三年级奥数速算与巧算(一)讲解2013
小学奥数课本三年级上册讲解
第一讲速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1巧算下面各题:①36+87+64②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 3① 300-73-27② 1000-90-80-20-10解:①式= 300-(73+ 27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。
奥数第一讲-三年级-加减法巧算
如:325+46-125+54
= 325-125+46+54
1、用简便方法求和:
一.536+(541+464)+459 二.588+264+148 三.8996+3458+7542 四.567+538+562+555+533
2、用简便方法求差:
一.1870-280-520 二.4995-(995-480) 三.4250-294+94 四.1272-995
= 100-(20+35+45)
= 100-100
=0
练习
小结
如:240-63-137
= 240-(63+137)
如:138-(38+27)
= 138-38-27
3、如果括号前面是+号,去添括号,运算符号都
不变
如:18+(82+34)
= 18+82+34
如:89-(19-8+5) = 89-19+8-5
我们也来比一比吧! 11+89=100 33+67=100 63+37=100 45+55=100……
PART 01
补数凑整
速算巧算方法一:
01
什么叫“补数”
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的
02
一个数叫做另一个数的“补数”
你能说说下面式子中的补数吗
1+9=10 2+8=10 4+6=10 5+5=10 3+7=10 45+55=100
看谁算的又对又快
(1)12+29+8 (2)47+19+3 (3)24+44+56 (4)53+36+47
三年级奥数之一-加减法的巧算速算
3,计算(说说计算思路):
375+283+225+17
【例题3】计算:
(1)487+321+113+479(2)723-251+177
(3)872+284―272(4)537―142―58
【思路】
(1)487和113,321和479,分别可以凑成整百数,我们可以通过交换位置的方法,487+113得到600,321+479得到800,然后600+800=1400。
(3)8732―2008(4)487―298
3,计算:402+307―297―99
【例题2】你有好办法迅速计算出结果吗?
(1)502+799―298―97(2)9999+999+99+9
【思路】
(1)是一道加减混合运算,每个数都接近于整百数,计算时可先把这些数拆成两部分,再把整百数与整百数相加减,“零头数”与“零头数”相加减,最后把两个部分数合起来;
(3)中298接近于300,456-298变成了456-300,多减了2,所以还要加2;
(4)中305接近于300,582-305变成了582-300,少减了5,所以还要减5。
【练习1】
1.速算。
(1)497+28(2)750+1002
(3)598+231(4)2004+271
2.巧算。
(1)574-397(2)472―203
(2)723与177可凑成整百数,因而用723+177得到900,900再减251,得数是649。
(3)可以先用872减272得到整百数是600,再用600加上284得数是884。
(4)537连续减142和58,而142和58正好可以凑成整百数200,再用537减去200,得到337。
三年级奥数第一讲:速算与巧算
第1讲速算与巧算专题简析:在进行加减运算时,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。
加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千.......的数看作所接近的整数进行简算。
进行加减巧算时,凑整之后,对于原数与整十、整百、整千......相差的数,要根据“多加要再加,多减要再减”的原则进行处理。
另外可以结合加法交换律、加法结合律以及减法的性质进行凑整,从而达到简算的目的。
知识点、重点、难点:1、加法的简便运算:(1)A+B=B+A (加法交换律)(2)(A+B)+C=A+(B+C)(加法结合律)2、减法的简便运算:(1)A-B-C=A-(B+C)(2)A-B+C=A-(B-C)注意:加减法同级运算,括号外面是减号的,添上或去掉括号,括号里的符号:加号要变成减号、减号要变成加号。
当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为加号。
王牌例题1在小学奥数中计算中,凑整是一种方法,更是一种解题思想。
凑整只是手段,简算才是目的。
凑整法:1、你有好方法迅速算出下面各题的结果吗?(1)23+45+67= (2)25+53+75+78+47=(3)872+284-272= (4)537-142-58=思路导航:先把加在一起为整十、整百、整千......的数相加,再与其他数相加。
举一反三1用简便方法计算下面各题。
1、(1)487+321+113+479= (2)723-251+177=(3)773+368+227= (4)34+47+53+66=2、(1)89+123+11+177= (2)235-125+65=(3)483+254-183= (4)271+97-171=(5)425-172-28=王牌例题2你有好办法迅速算出下面各题的结果吗?(1)199+74 (2)347+102(3)784-297 (4)1384-501思路导航:计算时,先将接近整十、整百、整千的数看作整十、整百、整千来计算,对于原数与整十、整百、整千......相差的数,要根据“多加要再加,多减要再减”的原则进行处理。
三年级奥数知识讲座:第一讲 速算与巧算(一)续1
来源于:华罗庚学校奥林匹克数学课本
第一讲速算与巧算(一)
三、加减混合式的巧算
1.去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果
括号前面是“-”号,则不论去掉括号或添上括号,括号里面
的运算符号都要改变,“+”变“-”,“-”变“+”,即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例6①100+(10+20+30)
② 100-(10+20+3O)
③ 100-(30-10)
解:①式=100+10+20+30
=160
②式=100-10-20-30
=40
③式=100-30+10
=80
例7计算下面各题:
① 100+10+20+30
② 100-10-20-30
③ 100-30+10
解:①式=100+(10+20+30)
=100+60=160
②式=100-(10+20+30)
=100-60=40
③式=100-(30-10)
=100-20=80
2.带符号“搬家”
例8计算 325+46-125+54
解:原式=325-125+46+54
=(325-125)+(46+54)
=200+100=300
注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。
3.两个数相同而符号相反的数可以直接“抵消”掉
例9计算9+2-9+3
解:原式=9-9+2+3=5。
三年级奥数第一讲速算与巧算课件
中减去
•
300-73-27
• = 300-(73+ 27)
• =300-100
• =200
•
1000-90-80-20-10
• =1000-(90+80+20+10)
• =1000-200
• =800
减法中的巧算
• 2.先减去那些与被减数有相同尾数的减数。
•
4723-(723+189)
• =4723-723-189
如果添加的括号前面是“-”号,那么括号内的数的原运算 符号“+”变为“-”,“-”变为“+”。
•
a+b-c=a+(b-c),
a-b+c=a-(b-c),
a-b-c=a-(b+c)
• 如:100-10-20-30 • =100-(10+20+30) • =100-60 • =40
3.减法中的巧算
•
1.把几个互为“补数”的减数先加起来,再从被减数
• =1464
•
987-178-222-390
• =987-(178+222)-390
• =987-400-400+10
• =197
4.带符号搬家“+” ,“-”
•
325+46-125+54
• =325-125+46+54
• =(325-125)+(46+54)
• =200+100
• =300
•
19+12-19+3+4 -12
b+c
• 如:43+(38+45)+(55+62+57)
•
=43+38+45+55+62+57
小学三年级上册数学奥数知识点讲解第1课《速算与巧算1》试题附答案
题目1:用一根0-9的数字重排列组成一个最小的两位数,这个最小的两位数是多少?解答:根据最小的两位数的定义,十位上的数字应为0。
个位上的数字既可以为1-9中的任意一个数字,所以最小的两位数是10。
题目2:求3+4+5+6+7+8+9的值。
解答:将要求和的数字按从小到大排列,即3+4+5+6+7+8+9=42题目3:小强几天之后就过生日了。
请大家帮忙计算一下,如果今天是星期二,那么他的生日将是星期几?解答:星期一到星期日依次为1-7,星期二再过一天就是星期三,再过一天就是星期四、所以小强的生日将是星期四题目4:小明有5个苹果,他吃了其中的3个。
请问小明还剩几个苹果?解答:小明吃了3个苹果后,还剩下5-3=2个苹果。
题目5:小猫有9只尾巴。
你知道小猫有几条腿吗?解答:一只猫有4条腿,所以9只小猫共有9×4=36条腿。
题目6:在1、2、3、4、5、6中任取2个数紧挨在一起,共有几种可能?解答:1、2、3、4、5、6中任取两个数,共有C(6,2)种组合方式。
C(6,2)=6!/(2!(6-2)!)=6×5/(2×1)=15种可能。
题目7:有一个数加上15等于36,这个数是多少?解答:设这个数为x,则x+15=36、解这个方程可得x=36-15=21,所以这个数是21题目8:一个长方形的周长是10m,宽是2m,你能求出它的长度吗?解答:设长方形的长为x,则2(x+2)=10。
解这个方程可得x=3,所以长方形的长度是3m。
题目9:在1、2、3、4、5中,最小的三位数是多少?解答:根据最小的三位数的定义,百位上的数字应为1、十位上和个位上的数字既可以为1-5中的任意两个数字,所以最小的三位数是123题目10:旺旺从家里到学校共需要2小时。
已经走了1小时,还需要多长时间才能到学校?解答:旺旺已经走了1小时,所以还需要2-1=1小时才能到学校。
三年级 速算与巧算 (附带完整答案)
第二讲 速算与巧算(一)本讲主要介绍两种速算与巧算的方法: 1、理解并掌握分组凑整法; 2、理解并掌握加补凑整法.本章内容只涉及加减法中的速算与巧算,帮助学生在加减法运算中掌握基本的运算技巧,更加快速,更加准确地解决加减法运算中的 “难题”.计算: (1)6+6+6+6+6+4 (2)6+7+8+9+10+11+12+13+14分析:原式=5×6+4 分析:原式=(6+14)+(7+13)+(8+12)+(9+11)+10 =34 =90(3)1+2+3+4+5+4+3+2 (4)7+17+27+37=88分析:原式=24 分析:原式=(10-3)+(20-3)+(30-3)+(40-3) =88(5)58-26-28 (6)64-(25+14)分析:原式=58-28-26 分析:原式=64-14-25 =4 =25教学目标想挑 战吗 ?一位济贫劫富的大侠夜间潜入一吝啬的财主家,盗得一宝箱,非常高兴离去,但是当他要打开宝箱时却发愁了,宝箱是一个密码箱,要在6 4 8 9 7四个数之间填入“+”和“-”,使他们的结果等于4,这样宝箱才会自动打开。
哪位同学可以帮助这位大侠? 答案:6+4-8+9-7=4. 你还记得吗?专题精讲在这一讲中我们我们将会学习有关加减法的速算与巧算的方法.我们在进行加减法运算时,为了又快又准确,除了熟练地掌握计算法则以外,还需要掌握一些巧算方法.加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差),这样使我们在加减法运算中更加迅速,更加准确.在具体的凑数运算过程中,我们主要涉及到几种计算方法:(1)分组凑整法,(2)加补凑整法,(3)其他类型的巧算.我们在进行加法的巧算时,经常运用以下两个运算律:(1)加法交换律:两个数相加,交换加数的位置,他们的和不变.即a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.将此运算律推广,多个数相加,任意交换相加的次序,其和不变.(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变.即a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).将此运算律推广,多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变.我们在进行减法运算时,经常运用以下性质:(3)在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.(4)在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c(5)在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”.如:a+b-c=a+(b-c)a-b+c=a-(b-c),a-b-c=a-(b+c)(一)分组凑整法【例1】(★★★奥数网题库)计算:(1)117+229+333+471+528+622(2)168+253+532(3)(1350+249+468)+(251+332+1650)(4)358+127+142+73分析:在这个例题中,主要让学生掌握加法分组凑整的方法.具体分析如下:(1)原式=(117+333)+(229+471)+(528+622)=450+700+1150=(450+1150)+700=1600+700=2300(2)原式=(168+532)+253=700+253=953(3)原式=1350+249+468+251+332+1650=(1350+1650)+(249+251)+(468+332)=3000+500+800=4300(4)原式=(358+142)+(127+73)=500+200=700【例2】(★★★奥数网题库)计算:(1)265-68-132(2)756-248-352(3)268-56-82-44-18(4)894-89-111-95-105-94分析:在这个例题中,主要让学生掌握减法分组凑整的方法.一个数连续减去两个数,可以先把后两个数相加凑整,再用这个数减去后两个数的和.具体分析如下:(1)原式=265-(68+132)=265-200=65(2)原式=756-(248+352)=756-600=156(3)原式=268-(56+44)-(82+18)=268-100-100=68(4)原式=(894-94)-(89+111)-(95+105)=800-200-200=400【例3】(★★★奥数网题库)计算:(1)98-53+102+63(2)163-154+245+137+55-146(3)1348-234-76+2234-48-24(4)1847-1936+536-154-46分析:在这个例题中,主要让学生掌握加减法混合运算分组凑整的方法,在凑整的过程中,要注意运算符号的变化或者带着符号搬家.具体分析如下:(1)原式=(98+102)+(63-53)=200+10=210(2)原式=(163+137)-(154+146)+(245+55)=300-300+300=300(3)原式=(1348-48)+(2234-234)-(76+24)=1300+2000-100=3200(4)原式=1847-(1936-536)-(154+46)=1847-1400-200=247[巩固] :(1)968-561-168-139,(2)456-(256+165),(3)582+(436-482),(4)264+451-216+136-184+149分析:(1)原式=(968-168)-(561+139)=800-700=100(2)原式=456-256-165=200-165=35(3)原式=582-482+436=100+436=536(4)原式=(264+136)+(451+149)-(216+184)=400+600-400=600[拓展1](我爱数学少年数学夏令营)计算:1997+1-2-3+4+5-6-7+8+9-10-11+……+1993-1994-1995+1996 分析:原式=1997+(1-2-3+4)+(5-6-7+8)+……+(1993-1994-1995+1996)=1997+0+0+……+0=1997[拓展2](2005全国小学数学奥林匹克)计算:2005+2004-2003-2002+2001+2000-1999-1998+1997+1996-……-7-6+5+4-3-2+1分析:将后四项每四项分为一组,每组的计算结果都是0,后2004项的计算结果都是0,剩下第一项,结果是2005.[拓展3](北大数学邀请赛)计算:1989+1988+1987-1986-1985-1984+1983+1982+1981-1980-1979-1978+……+9+8+7-6-5-4+3+2+1分析:从1989开始,每6个数一组,1989+1988+1987-1986-1985-1984=9,以后每一组6个数加、减后都等于9.1989÷6=331……3.最后剩下三个数3,2,1,3+2+1=6.因此,原式=331×9+6=2985.[拓展4] 计算 6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5362)+6839-(4843-2847)分析:原式=(6472+5318+1)+(9354+6836+3)-(4480-2480-4)-(3327-1327-4)-(7362-5362-4)-(4847-2847-4)=11790+16190-2000-2000-2000-2000+20=27980-8000+20=20000(二)加补凑整法【例4】(★★★奥数网题库)计算:(1)165+199(2)198+96+297+10(3)298+396+495+691+799+21(4)195+196+197+198+199+15分析:在这个例题中,主要让学生掌握加法运算加补凑整的方法.具体分析如下:(1)(法1)原式=165+200-1 (法2)原式=164+1+199=365-1 =164+200=364 =364(2)(法1)原式=(198+2)+(96+4)+(297+3)+1=200+100+300+1=601(法2)原式=(200-2)+(100-4)+(300-3)+10=200+100+300-2-4-3+10=601(3)(法1)原式=298+396+495+691+799+2+4+5+9+1=(298+2)+(396+4)+(495+5)+(691+9)+(799+1)=300+400+500+700+800=2700(法2)原式=(300-3)+(400-4)+(500-5)+(700-9)+(800-1)+21=300+400+500+700+800-3-4-5-9-1+21=2700(4)(法1)原式=(195+5)+(196+4)+(197+3)+(198+2)+(199+1)=200+200+200+200+200=1000(法2)原式=(200-5)+(200-4)+(200-3)+(200-2)+(200-1)+15=200+200+200+200+200=1000[前铺] 计算:(1)65+99 (2) 36+102 (3) 258-98 (4) 351-103分析:(1)原式=65+100-1=165-1=164;(2)原式=36+100+2=136+2=138;(3)原式=258-100+2=158+2=160;(4)原式=351-100-3=251-3=248;通过以上题目的运算,我们发现一个快捷运算的规律:在(1)中,在加100时多加了1,所以要减去,这样保证结果不变,所以“多加的要减去”;(2)中,少加了2,在后面要加上,所以“少加的要加上”;(3)中,多减了2,所以要加上,所以“多减的要加上”;(4)中,少减了3,后面要再减去3,所以“少减的要再减”.这几种基本的加补凑整计算的方法,老师要引导学生理解,并加深巩固.【例5】(★★★奥数网题库)计算:(1)895-504-97(2)98-96-97-105+102+101(3)399+403+297-501(4)196+198-102-97分析:在这个例题中,主要让学生掌握加减法混合运算中加补凑整的方法.具体分析如下:(1)原式=(900-5)-(500+4)-(100-3)=900-500-100-5-4+3=294(2)原式=(100-2)-(100-4)-(100-3)-(100+5)+(100+2)+(100+1)=100-100-100-100+100+100-2+4+3-5+2+1=3(3)原式=(400-1)+(400+3)+(300-3)-(500+1)=400-1+400+3+300-3-500-1=598(4)原式=(200-4)+(200-2)-(100+2)-(100-3)=200+200-100-100-4-2-2+3=195[巩固] :(1)697+811,(2)709-698,(3)198-205-308+509,(4)501+502+503-398-397-396.分析:(1)原式=(700-3)+(800+11)=700+800-3+11=1508(2)原式=(700+9)-(700-2)=11(3)原式=(200-2)-(200+5)-(300+8)+(500+9)=200-200-300+500-2-5-8+9=194(4)原式=(500+1)+(500+2)+(500+3)-(400-2)-(400-3)-(400-4)=315. [拓展1] 计算:195+196+197+198+199分析:原式=(200-5)+(200-4)+(200-3)+(200-2)+(200-1)=200×5-(5+4+3+2+1)=1000-15=985[拓展2] (07年7月仁华入学测试题)83+86+95-85+86-94+95+94+86+92+87+80+93+100-89+83+96+98分析:原式=83+86+95-83-2+86-94+95+94+86+92+87+80+93+100-87-2+83+96+98 =90×12-4+5-2-4+5-4+2-10+3+10-2-7+6+8=1080+6=1086[拓展3](2006香港圣公会小学数学奥林匹克)89+899+8999+89999+899999分析:原式=(90-1)+(900-1)+(9000-1)+(90000-1)+(900000-1)=90+900+9000+90000+900000-5=999990-5=999985[拓展4](华罗庚金杯少年数学邀请赛)计算 11+192+1993+19994+199995所得和数的数字之和是多少?分析:原式=(20-9)+(200-8)+(2000-7)+(20000-6)+(200000-5)=(20+200+2000+20000+200000)-(9+8+7+6+5)=222220-35=222185故所得数字之和等于2+2+2+1+8+5=20.(三)其他常见类型巧算【例6】(★★★仁华试题)计算100-101+102-103+104-105+106-107+108分析:原式=100+(102-101)+(104-103)+(106-105)+(108-107)=100+1+1+1+1=104【例7】(★★★仁华试题)计算:123+234+345-456+567-678+789分析:方法1:原式=123+234+345+(567-456)+(789-678)=123+234+345+111+111=234+(123+567)=234+690=924方法2:原式=123+(123+111)+(123+222)-(123+333)+(123+444)-(123+555)+(123+666)=123×3+(111+222-333+444-555+666)=369+555=924【例8】(★★★仁华试题)计算1234+3142+4321+2413分析:原式=(1000+200+30+4)+(3000+100+40+2)+(4000+300+20+1)+(2000+400+10+3)=(1000+2000+3000+4000)+(100+200+300+400)+(10+20+30+40)+(1+2+3+4)=10000+1000+100+10=11110【例9】(★★★★仁华试题)计算19971997+9971997+971997+71997+1997+997+97+7分析:原式=(19972000-3)+(9972000-3)+(972000-3)+(72000-3)+(2000-3)+(1000-3)+(100-3)+(10-3)=19972000+9972000+972000+72000+2000+1000+100+10-8×3=30991110-24=30991086【例10】(★★★★★仁华试题)在右图的36个格子中各有一个数,最上面一横行和最左面一竖列中的数已经填好,其余每个格子中的数等于每个格子同一横行最左面数与同一竖列最上面数之和(例如:a=14+17=31),问这36个数的总和是多少?分析:第二横行的空格应该填的数字分别是11+12,13+12,15+12,17+12,19+12,同理,下面每一横行都是用竖列的一个数与横行的每一个数相加.我们最后要求这36个格子中的所有数字之和,第一横行的和为:10+11+13+15+17+19=(10+15)+(11+19)+(13+17)=85,第二横行的和为:12+11+12+13+12+15+12+17+12+19+12=12×6+(11+13+15+17+19)=147,同理,第三横行的和为:14+11+14+13+14+15+14+17+14+19+14=14×6+(11+13+15+17+19)=159,第四横行的和为16×6+75=171,第五横行的和为:18×6+75=183,第六横行的和为:20×6+75=195.所以36个格子的和为85+147+159+171+183+195=940.方法2:法1比较笨拙,没有体现该题解法的精髓,在我们解这道题之前,我们看看下面的例子:2 3 4 5468上表空格处的数等于每个格子同一横行最左面数与同一竖列最上面数之和,求这16个数之和。
三年级数学专题讲义第一讲 速算与巧算
第一讲速算与巧算〖内容概述〗计算是数学学习的根本,任何问题到最终都要归结为数的计算,从而得到最终结果。
而计算的方法的好坏直接决定我们的解题速度。
一个好的计算方法,往往使得原本计算量很大计算简化,从而节省我们的时间。
在本讲里我们主要向大家介绍一些常规的计算技巧,其中包括凑整构造法,拆分法构造法,分组构造法,推理计算及等差数列法等。
〖经典例题〗例1.计算768674232++=。
解析:本题数字比较大,如果我们按顺序计算的话,会发现非常的麻烦,但可以发现768和232的个位数字的和为10,我们考虑先将这两个数进行运算。
768674232(768232)6741674++=++=。
例2.计算39655+=。
解析:和上个例题不一样的是,本题就有两个数相加,而且这两个数的个位数字和并不是10,这时我们要发展进攻方略,将396拆成400-4,从而得到我们想要的东西。
39655400554451+=+-=.例3.计算9999+999+99+9= 。
解析:如果直接计算难度会较大,所以我们要寻找一种简单的解题方法来解决此题。
不难发现每个数如果加上1后就会凑成整十、整百、整千,因此我们用凑正法计算。
9999+999+99+9=10000-1+1000-1+100-1+10-1=11110-4=11106。
〖方法总结〗上面各题我们用到的是凑整法。
在这里要引入“补数”的概念:互为补数的两个数个位数之和是10,其他对应位上的数字之和是9。
这样,我们在计算加法时,尾数互补先相加,如例1;当没有尾数互补的数时,我们也可以拆将接近整十、整百的凑成整十、整百相加后再减去补数。
,如例2和例3。
〖巩固练习〗第 1 页共 11 页1.计算858683767882+++++2.计算188+8733.计算9898+2034.计算100000-85426〖经典例题〗例4.计算6324555--= 。
解析:观察本题,算式的两个减数的个位数字的和为10,因此我们想让这两个数先运算。
奥数小学三年级精讲与测试 第一讲 速算与巧算
第一讲速算与巧算知识点重点难点1.加法的简便运算.(1)A+B=B+A;(2)(A+B)+C=A+(B+C);2.减法的简便运算.(1)A-B-C=A-(B+C);(2)A-B+C=A-(B-C).加减法同级运算,括号外面是减号的,添上或去掉括号,括号里的符号:加号要变成减号、减号要变成加号。
当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为加号。
3.乘法的简便运算。
(1)A×B=B×A;(2)A×B×C=A×B×C;(3)(A±B)×C=A×C±B×C;4.除法的简便运算.(1)A÷B÷C=A÷(B×C);(2)A÷B×C=A÷(B÷C);(3)A÷B=(A×C)÷(B×C)乘除法同级运算,括号外面是除号的,添上或去掉括号,括号里的符号:乘号要变成除号、除号要变成乘号.当所有括号都去掉后,可以将数与前面的符号一起移动,第一个数前面为乘号.例题精讲例1 25+53+75+78+47=?解原式=(25+75)+(53+47)+78=100+100+78=278例2 91+90+88+92+93+84+85+95+97=?解原式=90×9+(1+0-2+2+3-6-5+5+7)=810+5=815例3 9999+4+97+998+95+7=?解原式=(9999+1)+(97+3)+(998+2)+(95+5)=10000+100+1000+100=11200例4 1200-856-144=?解原式=1200-(856+144)=1200-1000=200例5 7869-(234+869)=?解原式=7869-234-869=7869-869-234=7000-234=6766例6 1943-(132-57)=?解原式=1943-132+57=1943+57-132=2000-132=1868例7 459+78-259+22=?解原式=(459-2590)+(78+22)=200+100=300例8 936+(296-636)-596=?解原式=936+296-636-596=936-636-596+296=(936-636)-(596-296)=300-300=0例9 3333330000-5769=?解原式=3333300000+(30000-5769)=3333300000+24231=3333324231例10 1-2+3-4+5-6+7-8+9-10+11-12+13-14+15=?解原式=1+(3-2)+(5-4)+(7-6)+(9-8)+(11-10)+(13-12)+(15-14)=8例11 (125×78)×8=?解原式=125×78×8=125×8×78=1000×78=78000例12 (125+78)×8=?解原式=125×8+78×8=1000+624=1624例13 250×64×125×9=?解原式=(250×4)×(125×8)×(9×2)=1000×1000×18=18000000例14 950÷25=?解原式=(950×4)÷(25×4)=3800÷100=38例15 8442÷(21×67)=?解原式=8442÷21÷67=402÷67=6例16 7600÷(38÷25)=?解原式=7600÷38×25=200×25=5000例17 291÷50+9÷50=?解原式=(291+9)÷50=300÷50=6例18 999×222+333×334=?解原式=333×3×222+333×334=333×666+333×334=333×(666+334)=333×1000=333000 例19 765×963963-765765×963=?解原式=765×963×1001-765×1001×963=0例20 2239+239×999=?解原式=2000+239+239×999=2000+239×(1+999)=2000+239000=241000例21 760÷(38÷125)×80=?解原式=760÷38×125×80=(760÷38)×(125×80)=20×10000=200000例22 (2001+2000×2002)÷(2001×2002-1)=?解原式=[2001+2000×(2001+1)]÷(2001×2002-1)=(2001+2000×2001+2000)÷(2001×2002-1)=(2001×2001+2000)÷(2001×2002-1)=(2001×2001+2001-1)÷(2001×2002-1)=(2001×2002-1)÷(2001×2002-1)=1例23 (1234+2341+3421+4123)÷5=?解原式=1111×(1+2+3+4)÷5=1111×10÷5=2222水平测试1A 卷一、填空题1. 773+368+227=____________2. 10000-8927=__________3. 582-(82-14)=__________4. 4941-268+28=__________5. 125×19×8=___________6. 11500÷2300=__________7. (20+8)×125=_________8. 22500÷(100÷4)=______________9. 在加法算式中,两个加数都增加26,则和增加__________10. 在减法算式中,被减数与减数都增加6,则差_________二、解答题11. 计算:999+99+9+312. 计算:(24-15+37)+(26+63-35)13. 计算:3572-675-325-47214. 计算:56241×8÷2415. 计算:125×16×2516. 计算:375×823+177×37517. 计算:1624÷29-1334÷29B 卷一、填空题1. 34+47+53+66=___________2. 3000-99-9-999=__________3. 111000-(99998+9997)-996=__________4. 1028-(233-72)-67=______________5. 在加法算式中,一个加数增加53,另一个加数减少27,则和是___________6. 161÷23+92÷23+115÷23=____________7. 27^2-23^2=__________8.40408×25=_________9. 在乘法算式中,一个因数扩大20倍,另一个因数缩小4倍,则积是__________10. 在除法算式中,被除数缩小2倍,除数缩小10倍,则商是_________二、解答题11. 计算:69230÷11512. 在减法算式中,被减数减少10,减数减少25,那么差如何变化?13. 计算:500-1-4-7-10-……-2814. 计算:493+502+498+495+501+506+502+496+505+49915. 计算:(99+999+9999)×916. 计算:(111×58-148×16)÷37C 卷一、填空题1. 2000+2003+2006+2009+2012+2015=___________2. (1+2+3+……+2003)-(1+6+11+….+31+36)=____________3. 100+99-98-97+......+4+3-2-1=_________4. 25243+83214-8457=__________5. 22222222220000000000-2222222222=__________6.3333×6666=_____________7. 91×97=_______8. 60606÷273=________9. 123456789×36×5=___________10. 两个数相加后,乘以其中一个加数,减去这个数,除以这个数,其结果仍然是这个数,那么另外一个加数为___________二、解答题11. 三个不相同的正整数的平均数是80,其中一个数是90,且它是最大的数,那么这个数中最小的数可以是多少?12 写出计算99+99+99+99+99+99+6的三种简便计算式13. 算式(221+222+…..+370)-(31+32+…..+98)的结果是奇数还是偶数?14. 小明在做一道乘法题时,将一个因数的十位数字”6”看作是”9”,个位数字”7”看作”1”,那么计算结果与正确答案相差696,求另一个因数15. 计算:37037×23-273×14816. 计算:444444÷37037×34-999999÷185185×2017. 计算:(12345+23451+34512+45123+51234)÷5速算与口算答案:水平测试1A 卷1.原式=(773+227)+368=1000+368=13682.原式=10000-8000-900-20-7=2000-900-20-7=1100-20-7=1080-7=10733.原式=(582-82)+14=500+14=5144.原式=4941-(268-28)=4941-240=47015.原式=19×(125×8)=19×1000=190006.原式=(11500÷100)÷(2300÷100)=115÷23=57.原式=20×125+8×125=2500+1000=35008.原式=(22500÷100)×4=225×4=9009.和增加5210.差不变11.原式=(999+1)+(99+1)+(9+1)=1000+100+10=111012.原式=24-15+37+26+63-35=(24+26)+(37+63)-(15+35)=50+100-50=10013.原式=(3572-472)-(675+325)=3100-1000=210014.原式=56241÷(24÷8)=56241÷3=1874715.原式=(125×8)×(2×25)=1000×50=5000016.原式=375×(823+177)=375×1000=37500017.原式=(1624-1334)÷29=290÷29=10B 卷1. 原式=(34+66)+(47+53)=100+100=2002. 原式=1000+1000+1000-99-9-999=(1000-99)+(1000-9)+(1000-999)=901+991+1=18933. 原式=100000+10000+1000-99998-9997-996=(100000-99998)+(10000-9997)+(1000-996)=2+3+4=94. 原式=1028-233+72-67=(1028+72)-(233+67)=1100-300=8005. 增加26 53-27=266. 原式=(161+92+115)÷23=368÷23=167. 原式=(27+23)×(27-23)=50×4=2008. 原式=10102×(4×25)=10102×100=10102009. 扩大5倍10. 扩大5倍11. 原式=69230÷(23×5)=(69230÷23)÷5=3010÷5=60212. 被减数减少10,差减少10,减数减少25,差增加25,所以差增加25-10=1513. 原式=500-(1+4+7+…+28)=500-(1+28)×10÷2=500-145=35514.原式=(500-7)+(500+2)+(500-2)+(500-5)+(500+1)+(500+6)+(500+2)+(500-4)+(500+5)+(500-1)=500×10-(7+2+5+4+1-2-1-6-2-5)=5000-3=499715. 原式=99×9+999×9+9999×9=(100-1)×9+(1000-1)×9+(10000-1)×9=900-9+9000-9+90000-9=(900+9000+90000)-9×3=99900-27=9987316. 原式=111×58÷37-148×16÷37=(111÷37)×58-(148÷37)×16=3×58-4×16=174-64=110C 卷1.原式=(2000+2015)×6÷2=120452.原式=(1+2003)×2003÷2-(1+36)×8÷2=2007006-148=20068583.原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2+2+…+2+2=1004.原式=20000+5000+200+40+3+8000+3000+200+10+4-8000-400-50-7=100000+(5000+3000-8000)+(200+200-400)+(40+10-50)+(3+4-7)=1000005.原式=22222222200000000000+(20000000000-2222222222)=222222222177777777786.原式=3333×3×2222=9999×2222=(10000-1)×2222=22220000-2222=222177787.原式=(91+97-100)×100+(100-91)×(100-97)=8800+9×3=88278.原式=6×(10101÷273)=2×(3×37)=2×111=2229.原式=(123456789×9)×(4×5)=1111111101×20=2222222202010.[(a+b)×b-b]÷b=b,则a=(b×b+b)÷b-b=111.由于三个正整数的平均数是80,则三个数之和为240,由于其中一个数是90,且它最大,其他两个正整数中一个最多为89,那么另一个最小为240-90-89=6112.原式=(99+1)+ (99+1)+ (99+1)+ (99+1)+ (99+1)+ (99+1)=100×6=600.原式=99×6+6=600.原式=99×7-93=60013.在221+222+…+370共有奇数(370+1-221)÷2=75(个),所以221+222+…+370是75个奇数和再加上一些偶数,其和为奇数;同理可求出在31+32+…+98中共有奇数34个,其和为偶数,所以奇数减偶数其差为奇数.14. 696÷(91-67)=29.所以另一个因数是2915.原式=37037×3×23÷3-237×37×4=111111×23÷3-10101×4=2555553÷3-40404=851851-40404=81144716.原式=(111111÷37037)×(4×34)-(111111×9)÷(37037×5)×20=3×136-(111111÷37037)×(9×20÷5)=3×136-3×36=3×(136-36)=30017.原式=(11111×15)÷5=33333。
三年级奥数.计算综合.整数的速算与巧算(一)(A级).教师版
一、加减法中的速算与巧算速算巧算的核心思想和本质:凑整。
常用的思想方法总结如下:(1) 分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.(2) 加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.(3) 数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加. (4) “基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)二、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)三、乘、除法混合运算的性质(1) 商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠,0n ≠知识框架整数的速算与巧算(一)(2) 在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷(3) 在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯(4) 在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷(5) 两个数之积除以两个数之积,可以分别相除后再相乘.即()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷上面的三个性质都可以推广到多个数的情形.一、加减速算【例 1】 计算:(1)117+229+333+471+528+622 (2)(1350+249+468)+(251+332+1650) (3)756-248-352(4)894-89-111-95-105-94【考点】分组凑整 【难度】☆ 【题型】解答【解析】在这个例题中,主要让学生掌握加、减法分组凑整的方法。
小学奥数第一讲:速算与巧算
小学奥林匹克数学第一集:第一讲:速算与巧算一、例题讲解十个数字,几种计算符号,构造了千变万化的数学计算,计算要做到又快又正确。
关键在于掌握运算技巧,“硬算”加“巧算”。
“巧算”是对算式整体以及其中的每个数进行观察,剖析算式的特点和各数之间的可能存在的联系。
恰当地利用运算定律,改组运算顺序,使计算简便易行。
要达到“速”与“巧”主要掌握以下几点计算技巧:1.凑成容易算的数,在心算中培养凑整、搭配、替代的思维习惯。
如凑成整十、整百、整千……又如若干比较接近的数相加时,可选择一个基数作为计算基础。
在此数上加上或减去这个基数的相差数。
2.利用运算定律简化运算。
3.根据某些算式的定律,学会创造条件,进行分组,分类地计算,使计算简便。
4.适当配对,能使计算简便。
例1:610+270+190分析:题中610+190=800,凑成整百数,所以先把“+190”搬家,搬到“+270”的前面,然后再把610+190的和算出来。
解:610+270+190=(610+190)+270=800+270=1070(说明:加法的结合律和交换律是计算中常用的方法。
)例2:320-60+180分析:题中320+180的和是整百数,可以先把“+180”搬到“-60”的前面,再算出320与180的和。
解:320-60+180=(320+180)-60=500-60=440例3:6998+995+97+59分析:题中6998、995、97和59接近整千、整百、整十的数。
可以先把这些加数分别看作:7000-2、1000-5、100-3、60-1,然后再算出(7000+1000+100+60)-(2+5+3+1)的结果。
解:6998+995+97+59=7000-2+1000-5+100-3+60-1=(7000+1000+100+60)-(2+5+3+1)=8160-11=8149例4:计算18+21+23+20+15+19分析:先确定一个数作为基准,并将其他数与这个数作比较。
三年级上册数学奥数课件-速算巧算的技巧 人教版(共13张PPT)
(2)102+105+99+101+98 =100×5+2+5-1+1-2 =500+5 =505
6、公式法(等差数列...)
相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列
1,2,3,4,5,6,7,8,9
4、合理分组
(3) 2+4+6+8+...+100-1-3-5-7-...-97-99 = 2-1+4-3+6-5+...+98-97+100-99 =(2-1)+(4-3)+...+(98-97)+(100-99) = 50×1 = 50
5、基准数法(标准数)
几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
加减运算去括号, 括号前面是“-” 则括内的所有符 号都要变号; 括号前面是“+” 则括内的所有符 号都不变号
3、带符号搬家“+” ,“-”——尾数相同
(1)645+129-45 =645-45+129 =600+129 =729
(2)1208-569-208 =1208-208-569 =1000-569 =431
谢谢观看
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等等都是等差连续数. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,
简记成:和=中间数×个数
例、计算:
小学三年级奥数教学课件:速算与巧算27页PPT
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
小学三年级奥数教学课件: 速算与巧算
41、实际上,我们想要的不是针对犯 罪的着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
三年级奥数速算与巧算(一)
三年级奥数速算与巧算(⼀)
⼀:加法中的巧算
1.“补数”的认识:两个数之和是10、100、1000等,我们称这两个数互为补数。
例如1+9=10,2+98=100.
我们可以说成:1是9的补数,9是1的补数,1和9互为补数,这三种说法都是对的。
2.怎么找较⼤的数的补数,例如 8972的补数是1028,78764的补数是21236.
技巧:⼀般来说,可以这样的“凑数”:从最⾼位凑起,使个位数字相加得9,到个位时,个位相加必须是10即可。
例如78764的万位数字是7,7+?=9呢,当然是2,所以78764的补数万位数字是2.
然后找千位,78764的千位是8,8+?=9呢,当然是1,所以78764的补数千位数字是1.
然后找百位,78764的百位是7,7+?=9呢,显然是2,所以78764的补数百位数字是2.
然后找⼗位,78764的⼗位是6,6+?=9呢,显然是3,所以78764的补数百位数字是3.
然后再找个位,78764的个位是4,4+?=10(个位之和必须是10,其它相对应的位数字之和是9)呢,显然是6,所以78764的补数个位数字是6,综上找出78764的补数是21236.
例1巧算下⾯各题
1. 34+77+66
=34+66+77
=177
2.97+123+103
=97+103+123
=223
3.1547+974+453+26
=(1547+453)+(974+26)
=3000
以上三个题⽬就是利⽤补数,先计算补数,使运算简便。
(注:其实上⾯三题利⽤的是四年级数学下第三单元加法的运算定律中的加法交换律和加法结合律)。
小学三年级奥数 第二讲 速算与巧算(一)(学生版)
第二讲速算与巧算(一)学习内容:加减法的巧算与速算学习目标:(1)学会“化零为整”的思想(2)灵活运用简便方法,提高做作业的计算速度以及准确率速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当、准确、灵活的运用定律、性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。
一、凑十法同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=10 2+8=10 3+7=10 4+6=10 5+5=10巧用这些结果,可以使计算又快又准。
例1 计算:1+2+3+4+5+6+7+8+9+10这种逐步相加的方法,好处是可以得到每一步的结果,但缺点就是麻烦、容易出错;而且一步出错,以后步步错。
若是利用凑十法,就能克服这种缺点。
练一练:8+5+6+7+3+4+2二、凑整法同学还知道,有些书相加之和是整十、整百的数,如:1+19=20 11+9=20 2+18=20 12+18=30 12+28=40 13+37=50 14+46=60 15+55=70 16+64=80 13+73=90又如:15+85=100 14+86=100 25+75=100 24+76=100 35+65=100 34+66=100 45+55=100 44+56=100 等等巧用这些结果,可以使那些较大的数相加又快又准、像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
例2 计算 1+3+5+7+9+11+13+15+17+19练一练:计算21+22+23+24+25+26+27+28+29的和等于多少?例3 计算 2+4+6+8+10+12+14+16+18+20练一练:计算22+24+26+28+30+32+34+16+18+20例4 计算 2+13+25+44+18+37+56+75练一练:计算17+26+82+59+13+24+18+21三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
三年级奥数 速算与巧算之一——带“符号”搬家
速算与巧算之一——带“符号”搬家月日姓名【知识要点】在一个只有加减法或只有乘除法的混合算式中,运算一般是按从左到右的顺序计算,但如果有些数字凑在一起时会使计算简便,就可以交换一下数字的位置,改变运算的顺序,但一定要记住,交换位置时,它前面的符号一定要跟着它一起走哦!【典型例题】例1 (1)128+65+72 (2)176-59+24例2 (1)256-78-56(2)348+27-48例3 (1)480+56+20+144 (2)125+60-25+40(3)149+51-89-156+89+56加油!例4 2×18×5 100÷5÷10例5 36×9÷4 5÷10×4【趣题】一串珠子有黑有白,排列有一定规律,一部分珠子放在盒内,一部分挂在盒外,见下图。
请回答:(1)盒内有多少颗珠子?(2)黑色珠子有几颗?(3)这串珠子一共有多少颗?随堂小测姓 名 成 绩1.(1)178+148+22 (2)225-70-252.(1)364-75+36 (2)413+123-1133.(1)316+78+122+84 (2)728+45-128+554.(1)27×7÷3 (2)4÷3×65.东东的储蓄罐本来有219元,昨天过生日,妈妈又给了他50元钱,他明天想要去买套价值119元的《少儿百科全书》,他还能剩下多少元钱?6.邱邱一家人都很爱吃苹果,每人每天都要吃4个苹果,那么你知道他们一家3口人5天一共要吃多少个苹果吗?☆7.(1)10÷20×4 (2)1+2+3+4+5+6+7+8+9课后作业细心点,小心陷阱哦!姓名成绩1.(1)780+35+220 (2)305-195-105 2.(1)450-36+150 (2)674+75-274 3.(1)361+275+139+25 (2)392+476+208-176 4.(1)72×10÷9 (2)4÷32×8☆5.(1)48+136+64-178-248+178 (2)25÷10×4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、加法中的巧算
1.什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,
2+8=10,4+6=10,
5+5=10。
又如:11+89=100,33+67=100,
22+78=100,44+56=100,
55+45=100,
在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,
87362→12638,…
下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:
①36+87+64②99+136+101
③ 1361+972+639+28
解:①式=(36+64)+87
=100+87=187
②式=(99+101)+136
=200+136=336
③式=(1361+639)+(972+28)
=2000+1000=3000
3.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203
解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061
②式=(548-4)+(996+4)
=544+1000=1544
③式=(9898+102)+(203-102)
=10000+101=10101
4.竖式运算中互补数先加。
如:
二、减法中的巧算
1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例3① 300-73-27
② 1000-90-80-20-10
解:①式= 300-(73+ 27)
=300-100=200
②式=1000-(90+80+20+10)
=1000-200=800
2.先减去那些与被减数有相同尾数的减数。
例4① 4723-(723+189)
② 2356-159-256
解:①式=4723-723-189
=4000-189=3811
②式=2356-256-159
=2100-159
=1941
3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例5 ①506-397
②323-189
③467+997
④987-178-222-390
解:①式=500+6-400+3(把多减的 3再加上)
=109
②式=323-200+11(把多减的11再加上)
=123+11=134
③式=467+1000-3(把多加的3再减去)
=1464
④式=987-(178+222)-390
=987-400-400+10=197
三、加减混合式的巧算
1.去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例6 ①100+(10+20+30)
② 100-(10+20+3O)
③ 100-(30-10)
解:①式=100+10+20+30
=160
②式=100-10-20-30
=40
③式=100-30+10
=80
例7 计算下面各题:
① 100+10+20+30
② 100-10-20-30
③ 100-30+10
解:①式=100+(10+20+30)
=100+60=160
②式=100-(10+20+30)
=100-60=40
③式=100-(30-10)
=100-20=80
2.带符号“搬家”
例8 计算 325+46-125+54
解:原式=325-125+46+54
=(325-125)+(46+54)
=200+100=300
注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。
3.两个数相同而符号相反的数可以直接“抵消”掉
例9 计算9+2-9+3
解:原式=9-9+2+3=5
4.找“基准数”法
几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
例10 计算 78+76+83+82+77+80+79+85
=640。