2米.25.9m;【解析】【分析】首先证明△CAM≌△MBD,可得AM=DB,AC=MB,然后可求出AM的长,进而可得DB长;【详解】∵CM和DM的夹角为90°,∴∠1+∠2=90°,∵∠DBA=90°,∴∠2+∠D=90°,∴∠1=∠D,在△CAM和△MBD中,1A B D CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CAM ≌△MBD(AAS), ∴AM=DB ,AC=MB , ∵AC=3m ,∴MB=3m ,∵AB=12m , ∴AM=9m ,∴DB=9m ;【点睛】此题考查全等三角形的应用,解题关键在于掌握判定定理.。

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(4)

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(4)

浙江省湖州市2019-2020学年数学八上期末模拟调研测试题(4)一、选择题1.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是()A .7500750015x 1.2x -=B .750075001x 1.2x 4-=C .7.57.515x 1.2x -=D .7.57.51x 1.2x 4-= 2.当x=2时,下列各式的值为0的是( )A .2232x x x --+B .12x -C .249x x --D .21x x +- 3.下列计算正确的是( )A .x 2+x 2=x 4B .(x ﹣y)2=x 2﹣y 2C .(﹣x)2•x 3=x 5D .(x 2y)3=x 6y4.化简24()(2)22m m m m+÷+--的结果是( ) A.0B.1C.﹣1D.(m+2)2 5.计算,得( )A. B. C. D. 6.若x 2+bx+c =(x+5)(x ﹣3),其中b 、c 为常数,则点P (b ,c )关于y 轴对称的点的坐标是( )A .(﹣2,﹣15)B .(2,15)C .(﹣2,15)D .(2,﹣15) 7.下列运算正确的是( )A.a 2•a 3=a 5B.a 2+a 2=a 4C.a 3÷a=a 3D.(a 2)4=a 6 8.如图所示的五角星是轴对称图形,它的对称轴共有( )A .1条B .3条C .5条D .无数条9.下列标志中,可以看作是轴对称图形的是( )A. B.C. D.10.如图,已知AD 是△ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,BD=DG .下列结论:(1)DE=DF ;(2)∠B=∠DGF ; (3)AB <AF+FG ;(4)若△ABD 和△ADG 的面积分别是50和38,则△DFG 的面积是8.其中一定正确的有( )A .1个B .2个C .3个D .4个 11.如图,AB ∥DE ,AC ∥DF ,AC=DF ,要使△ABC ≌△DEF 需再补充一个条件,下列条件中,不能..选择的是( )A.AB=DEB.BC=EFC.EF ∥BCD.∠B=∠E12.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中不正确...的是( )A .AD 是∠BAC 的平分线B .∠ADC=60°C .点D 在AB 的中垂线上D .S △DAC ︰S △ABD =1︰3 13.有两条线段长度分别为:2cm ,5cm ,再添加一条线段能构成一个三角形的是( ) A.1cmB.2cmC.3cmD.4cm 14.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .五边形B .六边形C .七边形D .八边形 15.若一个多边形的每一个外角都是40°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 二、填空题16.5-2表示成分数是________. 17.已知26x x a -+是完全平方式,则a 的值为____________.18.如图所示,在ABC 中,90C ∠=,BE 平分ABC ∠,ED AB ⊥于D ,若6AC cm =,则AE DE +=________.19.在长度为2、5、6、8的四条线段中,任取三条线段,可构成__________个不同的三角形.20.已知等腰三角形的顶角是 80°,则它的底角是__________.三、解答题21.解答下列各题(1)化简:2214411m m m m m ⎛⎫-+-÷ ⎪--⎝⎭ (2)解分式方程:21133x x x x-=-- 22.(1)2(5)(2)(3)x x x ----(2)22(2)(4)(2)x y x y x y -++(3)20183011()(3.14)2π--+--- (4)201920184(0.25)∙- (5)先化简,再求值:2[(23)(23)7(3)(23)](3)x x x x x x +-+-+-÷-,其中3x =-23.边长为2的正方形ABCD 中,点E 是BD 上一点,过点E 作EF AE ⊥交射线CB 于点F ,且2BC BF =,则线段DE 的长为?24.如图1,在△ABC 中,∠BAC =90°,AB =AC ,直线MN 过点A ,且MN ∥BC ,点D 是直线MN 上一点,不与点A 重合.若点E 是线段AB 上一点,且DE =DA .(1)请说明线段DE ⊥DA .(2)如图2,连接BD ,过点D 作DP ⊥DB 交线段AC 于点P ,请判断线段DB 与DP 的数量关系,并说明理由.25.在平面直角坐标系中,点,,A B C 的坐标分别为(,0),(,0),(0,3)A a B b C 且,a b 满足24(4)0a b ++-=,连接,AC BC .(1)如图1,若5AC BC ==,点M 是直线BC 上的一个动点,当AM 最短时,求AM 的值; 点P 是线段AB 上的一个动点,且满足PE AC ⊥于点E ,PF BC ⊥于点F ,求PE PF +的值;(2)如图2,过点C 作直线1//l x 轴,过点B 作2//l AC ,与1l 交于点D ,与y 轴交于点E ,,AN EN 分别平分,CAB CEB ∠∠,求ANE ∠的度数.【参考答案】***一、选择题16.12517.918.6cm19.220.50°三、解答题21.(1)2m m -;(2)32x =-. 22.(1)-5x+19;(2)4416x y -(3)-10;(4)4;(5)-5x+11;26.23 【解析】【分析】分两种情况讨论,①过点E 作MN BC ⊥,垂直为N ,交AD 于M ,先求出N 是CF 的中点,然后得出14=CN BN ,根据矩形和等腰三角形的性质得出==CN DM ME 即可求出答案;②过点E 作MN BC ⊥,垂直为N ,交AD 于M ,根据正方形和全等三角形的性质得出BAE BCE ∠=∠,然后再求出=FN CN ,3=FC ,32=CN ,12==EN BN ,最终即可求出DE . 【详解】解:①过点E 作MN BC ⊥,垂直为N ,交AD 于M ,CE EF =,N ∴是CF 的中点.2BC BF =,14CN BN ∴=. 又四边形CDMN 是矩形,DME 为等腰直角三角形,CN DM ME ∴==,2ED ∴===. ②过点E 作MN BC ⊥,垂直为N ,交AD 于M .正方形ABCD 关于BD 对称,ABE CBE ∴△≌△,BAE BCE ∴∠=∠,又90ABF AEF ∠︒∠==,BAE EFC ∴∠=∠,BCE EFC ∴∠=∠,CE EF ∴=.FN CN ∴=.又2BC BF =,3FC ∴=,32CN ∴=, 12EN BN ∴==,2DE ∴=.综上所述,ED 的长为2或2【点睛】 本题主要考查的是矩形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,掌握本题的辅助线的法则是解题的关键.24.(1)见解析;(2)DB =DP ,理由见解析.【解析】【分析】(1)根据等腰直角三角形的性质得到∠B =45°,根据平行线的性质、垂直的定义证明;(3)利用ASA 定理证明△BDF ≌△PDA ,根据全等三角形的性质证明即可;【详解】解:(1)∵∠BAC =90°,AB =AC ,∴∠B =∠C =45°.∵MN ∥BC ,∴∠DAE =∠B =45°.∵DA =DE ,∴∠DEA =∠DAE =45°,∴∠ADE =180°-∠DEA -∠DAE =90°,∴DE ⊥DA.(2)DB =DP.理由如下:∵DP ⊥DB ,∴∠BDE +∠EDP =90°.由(1)知DE ⊥DA ,∴∠ADP +∠EDP =90°,∴∠BDE =∠ADP.∵∠DEA =∠DAE =45°,∴∠BED =180°-45°=135°,∠DAP =∠DAE +∠BAC =135°,∴∠BED =∠DAP.在△DEB 和△DAP 中,BDE PDA DE DABED PAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEB ≌△DAP(ASA),∴DB =DP.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)AM 最短时,AM 的值为245;245PE PF +=;(2)∠ANE=45°.。

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)

2019-2020学年度浙教版八年级数学上册期末考试题(有答案)

2019-2020学年度浙教版八年级数学上册期末考试题(有答案) 学校:___________姓名:___________班级:___________考号:___________评卷人 得分一、选择题(题型注释)1.如果a >b ,下列各式中不正确的是( ) A .a ﹣4>b ﹣4 B .﹣3a <﹣3bC .﹣2a <﹣2bD .﹣5+a <﹣5+b 2.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(﹣4,3)B .(4,﹣3)C .(﹣3,4)D .(3,﹣4) 3.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米B .7千米C .8千米D .15千米4.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y=x+4与x 轴、y 轴分别交于点E ,F .将菱形ABCD 沿x 轴向左平移k 个单位,当点C 落在△EOF 的内部时(不包括三角形的边),k 的值可能是( )A .2B .3C .4D .5 5.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 A .B .C .D .8.如图在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF=3,BC=8,则△EFM 的周长是( )A .21B .15C .13D .119.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是( )A .B .C .D .10.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A.1,2,6B.2,2,4C.1,2,3D.2,3,4 11.如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有( )..3对 C .4对 D .5对评卷人 得分二、填空题(题型注释)12.已知实数x ,y 满足084=-+-y x ,则以x ,y 的值为两边长的等腰三角形的周长是 .13.请写出定理:“等腰三角形的两个底角相等”的逆定理_______________.14.如图点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE=3,则点P 到AB 的距离是 .15.在Rt △ABC 中,∠C=90°,∠B=30°,AB=16,则AC= .16.已知函数y=2x+b 经过点A (2,1),将其图象绕着A 点旋转一定角度,使得旋转后的函数图象经过点B (﹣2,7).则①b= ;②旋转后的直线解析式为 .17.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为 .18.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有______对全等三角形.19.如图,△ABC 中,∠A=40°,∠B=70°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF= 度.20.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为 .21.不等式组211{213xx+>-+<的整数解是________.三、计算题(题型注释)22.解不等式组:并写出它的所有的整数解.23.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y,图中的折线表示y与x之间的函数关系.(1)甲、乙两地之间的距离为千米;图中点B的实际意义是;(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?24.如图,已知△ABC中,∠B=90°,AB=8cm, BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB第一次能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.四、解答题(题型注释)y=mx+2的图像经过点(-2,6).(1)求m 的值;(2)画出此函数的图像;26.解不等式组()3321318x x x x -⎧+≥⎪⎨⎪---⎩①②,并将解集在数轴上表示出来.27.如果一个三角形有一边上的中线与这边的长相等,那么称这个三角形为“和谐三角形”.(1)请用直尺和圆规在图1中画一个以线段AB 为一边的“和谐三角形”;(2)如图2,在△ABC 中,∠C=90°,AB=7,BC=3,请你判断△ABC 是否是“和谐三角形”?证明你的结论;(3)如图3,已知正方形ABCD 的边长为1,动点M ,N 从点A 同时出发,以相同速度分别沿折线AB ﹣BC 和AD ﹣DC 向终点C 运动,记点M 经过的路程为S ,当△AMN 为“和谐三角形”时,求S 的值.28.如图,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过点C 的切线,垂足为点D ,AB 的延长线交切线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长.答案1.D2.C3.C4.B5.B6.B7.A8.D9.A10.D11.C.12.20. 13.有两个角相等的三角形是等腰三角形.14.3.15.816.﹣3,y=﹣x+417.(600,4).18.319.7520.421.0,122.不等式组的所有整数解是1、2、3.23.(1)900,4小时两车相遇.(2)所以线段BC 所表示的y 与x 之间的函数关系式为:y=225x ﹣900(4≤x ≤6)(3)第二列快车比第一列快车晚出发0.75小时 24.(1)、213;(2)、38;(3)、5.5秒或6秒或6.6秒 25.(1) m=-2;(2)作图见解析. 【解析】25.试题分析:(1)把点(-2,6)代入函数解析式,利用方程来求m 的值;(2)由“两点确定一条直线”来作图;试题解析:(1)将x=-2,y=6代入y=mx+2,得 6=-2m+2, 解得m=-2;(2)由(1)知,该函数是一次函数:y=-2x+2, 令x=0,则y=2; 令y=0,则x=1,所以该直线经过点(0,2),(1,0).其图象如图所示: .考点:1.一次函数的图象;2.一次函数图象上点的坐标特征. 26.﹣2<x ≤3,作图详见解析. 【解析】26.试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以在数轴上表示不等式组的解集.试题解析:()3321318x x x x -⎧+≥⎪⎨⎪---⎩①②, 解不等式①,得x ≤3, 解不等式②,得x >﹣2,不等式①、②的解集在数轴表示如下图所示,故原不等式组的解集为:﹣2<x ≤3.考点:解一元一次不等式组;在数轴上表示不等式的解集. 27.(1)作图见解析;(2)△ABC 是“和谐三角形”,理由见解析; (3)当△AMN 为“和谐三角形”时,S 的值为43或5 【解析】27.解:(1)如图1, 作线段AB 的中点O ,②以点O 为圆心,AB 长为半径画圆,③在圆O 上取一点C (点E 、F 除外),连接AC 、BC .∴△ABC 是所求作的三角形.(2)如图2,∠C=90°,2AC=,CD=1,在Rt△BCD中,2BD==,∴中线BD=边AC,∴△ABC是“和谐三角形”;(3)易知,点M在AB上时,△AMN是等腰直角三角形,不可能是“和谐三角形”,当M在BC上时,连接AC交MN于点E,(Ⅰ)当底边MN的中线AE=MN时,如图,有题知(2-s),(2-S),())222s s-=-,S=43,(Ⅱ)当腰Am与它的中线NG相等,即AM=GN=AN时,作NH⊥AM于H,如图∵NG=NA, NH⊥AM, ∴GH=AH=12GN=14AM,在Rt△NHA中,NH AM ===在Rt△NHM中,tan∠HMN=434AMHNMH AM==在Rt△AME中, tan∠AME)22sAE sME s-===-;2SS=-5s=。

2019-2020学年浙教新版八年级上册期末数学试卷

2019-2020学年浙教新版八年级上册期末数学试卷

2019-2020学年浙教新版八年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.平面直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3,4,则点P的坐标为()A. (−4,−3)B. (3,4)C. (−3,−4)D. (4,3)2.函数y=1√2x−1的自变量x的取值范围是()A. x≤12B. x≥12C. x<12D. x>123.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.则△ABC中AC边上的高是()A. AEB. CDC. BFD. AF4.不等式1−x>2x−8的正整数解有()A. 1个B. 2个C. 3个D. 无数多个5.在一次函数y=(m−1)x+3的图象上,y随x的增大而减小,则m的取值范围是()A. m>1B. m>0C. m≥1D. m<16.要说明命题“若a>b,则|a|>|b|”是假命题,能举的一个反例是()A. a=3,b=2B. a=4,b=−1C. a=1,b=0D. a=1,b=−27.若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是()A. 7B. 6C. 5D. 48.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为()A. 14B. 13C. 12D. 119.取一张正方形纸片,将它按如图所示方法对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图案是()A. B.C. D.10.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行。

他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示。

下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省湖州市南浔区八年级(上)期末数学试卷
一、选择题(本题有10小题,每小题3分,共30分)
1.(3分)下列一次函数中,常数项是3的是( )
A .3y x =-
B .3y x =+
C .3y x =
D .3y x =-
2.(3分)如图,已知ABC ∆中,AD 是BC 边上的中线,则下列结论不一定正确的是( )
A .12BD BC =
B .BD CD =
C .12A
D BC = D .12
CD BC = 3.(3分)在平面直角坐标系中,点(2,1)P -关于x 轴对称的点的坐标是( )
A .(2,1)--
B .(2,1)
C .(2,1)-
D .(2,1)-
4.(3分)如图,已知直角三角形的两条直角边长分别为1和2,以斜边为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )
A .3
B .3-
C .5
D .5-
5.(3分)一块三角形玻璃被打碎后,店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃,能够全等的依据是( )
A .ASA
B .AAS
C .SAS
D .SSS
6.(3分)下列命题中,假命题是( )
A .对于任何实数x ,都有20x …
B .内错角相等
C .对顶角相等
D .两点确定一条直线
7.(3分)解不等式112123
x x +++…时,去分母步骤正确的是( ) A .1121x x +++…
B .1126x x +++…
C .3(1)2(12)1x x +++…
D .3(1)2(12)6x x +++…
8.(3分)如图所示,一艘游船上的雷达可扫描探测到其它小艇的位置,每相邻两个圆之间的距离是1km (最小圆半径是1)km ,则下列关于小艇A 、B 的位置的描述,正确的是( )
A .小艇A 在游船的北偏东60︒,且距游船3km 处
B .游船在小艇A 的南偏西60︒,且距小艇3A km 处
C .小艇B 在游船的北偏西60︒,且距游船2km 处
D .游船在小艇B 的南偏东30︒,且距小艇2B km 处
9.(3分)如图,直线y ax b =+与x 轴交于点(4,0)A ,与直线y mx =交于点(2,)B n ,则关于x 的不等式组0ax b mx <-<的解为( )
A .42x -<<-
B .2x <-
C .4x >
D .24x <<
10.(3分)勾股定理是人类最伟大的科学发明之一.如图1,以直角三角形ABC 的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,三个阴影部分面积分别记为1S ,2S ,3S ,若已知11S =,22S =,33S =,则两个较小正方形
纸片的重叠部分(四边形)DEFG 的面积为( )
A .5
B .5.5
C .5.8
D .6
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)点(3,4)A -在第 象限.
12.(4分)函数21y x =--与y 轴的交点坐标是 .
13.(4分)根据数量关系:x 的 2 倍与 1 的和大于x ,可列不等式: .
14.(4分)已知等腰三角形有一边长为5,一边长为2,则周长为 .
15.(4分)已知关于x 的不等式组40339ax x +<⎧⎨-<⎩
恰好有2个整数解,则整数a 的值是 . 16.(4分)如图,已知等腰ABC ∆中,5AB AC ==,8BC =,E 是BC 上的一个动点,将ABE ∆沿着AE 折叠到ADE ∆处,再将边AC 折叠到与AD 重合,折痕为AF ,当DEF ∆是等腰三角形时,BE 的长是 .
三、解答题(本题有8小题,共66分)
17.(6分)解不等式组:312326x x x x +>⎧⎨--⎩
…,并把解集表示在数轴上.(温馨提示:请把图画在答题卷相对应的图上)
18.(6分)已知一次函数3y x b =-+,当3x =时,8y =-.
(1)求b 的值,并求出函数图象与x 轴的交点坐标;
(2)判断点(1,2)P -在不在该一次函数图象上.。

相关文档
最新文档