上海上海中学数学一元二次方程单元测试卷(含答案解析)
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试卷(答案解析)(1)
一、选择题1.一次围棋比赛,参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x 个参赛棋手,则可列方程为( )A .12x (x ﹣1)=45B .12x (x+1)=45 C .x (x ﹣1)=45D .x (x+1)=45 2.若x m =是方程210x x +-=的根,则22020m m ++的值为( )A .2022B .2021C .2019D .2018 3.欧几里得的《原本》记载,方程x 2+ax =b 2的图解法是:画Rt △ABC ,使∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =BC .则该方程的一个正根是( )A .AC 的长B .CD 的长C .AD 的长 D .BC 的长 4.下列方程中,是一元二次方程的是( ) A .12x += B .21x y += C .243x x -= D .35-=xy 5.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x 6.定义运算:21a b ab ab =--☆.例如:23434341=⨯-⨯-☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根 7.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .10B .12C .14D .12或14 8.新冠肺炎传染性很强,曾有2人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后128人患上新冠肺炎,则x 的值为( )A .10B .9C .8D .7 9.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m < B .m 1≥ C .1m D .1m 10.下列关于一元二次方程,说法正确的是( )A .方程2450x x --=配方变形为2(2)2x -=B .方程2x x =的解为1x =C .关于x 的方程2230ax x +-=有实数根,则13a -D .方程221x x -=的解为121x x ==11.下列说法不正确的是( )A .打开电视剧,电视里播放《小猪佩奇》是偶然事件B .了解一批灯泡的使用寿命,适合抽样调查C .一元二次方程2210x x -+=只有一个根D .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定 12.下列一元二次方程没有实数根的是( )A .2-20x =B .2-20x x =C .210x x ++=D .()()-1-30x x =二、填空题13.设m 、n 分别为一元二次方程2370x x +-=的两个实数根,则2mn m n --=______.14.一个等腰三角形的腰和底边长分别是方程28120x x -+=的两根,则该等腰三角形的周长是________.15.若关于x 的一元二次方程x 2﹣2kx +k 2﹣k +1=0有两个不相等的实数根,则实数k 的取值范围是_____.16.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.17.已知m ,n 是一元二次方程2410x x -=+的两实数根,则11m n+=_________. 18.用换元法解方程221x x -﹣21x x -=1,设y =21x x-,那么原方程可以化为关于y 的整式方程为_____.19.对于有理数a ,b ,定义{}min ,a b :当a b ≥时,{}min ,a b b =;当a b ≤时,{}min ,a b a =.若{}22min 40,12440m n m n -+--=,则n m 的值为______. 20.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是 _________%.三、解答题21.阅读下面材料,并完成问题.任意给定一个矩形A ,若存在另一个矩形B ,使它的周长和面积分别是矩形A 的一半,则称矩形,A B 是“兄弟矩形”.探究:当矩形A 的边长分别为7和1时,是否存在A 的“兄弟矩形”B ?小亮同学是这样探究的:设所求矩形的两边分别是x和y,由题意,得472 x yxy+=⎧⎪⎨=⎪⎩①②由①,得4y x=-,③把③代入②,得7(4)2x x-=,整理,得22870-+=x x.24645680b ac-=-=>,A∴的“兄弟矩形”B存在.(1)若已知矩形A的边长分别为3和2,请你根据小亮的探究方法,说明A的“兄弟矩形”B是否存在?(2)若矩形A的边长为m和n,当A的“兄弟矩形”B存在时,求,m n应满足的条件.22.2020年,受新冠疫情影响,众多学校开展了“停课不停学”的线上教学活动,因此,手写板的需求量大幅上升.某网店抓住时机销售A,B两款手写板,A型手写板的单价为360元,B型手写板的单价为240元.(1)商家在1月共销售两种型号手写板600个,若A型手写板的销售额不低于B型手写板销售额的3倍,求1月A型手写板至少售出多少个?(2)该商家在2月继续销售这两种型号的手写板并适当的进行了调整,A型手写板的售价降低了13a%.B型手写板的销价不变.结果A型手写板的销售量在1月最低销售量的基础上增加了43a%,B型手写板的销售量在一月保证A最低销量的基础上增加了15a%,结果2月两种手写板的总销售额比1月两种手写板的总销售额增加了35a%,求a的值.23.某住宅小区在住宅建设时留下一块1248平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带.请你计算出游泳池的长和宽.24.阅读下列材料:已知实数x,y满足()()22221163x y x y+++-=,试求22x y+的值.解:设22x y a+=,则原方程变为(1)(1)63a a+-=,整理得2163a-=,264a=,根据平方根意义可得8a=±,由于220x y+,所以可以求得228x y+=.这种方法称为“换元法”,用一个字母去代替比较复杂的单项式、多项式,可以达到化繁为简的目的. 根据阅读材料内容,解决下列问题:(1)已知实数x ,y 满足(223)(223)27x y x y +++-=,求x y +的值.(2)已知a ,b 满足方程组22223212472836a ab b a ab b ⎧-+=⎨++=⎩;求112a b +的值; (3)填空:已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩,则关于x ,y 的方程组21111122222222a x a x b y c a a x a x b y c a ⎧-+=-⎨-+=-⎩的解是_______. 25.已知关于x 的方程22(31)220x k x k k -+++=.(1)若方程有两个相等实数根,求k 的值;(2)若等腰三角形ABC 的底边长为3,两腰恰好是这个方程的两个根,求此三角形的周长.26.如图,抛物线与x 轴交于点1,0A ,()3,0B ,与y 轴交于点()0,3C .(1)求二次函数的表达式及顶点坐标;(2)若点P 为抛物线上的一点,且1ABP S ∆=,求点P 的坐标;;(3)连接BC ,在抛物线的对称轴上是否存在一点E ,使BCE ∆是直角三角形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】关系式为:棋手总数×每个棋手需赛的场数÷2=45,把相关数值代入即可.【详解】解:本次比赛共有x 个参赛棋手, 所以可列方程为:12x (x -1)=45. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2. 2.B解析:B【分析】利用一元二次方程根的定义,代入变形计算即可.【详解】∵x m =是方程210x x +-=的根,∴210m m +-=,∴21m m +=,∴22020m m ++=2021,故选B .【点睛】本题考查了一元二次方程根的定义,熟练把方程的根转化为所含字母的一元二次方程是解题的关键.3.C解析:C【分析】在Rt ABC 中,由勾股定理可得222AC BC AB +=,结合AB AD BD =+,,2a ACb BD BC ===,即可得出22AD aAD b +=,进而可得出AD 的长是方程22x ax b +=的一个正根.【详解】在Rt ABC 中,由勾股定理可得222AC BC AB +=,2a AC b BD BC === 22222222a a a b AD AD aAD ⎛⎫⎛⎫⎛⎫∴+=+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴22AD aAD b +=22AD aAD b +=与方程22x ax b +=相同,且AD 的长度是正数∴AD 的长是方程22x ax b +=的一个正根.故选:C .【点睛】本题考查了一元二次方程的应用以及勾股定理,利用勾股定理及各边的长得出22AD aAD b +=是解题关键.4.C解析:C【分析】只含有一个未知数,并且未知数的最高次数是2的方程是一元二次方程,根据定义解答即可.【详解】A 、是一元一次方程,不符合题意;B 、是二元一次方程,不符合题意;C 、是一元二次方程,符合题意;D 、是二元二次方程,不符合题意;故选:C .【点睛】此题考查一元二次方程,熟记定义是解题的关键.5.D解析:D【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意,得()()30220223020++=⨯⨯x x .故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.A解析:A【分析】根据新定义运算法则以及利用△>0可判断方程根的情况.【详解】解:由题意可知:1☆x=x 2-x-1=0,∴△=1-4×1×(-1)=5>0,∴有两个不相等的实数根故选:A .【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.7.B解析:B【分析】用因式分解法求得方程的根,后根据三角形三边关系判断三角形的存在性,后计算周长.【详解】∵212350-+=,x x∴(x-7)(x-5)=0,∴x=7或x=5;当x=7时,3+4=7,∴三角形不存在;当x=5时,3+4>5,∴三角形存在,∴三角形的周长为3+4+5=12;故选B.【点睛】本题考查了一元二次方程的因式分解求解法和三角形的存在性,熟练求方程的根,准确判断三角形的存在性是解题的关键.8.D解析:D【分析】根据两天后共有128人患上流感,列出方程求解即可.【详解】解:依题意得2+2x+x(2+2x)=128,解得x1=7,x2=-9(不合题意,舍去).故x值为7.故选:D.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.D解析:D【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可.【详解】解:∵关于x的一元二次方程2x2x m0-+=无实数根,∴△=(-2)2-4m<0,解得m>1.故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.C解析:C【分析】根据一元二次方程的解法及一元二次方程根的判别式来判断即可【详解】解:A.用配方法解方程2450x x --=,245x x -=,24454x x -+=+,∴()229x -=,故A 不正确; B.用因式分解法解方程2x x =,20x x -=,()10x x -=,∴120,1x x ==,故B 不正确;C.∵ 关于x 的方程2230ax x +-=有实数根,∴当a=0,时,230x -=,方程有实根,当a 0≠时,()224a 30=-⨯-≥△ ,解得13a ≥-, 综上所述,若方程有实根时,则13a ≥-,故C 正确;D.解方程221x x -=, 22111x x -+=+,()212x +=,1x ∴+=,121,1x x ∴== ,故D 不正确;故选:C .【点睛】本题考查了解一元二次方程及一元二次方程根的判别式,正确理解一元二次方程的解法是解本题的关键,解题时运用了分类讨论思想.11.C【分析】根据必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差依次判断即可.【详解】解:A. 打开电视剧,电视里播放《小猪佩奇》是偶然事件,正确,不符合题意;B. 了解一批灯泡的使用寿命,适合抽样调查,正确,不符合题意;C. 一元二次方程2210x x-+=中,24440b ac∆=-=-=,有两个相等的实数根,故原说法错误,符合题意;D. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36 S=甲,20.54S=乙,甲的射击成绩稳定,正确,不符合题意;故选:C.【点睛】本题考查必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差,注意当0∆=时,一元二次方程有两个相等的实数根.12.C解析:C【分析】直接利用根的判别式△=b2−4ac判断即可.【详解】解:A、△ =8>0,方程有两个不相等的实数根;B、△=4>0,,方程有两个不相等的实数根;C、△=−3<0,方程没有实数根;D、2430x x-+=,△=4>0,方程有两个不相等的实数根;故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.二、填空题13.-11【分析】根据一元二次方程根与系数的关系即可得出m+n=-3mn=-7将其代入中即可求出结论【详解】解:∵mn分别为一元二次方程的两个实数根∴m+n=-3mn=-7则故答案为:-11【点睛】本题解析:-11根据一元二次方程根与系数的关系即可得出m+n=-3,mn=-7,将其代入22()mn m n mn m n --=-+中即可求出结论.【详解】解:∵m ,n 分别为一元二次方程2370x x +-=的两个实数根,∴m+n=-3,mn=-7,则22()2(7)(3)14311mn m n mn m n =--=-+⨯---=-+=-.故答案为:-11.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出m+n=-2,mn=-1是解题的关键.14.14【分析】运用因式分解法解一元二次方程求出两根因为三角形是等腰三角形分情况讨论:腰为2时和腰为6时再利用三角形三边关系验证是否符合题意即可求出周长;【详解】解:(x-2)(x-6)=0x1=2x2解析:14【分析】运用因式分解法解一元二次方程,求出两根,因为三角形是等腰三角形,分情况讨论:腰为2时和腰为6时,再利用三角形三边关系验证是否符合题意,即可求出周长;【详解】解:28120x x -+=,(x-2)(x-6)=0,x 1=2,x 2=6,当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去;当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,则周长为:6+6+2=14,故答案为:14.【点睛】本题考查因式分解解一元二次方程和三角形的三边关系,求解后验三角形的三边关系是解题的关键.15.k >1【分析】根据方程有两个不相等的实数根可得△=(2k )2﹣4(k2﹣k+1)>0求出k 的取值范围【详解】解:∵原方程有两个不相等的实数根∴△=b2﹣4ac =(2k )2﹣4(k2﹣k+1)=4k ﹣解析:k >1【分析】根据方程有两个不相等的实数根可得△=(2k )2﹣4(k 2﹣k +1)>0,求出k 的取值范围.【详解】解:∵原方程有两个不相等的实数根,∴△=b 2﹣4ac =(2k )2﹣4(k 2﹣k +1)=4k ﹣4>0,解得k>1;故答案为:k>1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.16.m>0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n的任意性构造不等式求解即可【详解】∵关于x的一元二次方程m﹣nx﹣m﹣3=0对于任意实数n都有实数根∴△≥0且m≠0∴≥0∴≥0解析:m>0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n的任意性,构造不等式求解即可.【详解】∵关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,∴△≥0,且m≠0,∴2()4(3)n m m-++≥0,∴22412n m m++≥0,∵对于任意实数n都有实数根,∴2412m m+≥0,∴30mm≥⎧⎨+≥⎩或30mm≤⎧⎨+≤⎩,∴m≥0或m≤-3,且m≠0,∴m>0或m≤-3,故答案为:m>0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.17.4【分析】先由根与系数的关系求出m•n及m+n的值再把化为的形式代入进行计算即可【详解】是一元二次方程的两实数根故答案为:4【点睛】本题考查的是根与系数的关系将根与系数的关系与代数式变形相结合解题是解析:4【分析】先由根与系数的关系求出m•n及m+n的值,再把化为11m nm n mn++=的形式代入进行计算即可.【详解】m ,n 是一元二次方程2410x x -=+的两实数根,4,1m nm n , 11441m nm n mn. 故答案为:4【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系为:x 1+x 2=−b a ,x 1•x 2=c a. 18.y2+y ﹣2=0【分析】可根据方程特点设y =则原方程可化为﹣y =1化成整式方程即可【详解】解:方程﹣=1若设y =把设y =代入方程得:﹣y =1方程两边同乘y 整理得y2+y ﹣2=0故答案为:y2+y ﹣2解析:y 2+y ﹣2=0 【分析】可根据方程特点设y =21x x-,则原方程可化为2y ﹣y =1,化成整式方程即可. 【详解】解:方程221x x -﹣21x x-=1, 若设y =21x x-, 把设y =21x x-代入方程得:2y ﹣y =1, 方程两边同乘y ,整理得y 2+y ﹣2=0.故答案为:y 2+y ﹣2=0.【点睛】本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.36【分析】根据与40的大小再根据从而确定mn 的值即可得出的值【详解】解:∵∴40≤;∴∴(m+6)2+(n-2)2≤0∵(m+6)2+(n-2)20∴m+6=0n-2=0∴m=-6n=2∴故答案为解析:36【分析】根据22124-+--m n m n 与40的大小,再根据{}22min 40,12440m n m n -+--=,从而确定m ,n 的值即可得出n m 的值.【详解】解:∵{}22min 40,12440m n m n-+--=,∴40≤22124-+--m n m n ;∴22412400+-≤++m n n m∴(m+6)2+(n-2)2≤0,∵(m+6)2+(n-2)2≥0,∴m+6=0,n-2=0,∴m=-6,n=2,∴()2636=-=n m 故答案为:36.【点睛】本题考查了配方法的应用和非负数的性质.根据题意理解新定义的计算公式是解题的关键.20.10%【分析】设平均每年下降的百分率是x 利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量列出方程解答即可【详解】设平均每年下降的百分率是x 解得x1=01=10x2=19(舍去)答:平均每解析:10%【分析】设平均每年下降的百分率是x ,利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量,列出方程解答即可.【详解】设平均每年下降的百分率是x ,250(1)40.5x -=,解得x 1=0.1=10%,x 2=1.9(舍去),答:平均每年下降的百分率是10%,故答案为:10%.【点睛】此题考查一元二次方程的实际应用—增长率问题,正确理解题意并掌握增长率问题计算公式是解题的关键.三、解答题21.(1)不存在;(2)2260m mn n -+【分析】(1)按照小亮的方法,进行计算即可;(2)先根据小亮的方法列出方程组,转化为一元二次方程,利用根的判别式列不等式即可.【详解】解:(1)设所求矩形的两边分别是x 和y ,由题意,得5,23.x y xy ⎧+=⎪⎨⎪=⎩①②由①,得52y x =-,③ 把③代入②,得532x x ⎛⎫-=⎪⎝⎭, 整理,得22560x x -+=,242548230b ac -=-=-<,A ∴的“兄弟矩形”B 不存在.(2)设所求矩形的两边分别是x 和y , 由题意,得,2.2m n x y mn xy +⎧+=⎪⎪⎨⎪=⎪⎩①② 由①,得2m n y x +=-,③ 把③代入②,得22m n mn x x +⎛⎫-=⎪⎝⎭, 整理,得22()0x m n x mn -++=,22224()86b ac m n mn m mn n -=+-=-+,又,x y 都是正数,∴当2260m mn n -+时,A 的“兄弟矩形”B 存在.【点睛】本题考查了一元二次方程的应用以及根的判别式,解题的关键是熟练运用一元二次方程根的判别式.22.(1)A 型手写板至少售出400个;(2)60a =.【分析】(1)设A 型手写板售出x 个,则B 型手写板售出(600-x )个,根据题意列出不等式求解即可;(2)根据售价×销量=销售额,别表示出A 型手写板和B 型手写板的销售额相加等于总销售额列出方程求解即可.【详解】解:(1)设A 型手写板售出x 个,则B 型手写板售出(600-x )个,根据题意 3603240(600)x x ≥⨯-,解得400x ≥,故A 型手写板至少售出400个;(2)由(1)得,A 型手写板售出400个,B 型手写板售出200个,根据题意可知1413360(1%)400(1%)240200(1%)(400360200240)(1%)3355a a a a -⨯++⨯+=⨯+⨯+解得:60a =或0a =(舍去).所以60a =.【点睛】本题考查一元一次不等式的应用,一元二次方程的应用.根据题意找出等量或者不等量关系,列出方程(不等式)是解题关键.(2)中计算过程较为复杂,可先领%y a =,求出y 后,再求a .23.游泳池的长为40米,宽为20米.【分析】设游泳池的宽为x 米,而游泳池的长是宽的2倍,那么原来的空地的长为(2x +8),宽为(x +6),根据空地面积为1248平方米即可列出方程解题.【详解】解:设游泳池的宽为x 米,依题意得(x +6)(2x +8)=1248整理得x 2+10x ﹣600=0,解得x 1=20,x 2=﹣30(负数不合题意,舍去),∴x =20,2x =40.答:游泳池的长为40米,宽为20米.【点睛】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.24.(1)±3;(2)54±;(3)45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩【分析】(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,解之求得a 的值,继而可得x y +的值;(2)设a ²+4b ²=x ,ab=y ,可将原方程组变形为二元一次方程组,解出x 、y 的值再代入即可.(3)将原方程组变为21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩,由题意得出2(1)95x y ⎧-=⎨=⎩,即可得出答案. 【详解】解:(1)设22x y a +=,则原方程变为(3)(3)27a a +-=,整理,得:2927a -=,即236a =,解得:6a =±,则226x y +=±,3x y ∴+=±;(2)令224a b x +=,ab y =,则原方程变为:3247236x y x y -=⎧⎨+=⎩,解之得:172x y =⎧⎨=⎩, ∴22417a b +=,2ab =,∴()22224417825a b a ab b +=++=+=, ∴25a b +=±, ∴1125224b a a b ab ++==±; (3)由方程组21111122222222a x a x b yc a a x a x b y c a ⎧-+=-⎨-+=-⎩,得21111122222222a x a x a b y c a x a x a b y c ⎧-++=⎨-++=⎩, 整理,得:21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩, ∴方程组21112222(1)(1)a x b y c a x b y c ⎧-+=⎨-+=⎩的解是:2(1)95x y ⎧-=⎨=⎩, 13x ∴-=±,且5y =,解得:45x y =⎧⎨=⎩或25x y =-⎧⎨=⎩. 【点睛】本题主要考查换元法解方程、方程组及因式分解,根据方程和代数式的特点设出合适的新元是解题的关键.25.(1)1;(2)7【分析】(1)计算方程的根的判别式,令△=b 2-4ac=0,即可求出k 的值;(2)先将k=1代入方程,得到x 2-4x+4=0,解方程求出两腰的长为2,又已知底边是3,则根据三角形的周长公式即可求解.【详解】解:(1)∵△=b 2-4ac=[-(3k+1)]2-4•(2k 2+2k )=k 2-2k+1=(k-1)2=0,∴k=1;(2)将k=1代入方程,得x 2-4x+4=0,解得:x 1=x 2=2.此时△ABC 三边为3,2,2;所以周长为7.【点睛】本题主要考查了一元二次方程根的判别式及三角形的周长,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.26.(1)243y x x =-+;()2,1-;(2)P ()2、()2、()2,1-;(3)存在,E ()2,5,()2,1-,3172,2、3172,2.【分析】 (1)根据题意,设二次函数的一般式解析式,再代入1,0A 、()3,0B 、()0,3C ,转化为解三元一次方程组即可解得一般式解析式,再利用配方法将一般式解析式化为顶点式解析式即可;(2)先解得2AB =,再结合三角形面积公式及绝对值的几何意义解题即可(3)当BCE ∆是直角三角形时,分三种情况讨论:BC BE ⊥或BC CE ⊥或BE CE ⊥,分别结合勾股定理解题即可.【详解】解:(1)设二次函数的表达式为2y ax bx c =++将1,0A 、()3,0B 、()0,3C 分别代入得09303a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得:143a b c =⎧⎪=-⎨⎪=⎩∴二次函数表达式为243y x x =-+()224321y x x x ∴=-+=--∴顶点坐标为()2,1-;(2)312AB =-= 12p ABP AB y S ∆⋅==1p y ∴= 1p y ∴=±当1p y =时,2431x x-+=解得12x =,22x =当1p y =-时,2431x x -+=-解得122x x ==,∴点p 的坐标为()2-、()2+、()2,1-;(3)存在,符合条件的点E 共有4个,坐标分别为()2,5,()2,1-,3172,2、3172,2,理由如下:抛物线的对称轴为2x =,设(2,)E t 得, 2223+3=18BC =2222=(23)=1+BE t t -+22222(3)613CE t t t =+-=-+ 当BC BE ⊥时,222+BC BE CE =22181613t t t ∴++=-+1t ∴=-(2,1)E ∴-; 当BC CE ⊥时,222+BC CE BE =22186131t t t ∴+-+=+5t ∴= (2,5)E ∴; 当BE CE ⊥时,222+BE CE BC =22161318t t t ∴++-+=2320t t ∴--=1,3,2a b c ==-=-224(3)41(2)17b ac ∴∆=-=--⨯⨯-=12332222b b t t a a -++--∴==== 此时3172,2E 或3172,2,综上所述,符合条件的点E 共有4个,坐标分别为()2,5,()2,1-,3172,2、3172,.2【点睛】本题考查待定系数法解二次函数的解析式、化二次函数的一般式解析式为顶点式解析式、直角三角形的判定与性质、勾股定理、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.。
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试卷(有答案解析)
一、选择题1.若x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1x 2的值是( ) A .﹣2B .﹣3C .2D .3 2.一个菱形两条对角线的长是方程28120x x -+=的两个根,则该菱形的面积为( ) A .12B .6或12C .8D .6 3.一元二次方程x 2+4x=3配方后化为( ) A .(x+2)2=3 B .(x+2)2=7 C .(x-2)2=7 D .(x+2)2=-1 4.某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x 元,则符合题意的方程是( ) A .(1612)(36040)1680x x +--=B .(12)(36040)1680x x --=C .(12)[36040(16)]1680x x ---=D .(1612)[36040(16)]1680x x +---=5.关于x 的一元二次方程()22120x m x m +--=的根的情况是( )A .无法确定B .有两个不相等的实数根C .有两个相等的实数根D .无实数根6.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x 7.我国古代数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载过一元二次方程(正根)的几何解法.以方程22350x x +-=即(2)35x x +=为例说明,记载的方法是:构造如图,大正方形的面积是2(2)x x ++.同时它又等于四个矩形的面积加上中间小正方形的面积,即24352⨯+,因此5x =.则在下面四个构图中,能正确说明方程23100x x --=解法的构图是( )A .B .C .D .8.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如32()x x x x px q =⋅=-=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,则4353x x x +-+的值为( )A .3B .4C .5D .69.2020年12月29日,贵阳轨道交通2号线实现试运行,从白云区到观山湖区轨道公司共设计了132种往返车票,则这段线路有多少个站点?设这段线路有x 个站点,根据题意,下面列出的方程正确的是( )A .()1132x x +=B .()1132x x -=C .1(1)1322x ⨯+=D .1(1)1322x x -= 10.若12,x x 是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于( )A .2020B .2019C .2029D .202811.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=6012.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( )A .2000(1)2420x +=B .2000(12)2420x +=C .22000(1)2420x -=D .22000(1)2420x +=二、填空题13.将一元二次方程2850x x --=化成2()x a b +=(a 、b 为常数)的形式,则a 、b 的值分别是_______.14.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.15.阅读理解:对于()321x n x n -++这类特殊的代数式可以按下面的方法分解因式:()()()()3232222()()(1)()1x n x n x n x x n x x n x n x x n x n x n x n x nx -++=--+=---=+-=-+--一理解运用:如果()3210x n x n -++=,那么()2(10)x n x nx -+-=,即有0x n -=或210x nx +-=,因此,方程0x n -=和210x nx +-=的所有解就是方程()321x n x n -++=0 的解.解决问题:求方程31030x x -+=的解为___________. 16.已知关于x 的一元二次方程(a ﹣2)x 2+2x+1=0有两个不相等的实数根,则a 的取值范围是_____.17.如果菱形的两对角线的长分别是关于x 的一元二次方程2240x mx ++=的两实数根,那么该菱形的面积是____.18.在实数范围内因式分解:231x x --=_______.19.如果一元二次方程()()636x x x -=-的两个根是等腰三角形的两条边的长,那么这个等腰三角形的周长为__________.20.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是 _________%.三、解答题21.解下列方程:(1)2(x ﹣2)2=x 2﹣4.(2)2x 2﹣4x ﹣1=0.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m 的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门.(1)所围矩形猪舍的长,宽分别为多少米时,猪舍面积为296m ?(2)能否围面积为2100m 的矩形猪舍,若能,求出长和宽;若不能,请说明理由. 23.已知一元二次方程2230x x --=的正实数根也是一元二次方程()2230x k x --+=的根,求k 的值.24.解下列方程:(1)(x ﹣1)2﹣x 2=3(x ﹣3);(2)2121124x x x x -+=---. 25.已知关于x 的一元二次方程x 2﹣2x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=﹣1时,求另一个根x 2的值.26.已知关于x 的一元二次方程222x x m -+=有两个不相等的实数根.(1)求m 的取值范围;(2)当1m =时,求方程222x x m -+=的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】直接根据根与系数的关系解答即可.【详解】解:∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1x 2=-3.故选B .【点睛】本题考查了根与系数的关系:x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1•x 2=c a. 2.D解析:D【分析】利用因式分解法求得方程的两根,进而根据菱形面积=12对角线的积求解即可. 【详解】解:28120x x -+=,(x-6)(x-2)=0,∴x 1=6,x 2=2,∵菱形的两条对角线长分别为6,2,∴菱形面积为162=62⨯⨯, 故选:D .【点睛】综合考查了菱形的性质及解一元二次方程;得到菱形的对角线长是解决本题的突破点;用到的知识点为:因式分解法解一元二次方程;菱形面积=12对角线的积. 3.B解析:B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x 2+4x=3,x 2+4x+4=7,(x+2)2=7,故选:B .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.A解析:A【分析】根据总利润=每盒的利润×销售量,而每盒的利润=售价-进价,再结合“每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份”即可得出答案.【详解】解:每份盒饭涨价x 元后,利润为(16+x-12)元,销售量为(360-40x)盒,∴可得方程为(1612)(36040)1680x x +--=,故选A .【点睛】本题考查了一元二次方程的实际应用.正确理解题意,根据题意找到等量关系是解题的关键.5.B解析:B【分析】判断上述方程的根的情况,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵关于x 的一元二次方程()22120x m x m +--=的二次项系数a=1,一次项系数b=2m-2,常数项c=-2m ,∴△=(2m-2)2-4(-2m )=4m 2+1>0,∴原方程有两个不相等的实数根;故选:B .【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.D解析:D【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意,得()()30220223020++=⨯⨯x x .故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.C解析:C【分析】根据题意,画出方程x 2-3x-10=0,即x (x-3)=10的拼图过程,由面积之间的关系可得出答案.【详解】解:方程x 2-3x-10=0,即x (x-3)=10的拼图如图所示;中间小正方形的边长为x-(x-3)=3,其面积为9,大正方形的面积:(x+x-3)2=4x (x-3)+9=4×10+9=49,其边长为7,因此,C 选项所表示的图形符合题意,故选:C .【点睛】本题考查完全平方公式的几何背景,通过图形直观,得出面积之间的关系,并用代数式表示出来是解决问题的关键.8.D解析:D【分析】先求得x 2=x+1,再代入4353x x x +-+即可得出答案.【详解】解:∵x 2-x-1=0,∴x 2=x+1,∴4353x x x +-+=(x+1)2+x(x+1)-5x+3=x 2+2x+1+x²+x-5x+3=2x 2-2x+4=2(x+1)-2x+4=2x+2-2x+4=6,故选:D .【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.9.B解析:B【分析】利用列方程解应用题,仔细阅读试题,找出等量关系为:站点数×每站票数(比站点数少1)=总票数,列方程即可.【详解】设这段线路有x 个站点,每个站点售其它各站一张往返车票,共有(x-1)张票,根据题意,列方程得()1132x x -=.故选择:B .【点睛】本题考查列方程解应用题,掌握列方程解应用题的方法,抓住等量关系站点数×每站票数(比站点数少1)=总票数是解决问题的关键.10.D解析:D【分析】先根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式计算即可.【详解】解:∵1x ,2x 是方程2420200x x --=的两个实数根,∴211420200x x --=,即21142020x x -=,由根与系数之间关系可知124x x +=,∴211222x x x -+=21112422x x x x -++=2020+122()x x +=2020+8=2028.所以选项D 正确.故答案为:D【点睛】本题主要考查了一元二次方程的解、根与系数之间的关系,本题解题的关键是将211222x x x -+进行等量变形,并代入求解.11.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2. ∴23(1+x%)2=60.故选:B .【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.12.D解析:D【分析】根据开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天收入约为2420元列方程即可得到结论.【详解】设每天的增长率为x ,依题意,得:22000(1)2420x +=.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题13.-421【分析】将常数项移到方程的右边两边都加上一次项系数一半的平方配成完全平方式后即可得出答案【详解】解:∵x2-8x-5=0∴x2-8x=5则x2-8x+16=5+16即(x-4)2=21∴a=解析:-4,21【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∵x2-8x-5=0,∴x2-8x=5,则x2-8x+16=5+16,即(x-4)2=21,∴a=-4,b=21,故答案为:-4,21.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.m>0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n的任意性构造不等式求解即可【详解】∵关于x的一元二次方程m﹣nx﹣m﹣3=0对于任意实数n都有实数根∴△≥0且m≠0∴≥0∴≥0解析:m>0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n的任意性,构造不等式求解即可.【详解】∵关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,∴△≥0,且m≠0,∴2()4(3)n m m-++≥0,∴22412n m m++≥0,∵对于任意实数n都有实数根,∴2412m m+≥0,∴30mm≥⎧⎨+≥⎩或30mm≤⎧⎨+≤⎩,∴m≥0或m≤-3,且m≠0,∴m>0或m≤-3,故答案为:m>0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.15.【分析】通过因式分解的方法把方程左边分解因式这样把原方程转化为x−3=0或x2+3x−1=0然后解一次方程和一元二次方程即可【详解】解:∵x3−10x +3=0∴x3−9x−x +3=0x (x2−9)−解析:1233,x x x === 【分析】通过因式分解的方法把方程左边分解因式,这样把原方程转化为x−3=0或x 2+3x−1=0,然后解一次方程和一元二次方程即可.【详解】解:∵x 3−10x +3=0,∴x 3−9x−x +3=0,x (x 2−9)−(x−3)=0,(x−3)(x 2+3x−1)=0,∴x−3=0或x 2+3x−1=0,∴1233,x x x ===.故答案为:1233,x x x ===. 【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.也考查了公式法解一元二次方程.16.且【分析】根据一元二次方程的定义及根的判别式△>0即可得出关于a 的一元一次不等式组解之即可得出结论【详解】∵关于x 的一元二次方程(a ﹣2)x2+2x+1=0有两个不相等的实数根∴解得:a <3且a≠2解析:3a <且2a ≠【分析】根据一元二次方程的定义及根的判别式△>0,即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】∵关于x 的一元二次方程(a ﹣2)x 2+2x+1=0有两个不相等的实数根,∴22024(2)10a a -≠⎧⎨=--⨯>⎩, 解得:a <3且a≠2.故答案为:a <3且a≠2【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a 的取值范围,同时方程是一元二次方程,二次项系数不为零.17.12【分析】可根据韦达定理求出一元二次方程的两根之积接着通过菱形面积公式求解即可【详解】解:设的两根为则一元二次方程的两实数根为菱形的两对角线的长菱形的面积===12故答案为:12【点睛】本题主要考解析:12【分析】可根据韦达定理求出一元二次方程的两根之积,接着通过菱形面积公式求解即可.【详解】解:设2240x mx ++=的两根为12x x 、,则1224x x =,一元二次方程的两实数根12x x 、为菱形的两对角线的长,∴菱形的面积=1212x x =1242⨯=12. 故答案为:12.【点睛】本题主要考查一元二次方程的韦达定理,还涉及菱形的面积运算,属于基础题,熟练掌握韦达定理及菱形的面积公式是解决本题的关键.18.【分析】令x2-3x-1=0求出方程的两个根即可把多项式x2-3x-1因式分解【详解】解:令x2-3x-1=0∵a=1b=-3c=-1∴b2-4ac=(-3)2-4×1×(-1)=13>0∴∴故答案解析:(-x x 【分析】令x 2-3x-1=0,求出方程的两个根,即可把多项式x 2-3x-1因式分解.【详解】解:令x 2-3x-1=0,∵a=1,b=-3,c=-1,∴b 2-4ac=(-3)2-4×1×(-1)=13>0,∴x =∴231(x --=x x x故答案为:33()(22+--x x 【点睛】 此题主要考查了实数范围内分解因式,熟练掌握利用公式法解一元二次方程是解答本题的关键.19.15【分析】先解一元二次方程根据根的情况可知有两种方式用三角形三边关系排除一组后即可得出三角形周长【详解】解:即∵336不能构成三角形∴这个等腰三角形的三边成为663周长为15故答案为:15【点睛】【分析】先解一元二次方程,根据根的情况可知有两种方式,用三角形三边关系排除一组后即可得出三角形周长.【详解】解:()()636x x x -=-()(3)60x x --=,即123,6x x ==,∵3,3,6不能构成三角形,∴这个等腰三角形的三边成为6,6,3,周长为15.故答案为:15.【点睛】本题考查等腰三角形的定义,解一元二次方程,三角形三边关系.不要忽略了用三角形三边关系判断能否构成三角形.20.10%【分析】设平均每年下降的百分率是x 利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量列出方程解答即可【详解】设平均每年下降的百分率是x 解得x1=01=10x2=19(舍去)答:平均每解析:10%【分析】设平均每年下降的百分率是x ,利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量,列出方程解答即可.【详解】设平均每年下降的百分率是x ,250(1)40.5x -=,解得x 1=0.1=10%,x 2=1.9(舍去),答:平均每年下降的百分率是10%,故答案为:10%.【点睛】此题考查一元二次方程的实际应用—增长率问题,正确理解题意并掌握增长率问题计算公式是解题的关键.三、解答题21.(1)x 1=2,x 2=6 (2)x 1=1+2x 2=1﹣2【分析】(1)先移项得到2(x ﹣2)2﹣(x ﹣2)(x+2)=0,然后利用因式分解法解方程; (2)利用配方法解方程即可.解:(1)原式移项得:2(x ﹣2)2﹣(x ﹣2)(x+2)=0,因式分解得:(x ﹣2)(2x ﹣4﹣x ﹣2)=0,所以x ﹣2=0或2x ﹣4﹣x ﹣2=0;所以x 1=2,x 2=6;(2)x 2﹣2x =12 , x 2﹣2x+1=12+1,即(x ﹣1)2=32,∴x ﹣1=±2,所以x 1=1+2x 2=1﹣2 【点睛】此题考查了一元二次方程的解法中的因式分解法和配方法.此题比较简单,解题的关键是注意选择适当的解题方法,注意因式分解法与配方法的解题步骤.22.(1)长为12m 、宽为8m ;(2)不能,理由见解析【分析】(1)设矩形猪舍垂直于住房墙一边长为xm ,根据矩形的面积公式建立方程求出其解即可.(2)根据题意列出方程x (27-2x+1)=100,根据方程的解的情况可得结果.【详解】解:(1)设矩形猪舍垂直于住房墙一边长为xm ,可以得出平行于墙的一边的长为(27-2x+1)m ,由题意得x (27-2x+1)=96,解得:x 1=6,x 2=8,当x=6时,27-2x+1=16>15(舍去),当x=8时,27-2x+1=12.答:所围矩形猪舍的长为12m 、宽为8m .(2)由题意得:x (27-2x+1)=100,化简得:-2x 2+28x-100=0,△=282-4×(-2)×(-100)=-16<0,故方程无解,∴不能围成面积为2100m 的矩形猪舍.【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.23.6k【分析】解一元二次方程2230x x --=,把正实根代入一元二次方程()2230x k x --+=,解方程即可.【详解】解:2230x x --=,(1)(3)0x x +-=,10x +=或30x -=,解得,12-1=3x x =,,把2=3x 代入()2230x k x --+=得, ()93230k --+=,解得,6k =.【点睛】本题考查了一元二次方程的解和解法,解题关键是准确的解一元二次方程,把正实根代入得到关于k 的一元一次方程.24.(1)2x =;(2)12x x ==. 【分析】(1)先利用平方差公式将方程左边进行整理,再解一元一次方程即可;(2)方程两边同时乘以()()22x x +-,整理得到一元二次方程,求解即可.【详解】解:(1)原方程可整理成12390x x --+=,移项、合并同类项可得:510x =,解得2x =; (2)原方程可整理成()()1211222x x x x x -+=--+-, 方程两边同时乘以()()22x x +-,可得:()()212214x x x x -+=+-+, 移项、合并同类项可得:2270x x -=-,∴()()2241427570b ac =-=--⨯⨯-=>,解一元二次方程可得x =经检验,x =∴12x x ==. 【点睛】本题考查解一元二次方程、解分式方程,掌握方程的求解方法是解题的关键.25.(1)m <1;(2)另一个根x 2的值是3.【分析】(1)根据题意可得根的判别式△>0,再代入可得4-4m>0,再解即可;(2) 根据根与系数的关系可得12b x x a+=-, 再代入可得答案. 【详解】解:(1)一元二次方程x 2﹣2x +m =0有两个不相等的实数根x 1、x 2.△=4﹣4m >0,∴m <1,(2)根据根与系数的关系可知:x 1+x 2=2,因为x 1=-1,所以x 2=3.【点睛】本题考查根与系数的关系及根的判别式,解题的关键是掌握根与系数的关系及根的判别式.26.(1)3m <;(2)1211x x ==【分析】(1)根据分的判别式求解即可;(2)根据公式法计算即可;【详解】解:()1根据题意得: ()2()2421240m m ∆=-=-->-,解得3m <;()2当1m =时,原方程为2210x x --=,()22(41)28--∆=⨯-=,∴x =,解得1211x x ==;【点睛】本题主要考查了一元二次方程根的判别式和公式法求解,准确计算是解题的关键.。
上海回民中学九年级数学上册第二十一章《一元二次方程》知识点总结(答案解析)
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM 2.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12 3.277423x -±+⨯⨯= ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+= 4.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-= 5.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x += B .()238x += C .()2310x -= D .()238x -= 6.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 7.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==- 8.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1- 9.一元二次方程2304y y +-=,配方后可化为( )A .21()12y +=B .21()12y -= C .211()22y += D .213()24y -= 10.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1- B .1 C .17- D .1711.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x += 12.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .713.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m > 14.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 15.一元二次方程x 2=4x 的解是( ) A .x=4 B .x=0 C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______. 17.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.18.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.19.一元二次方程2210x x -+=的一次项系数为_________.20.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.21.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,则k =______. 22.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.23.一元二次方程()422x x x +=+的解为__.24.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____. 25.若m 是方程210x x +-=的根,则2222018m m ++的值为__________ 26.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题27.解方程:2250x x +-=.28.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.29.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.30.已知一次函数y kx b =+的图象经过点()0,1和点()1,1-(1)求一次函数的表达式;(2)若点()222,a a +在该一次函数图象上,求a 的值;(3)已知点()()1122,,,A x y B x y 在该一次函数图象上,设()()1212m x x y y =--,判断正比例函数y mx =的图象所在的象限,说明理由.。
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试(有答案解析)
一、选择题1.一元二次方程x 2﹣2x +5=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等实数根 C .只有一个实数根 D .没有实数根 2.若x m =是方程210x x +-=的根,则22020m m ++的值为( )A .2022B .2021C .2019D .2018 3.一个菱形两条对角线的长是方程28120x x -+=的两个根,则该菱形的面积为( ) A .12 B .6或12C .8D .64.已知关于x 的一元二次方程240x x k +-=,当40k -<<时,该方程解的情况是( )A .有两个不相等的实数根B .没实数根C .有两个相等的实数根D .不能确定5.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .66.一元二次方程22410x x ++=的两根为1x 、2x ,则12x x +的值是( ) A .4B .4-C .2-D .27.在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm ,宽40cm .中间镶有宽度相同的三条丝绸花边.若丝绸花边的面积为650cm ,设丝绸花边的宽为xcm ,根据题意,可列方程为( )A .()()60240650x x -⋅-=B .()()60402650x x -⋅-=C .2402650x x x ⋅+⋅=D .()240602650x x x ⋅+⋅-=8.关于x 的方程()()223x x a -+=(a 为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根一个负根D .无实数根9.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m <B .m 1≥C .1mD .1m10.已知a 是方程2210x x --=的一个根,则代数式224a a -+的值应在( ) A .4和5之间B .3和4之间C .2和3之间D .1和2之间11.★在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,a ,b 是关于x 的方程x 2-7x +c +7=0的两根,那么AB 边上的中线长是( ) A .32B .52C .5D .212.一元二次方程2x =﹣3x 的根是( ) A .x =﹣3B .x =0C .1x =0,2x =﹣3D .1x =0,2x =3二、填空题13.将一元二次方程2850x x --=化成2()x a b +=(a 、b 为常数)的形式,则a 、b 的值分别是_______.14.一元二次方程260x x --=的两根分别是1x ,2x ,则1212x x x x +-的值为__________.15.如果菱形的两对角线的长分别是关于x 的一元二次方程2240x mx ++=的两实数根,那么该菱形的面积是____.16.已知方程2560x kx ++=的一个根是2,则它的另一个根是________. 17.一元二次方程2310x x -++=的根的判别式的值是______.18.α是一元二次方程2240x x --=的一个根,2αβ+=,则22ββ-的值是________.19.将一元二次方程2310x x -+=变形为()2x h k +=的形式为________. 20.一元二次方程2320x x -+=的两根为1x ,2x ,则12x x +=________.三、解答题21.关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实数根. (1)求a 的最大整数值;(2)当a 取最大整数值时,求出该方程两根. 22.按要求解下列方程: 用配方法解:(1)x 2﹣4x +1=0.用公式法解:(2)2104x -=. 23.龙岩市某村2017年的人均收入为7500元,落实精准扶贫工作后,2019年人均收入为14700元.求人均收入的年平均增长率. 24.已知一元二次方程(a ﹣3)x 2﹣4x+3=0. (1)若方程的一个根为x =﹣1,求a 的值;(2)若方程有实数根,求满足条件的正整数a 的值.25.关于x 的方程()22210x x m ---=有实数根,且m 为非正整数.求m 的值及此时方程的根.26.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根. (1)试求k 的取值范围;(2)若此方程的两个实数根12x x 、,是否存在实数k ,满足12112x x +=-,若存在,求出k 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据根的判别式判断 . 【详解】解:∵△=4﹣20=﹣16<0, ∴方程没有实数根. 故选:D . 【点睛】本题考查一元二次方程的根的情况,熟练掌握根判别式的计算方法及应用是解题关键.2.B解析:B 【分析】利用一元二次方程根的定义,代入变形计算即可. 【详解】∵x m =是方程210x x +-=的根, ∴210m m +-=, ∴21m m +=, ∴22020m m ++=2021, 故选B . 【点睛】本题考查了一元二次方程根的定义,熟练把方程的根转化为所含字母的一元二次方程是解题的关键.3.D【分析】利用因式分解法求得方程的两根,进而根据菱形面积=12对角线的积求解即可. 【详解】解:28120x x -+=, (x-6)(x-2)=0, ∴x 1=6,x 2=2,∵菱形的两条对角线长分别为6,2, ∴菱形面积为162=62⨯⨯, 故选:D . 【点睛】综合考查了菱形的性质及解一元二次方程;得到菱形的对角线长是解决本题的突破点;用到的知识点为:因式分解法解一元二次方程;菱形面积=12对角线的积. 4.A解析:A 【分析】计算根的判别式,根据k 的范围,判断判别式的属性,根据性质求解即可. 【详解】解:∵一元二次方程240x x k +-=, ∴△= 22444b ac k -=+=16+4k , ∵40k -<<, ∴1640k -<<, ∴16+4k >0, ∴△>0,∴原方程有两个不相等的实数根, 故选A . 【点睛】本题考查了一元二次方程根的判别式,熟记公式,并根据字母范围确定判别式的属性是解题的关键.5.D解析:D 【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB 与BC 的和为10,构造关于AB 的一元二方程可求解.解:当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为6. ∴12AB·12BC=6,即AB•BC=24. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10, ∴AB+BC=10.则BC=10-AB ,代入AB•BC=24,得AB 2-10AB+24=0,解得AB=4或6, 因为AB >BC ,所以AB=6. 故选:D . 【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.6.C解析:C 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:由一元二次方程根与系数的关系得:12x x +=-ba =4-2=-2.故选:C .【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟记12x x +=-ba ,12c x x a⋅=.7.D解析:D 【分析】找出丝绸花边的总面积与丝绸花边的宽之间的关系式即可列出方程. 【详解】解:由题意知:三条丝绸花边的面积和-两个重叠部分的面积=丝绸花边的总面积, ∴设丝绸花边的宽为 xcm ,根据题意,可列方程为: 2×40x+60x-2x×x=650,即2x ⋅40+x ⋅(60−2x)=650, 故选D . 【点睛】本题考查方程的列法,仔细分析题中含有未知数所表示的量之间的数量关系并把各数量正确地表示出来是解题关键.8.C【分析】先将方程整理为一般形式,计算0∆>,得到方程有两个不相等的实数根,再根据两根之积为负数即可求解. 【详解】解:整理关于x 的方程()()223x x a -+=得2260x x a +--=,∴()22214162540aa ∆=-⨯⨯--=+>,∴方程有两个不相等的实数根,∴212601a x x --=<,∴方程了两个根一正一负. 故选:C 【点睛】本题考查了一元二次方程根的判别式和根与系数的关系,熟知两个知识点是解题关键,注意在讨论一元二次方程根与系数的关系时首先要注意确保方程有实根.9.D解析:D 【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可. 【详解】解:∵关于x 的一元二次方程2x 2x m 0-+=无实数根, ∴△=(-2)2-4m<0, 解得m>1. 故选:D . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.A解析:A 【分析】先依据一元二次方程的定义得到a 式的取值范围. 【详解】解:∵a 是方程2210x x --=的一个根, ∴2210a a --=,即221a a -=,∴原式=22(2)2a a -=+ ∵459,∴23<<,∴425<+<,即224a a -+的值在4和5之间, 故选:A . 【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.11.B解析:B 【分析】由于a 、b 是关于x 的方程x2−7x +c +7=0的两根,由根与系数的关系可知:a +b =7,ab =c +7;由勾股定理可知:222+=a b c ,则()222a b ab c +-=,即49−2(c +7)=2c ,由此求出c ,再根据直角三角形斜边中线定理即可得中线长. 【详解】解:∵a 、b 是关于x 的方程2x −7x +c +7=0的两根, ∴根与系数的关系可知:a +b =7,ab =c +7; 由直角三角形的三边关系可知:222+=a b c , 则()222a b ab c +-=, 即49−2(c +7)=2c , 解得:c =5或−7(舍去),再根据直角三角形斜边中线定理得:中线长为52. 故选:B . 【点睛】本题考查三角形斜边中线长定理及一元二次方程根与系数的关系运用,勾股定理的运用,一元二次方程的解法的运用,解答时运用一元二次方程的根与系数的关系建立方程是关键.12.C解析:C 【分析】移项,利用因式分解求解即可. 【详解】 解:∵2x =﹣3x , 移项,得2x +3x =0,分解因式,得 x (x+3)=0,∴x =0,或x+3=0, 解得1x =0,2x =﹣3,故选:C . 【点睛】本题考查了一元二次方程的解法,根据方程的特点,选择因式分解法求解是解题的关键.二、填空题13.-421【分析】将常数项移到方程的右边两边都加上一次项系数一半的平方配成完全平方式后即可得出答案【详解】解:∵x2-8x-5=0∴x2-8x=5则x2-8x+16=5+16即(x-4)2=21∴a=解析:-4,21 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案. 【详解】 解:∵x 2-8x-5=0, ∴x 2-8x=5,则x 2-8x+16=5+16,即(x-4)2=21, ∴a=-4,b=21, 故答案为:-4,21. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.【分析】根据一元二次方程根与系数关系即可求解【详解】解:一元二次方程的两根分别是则故答案为:7【点睛】本题考查了一元二次方程根与系数关系解题关键是知道:如果一元二次方程的两根分别是则 解析:7【分析】根据一元二次方程根与系数关系即可求解. 【详解】解:一元二次方程260x x --=的两根分别是1x ,2x , 则126x x =-,121x x =+,12121(6)7x x x x +-=--=,故答案为:7. 【点睛】本题考查了一元二次方程根与系数关系,解题关键是知道:如果一元二次方程20ax bx c ++=的两根分别是1x ,2x ,则12bx x a +=-,12c x x a=. 15.12【分析】可根据韦达定理求出一元二次方程的两根之积接着通过菱形面积公式求解即可【详解】解:设的两根为则一元二次方程的两实数根为菱形的两对角线的长菱形的面积===12故答案为:12【点睛】本题主要考解析:12 【分析】可根据韦达定理求出一元二次方程的两根之积,接着通过菱形面积公式求解即可. 【详解】解:设2240x mx ++=的两根为12x x 、, 则1224x x =,一元二次方程的两实数根12x x 、为菱形的两对角线的长,∴菱形的面积=1212x x =1242⨯=12.故答案为:12. 【点睛】本题主要考查一元二次方程的韦达定理,还涉及菱形的面积运算,属于基础题,熟练掌握韦达定理及菱形的面积公式是解决本题的关键.16.【分析】设方程的另一个根为根据根与系数的关系得到然后解一次方程即可【详解】解:设另一个根为∴∴∴另一个根为故答案为:【点睛】本题考查了根与系数的关系:若是一元二次方程ax2+bx+c =0(a≠0)的解析:35【分析】设方程的另一个根为1x ,根据根与系数的关系得到1625x =,然后解一次方程即可. 【详解】解:设另一个根为1x , ∴1625x =, ∴135x =, ∴另一个根为35. 故答案为:35.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程ax 2+bx +c =0(a ≠0)的两根时1212b a cx x x x a-+=,=.17.13【分析】根据△=b2-4ac 计算可得答案【详解】解:∵a=-1b=3c=1∴△=32-4×(-1)×1=13故答案为:13【点睛】本题主要考查根的判别式熟记判别式(△=b2-4ac )是解题关键解析:13 【分析】根据△=b 2-4ac 计算可得答案. 【详解】解:∵a=-1,b=3,c=1, ∴△=32-4×(-1)×1=13, 故答案为:13. 【点睛】本题主要考查根的判别式,熟记判别式(△=b 2-4ac )是解题关键.18.4【分析】利用根与系数的关系确定为原一元二次方程的另一个根即可求出的大小【详解】设原一元二次方程的另一个根为根据根与系数的关系可知根据题意∴为原一元二次方程的另一个根∴即故答案为:4【点睛】本题考查解析:4 【分析】利用根与系数的关系确定β为原一元二次方程的另一个根,即可求出22ββ-的大小.【详解】设原一元二次方程的另一个根为2x , 根据根与系数的关系可知22==21x α-+-, 根据题意=2αβ+, ∴β为原一元二次方程的另一个根,∴ 224=0ββ--,即22=4ββ-. 故答案为:4. 【点睛】本题考查一元二次方程根与系数的关系.掌握一元二次方程根与系数关系的公式并确定β为原一元二次方程的另一个根是解答本题的关键.19.【分析】将方程常数项移到方程右边左右两边都加上左边化为完全平方式右边合并即可得到所求的结果【详解】解:移项得配方得即故答案为:【点睛】本题考查了配方法解一元二次方程利用此方法解方程时首先将二次项系数解析:23524x ⎛⎫-= ⎪⎝⎭ 【分析】 将方程常数项移到方程右边,左右两边都加上232⎛⎫ ⎪⎝⎭,左边化为完全平方式,右边合并即可得到所求的结果.【详解】解:2310x x -+=移项得 231x x -=-, 配方得222333122x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭即 23524x ⎛⎫-= ⎪⎝⎭ 故答案为:23524x ⎛⎫-= ⎪⎝⎭ 【点睛】本题考查了配方法解一元二次方程,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解. 20.3【分析】根据一元二次方程的根与系数关系两根之和等于代入求值即可【详解】解:∵一元二次方程的两根为∴故答案为:3【点睛】本题考查了一元二次方程根与系数关系知道一元二次方程的两根之和等于两根之积等于是 解析:3【分析】 根据一元二次方程的根与系数关系,两根之和等于b a-,代入求值即可. 【详解】解:∵一元二次方程2320x x -+=的两根为1x ,2x , ∴12331b x x a -+=-=-=, 故答案为:3.【点睛】 本题考查了一元二次方程根与系数关系,知道一元二次方程的两根之和等于b a -,两根之积等于c a是解题关键. 三、解答题21.(1)7;(2)1244x x ==【分析】(1)由关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实数根,则a ﹣6≠0,且△≥0,即△=(﹣8)2﹣4(a ﹣6)×9=280﹣36a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值;(2)将a 的最大整数值代入(a ﹣6)x 2﹣8x +9=0,即可求出该方程两根.【详解】解:(1)∵关于x 的一元二次方程(a ﹣6)x 2﹣8x+9=0有实数根,∴a ﹣6≠0,且△≥0,即△=(﹣8)2﹣4(a ﹣6)×9=280﹣36a≥0, 解得:779a ≤; ∴a 的取值范围为779a ≤且a≠6, 所以a 的最大整数值为7; (2)将a =7代入(a ﹣6)x 2﹣8x +9=0,得x 2﹣8x +9=0,∵△=64﹣36=28,∴x.∴1244x x ==【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和解法.22.(1) x 1=x 2=2;(2) x 1=2,x 2=2. 【分析】(1)利用配方法解一元二次方程,即可求出答案;(2)利用公式法解一元二次方程,即可求出答案.【详解】解:(1)2410x x -+=,∵x 2﹣4x =﹣1,∴x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,则x ﹣2=∴x1=x 2=2(2)2104x --=,∵a =1,b,c =﹣14, ∴△2﹣4×1×(﹣14)=3>0,则x即x 1,x 2. 【点睛】本题考查了解一元二次方程,解题的关键是掌握配方法和公式法解一元二次方程. 23.40%【分析】设人均收入的年平均增长率为x ,结合题意,通过列一元二次方程并求解,即可得到答案.【详解】解:设人均收入的年平均增长率为x根据题意得:()275001+14700x =解得:0.4x =或 2.4x =-(舍去)∴人均收入的年平均增长率为40% .【点睛】本题考查了一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.(1)a=-4.(2)a=1或2或4.【分析】(1)把x=-1代入方程求出a 即可.(2)利用判别式根据不等式即可解决问题.【详解】解:(1)∵方程的一个根为x=-1,∴a-3+4+3=0,∴a=-4.(2)∵方程有实数根,∴△≥0且a≠3,∴16-12(a-3)≥0, 解得a≤133,a≠3, ∵a 是正整数,∴a=1或2或4.【点睛】本题属于根的判别式,一元二次方程的解等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.0m =,121x x ==.【分析】根据一元二次方程有实数根可以判断△≥0,又根据m 为非正整数,可以判断0m =,进而求解即可;【详解】解:∵方程有实数根,∴()()224210m =-+-≥△. 解得:0m ≥.又∵ m 为非正整数,∴ 0m =.当0m =时,方程为2210x x -+=.此时方程的解为121x x ==.【点睛】本题考查了一元二次方程有实数根的情况,正确掌握解一元二次方程的方法是解题的关键;26.(1)1k ≤-;(2)存在,1k =-.【分析】(1)由根的判别式0∆≥,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)由根与系数的关系,得到122x x k +=,2121x x k k =++,然后解关于k 的一元二次方程,即可求出答案.【详解】解:(1)∵此方程有两个实数根,∴0∆≥即222411k k k ∆=--⨯⨯++()()440k =--≥,∴1k ≤-;(2)存在.根据题意,∵一元二次方程22210x kx k k -+++=,∴122x x k +=,2121x x k k =++, ∴122121211221x x k x x x x k k ++===-++, ∴121k k ==-符合题意,即1k =-;【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据根的判别式△>0,列出关于k的一元一次不等式;(2)根据根与系数的关系求出k 值.。
上海复旦实验中学必修第一册第二单元《一元一次函数,方程和不等式》检测题(答案解析)
一、选择题1.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .62.在弹性限度内,弹簧拉伸的距离与所挂物体的质量成正比,即md k=,其中d 是距离(单位cm ),m 是质量(单位g ),k 是弹簧系数(单位g/cm ).弹簧系数分别为1k ,2k 的两个弹簧串联时,得到的弹簧系数k 满足12111k k k =+,并联时得到的弹簧系数k 满足12k k k =+.已知物体质量为20g ,当两个弹簧串联时拉伸距离为1cm ,则并联时弹簧拉伸的最大距离为( ) A .1cm 4B .1cm 2C .1cmD .2cm3.当104x <<时,不等式11014m x x+-≥-恒成立,则实数m 的最大值为( ) A .7B .8C .9D .104.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为( )A .1B .38C .37 D .135.已知正实数x ,y ,a 满足2x y axy +=,若2x y +的最小值为3,则实数a 的值为( ) A .1B .3C .6D .96.若正数a ,b 满足21a b +=,则下列说法正确的是( ) A .ab 有最大值12B .224a b +有最小值12C .ab 有最小值18 D .224a b +有最大值147.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( ) A .0B .3C .94D .18.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .29.已知a≥0,b≥0,且a+b=2,则 ( )A .ab≤B .ab≥C .a 2+b 2≥2D .a 2+b 2≤310.已知不等式20ax bx c ++>的解集是{}|x x αβ<<,0α>,则不等式20cx bx a ++>的解集是( )A .11,βα⎛⎫⎪⎝⎭B .11,,βα⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭ C .(),αβ D .(](),,αβ-∞+∞11.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦12.已知0x >,0y >,23x y +=,则23x yxy+的最小值为( )A .322-B .221C 21D 21参考答案二、填空题13.已知正数,x y 满足10xy y -+=,则4y x+的最小值为___________. 14.已知a ,b 为正实数,且39ab a b ++=,则3a b +的最小值为_________. 15.设函数4()f x x x=-对任意[2,)x ∈+∞,()()0f ax af x +<恒成立,则实数a 的取值范围是____________.16.若0a >,0b >,且4a b +=,则下列不等式中恒成立的是_______.①112ab >;②228a b +≥;2ab ≥;④111a b+≥. 17.已知32310x x k --+⋅->对任意实数x 恒成立,则实数k 的取值范围是________.18.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.19.已知函数121()22x x f x +-+=+,如果对任意t ∈R ,f (3t 2+2t )+f (k 2﹣2t 2)<0恒成立,则满足条件的k 的取值范围是_____. 20.已知正实数x ,y 满足x +y =1,则1412x y +++的最小值为________ .三、解答题21.对于四个正数x y z w ,,,,如果xw yz <,那么称()x y ,是()z w ,的“下位序对”. (1)对于23711,,,,试求()27,的“下位序对”; (2)设a b c d ,,,均为正数,且()a b ,是()c d ,的“下位序对”,试判断c a a cd b b d++,,之间的大小关系.22.已知函数()()223f x x bx b R =-+∈.(1)若()f x 在区间[22]-,上单调递减,求实数b 的取值范围; (2)若()f x 在区间[22]-,上的最大值为9,求实数b 的值.23.已知函数()()255f x x x a a =---.(1)当1a =时,求当()0,x ∈+∞时,函数()()f xg x x=的值域; (2)解关于x 的不等式()0f x ≤.24.已知函数()22f x x ax =-.(1)若函数()f x 在区间(),1-∞上单调递减,求实数a 的取值范围; (2)若函数()()[]()12,5g x f x x =+∈-的最大值为13,求实数a 的最小值.25.已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅱ)证明:a b c b c a a b c a b c >.26.设2()(1)1f x m x mx m =+-+-.(1)当1m =时,解关于x 的不等式()0f x >;(2)若关于x 的不等式()0f x m ->的解集为()1,2,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b > ()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】先利用串联列关系()121220k k k k +=,结合基本不等式求得12k k +最小值,再利用并联关系得到12k k k '=+最小时求得弹簧拉伸的最大距离即可. 【详解】依题意设两个弹簧的弹簧系数分别为1k ,2k ,串联时弹簧系数为k ,并联时弹簧系数为k '.两个弹簧串联时,由m d k =知,20201m k d ===,则12111k k k =+即12121211120k kk k k k +=+=, 即()()2121212204k k k k k k ++=≤,故1280k k +≥,当且仅当1240k k ==时等号成立,两个弹簧并联时,12k k k '=+,拉伸距离12m md k k k '==+',要是d '最大,则需12k k k '=+最小,而1240k k ==时()12min 80k k +=,故此时d '最大,为284001m d k '==='cm. 故选:A. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)妙用“1”拼凑基本不等式求最值.3.C解析:C 【分析】 分离参数化为41414m x x≤+-恒成立,再利用基本不等式求出不等式右边的最小值即可得解. 【详解】不等式11014m x x+-≥-恒成立化为41414m x x ≤+-恒成立, 因为104x <<,所以140x ->,所以()4141414414414x x x x x x ⎛⎫+=+-+ ⎪--⎝⎭44(14)5144x x x x -=++-5≥+549=+=,当且仅当44(14)144x x x x -=-,即16x =时,等号成立.所以9m ≤,所以m 的最大值为9. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.D解析:D 【分析】已知等式变形为411x y+=,然后用“1”的代换求出x y +的最小值即可得. 【详解】∵x ,y 均为正数,40x y xy +-=,∴411x y+=,∴414()559y x x y x y x y x y ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当4y x x y =,即6,3x y ==时等号成立,∴33193x y ≤=+,所求最大值为13. 故选:D . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】利用“乘1法”与基本不等式的性质即可得出. 【详解】因为正实数x ,y ,a 满足2x y axy +=, 所以21a y x+=,所以121122192(2)()(5)(5,x y x y x y a y x a y x a a+=⨯++=++≥+= 当且仅当22x y y x =且21a y x+=时取等号, 由题意可得93a=, 解得3a =, 故选:B 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.6.B解析:B 【分析】利用基本不等式分析22,4ab a b +的最值,注意取等条件的分析,由此得到结果. 【详解】因为21a b +=,所以12a b =+≥18ab ≤,取等号时11,24a b ==, 所以ab 有最大值18,所以A ,C 错误; 又因为()22211241414824a b ab b a ab =+-=-≥-⨯=+,取等号时11,24a b ==, 所以224a b +有最小值12,所以B 正确,D 错误, 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.7.D解析:D 【分析】利用22340x xy y z -+-=可得143xy x y z y x =+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴2211434432?xy xy x y zx xy y x y y x===-++-,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.8.D解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解. 【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤; 当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题9.C解析:C 【解析】 选C.由≥得ab≤=1,当且仅当a=b=1时,等号成立.又a 2+b 2≥2ab ⇒2(a 2+b 2)≥(a+b)2⇒a 2+b 2≥2,当且仅当a=b=1时,等号成立.10.A解析:A 【分析】根据不等式20ax bx c ++>的解集,判断出,,a b c 的符号,利用韦达定理表示出αβ+和αβ⋅与,,a b c 的关系. 设不等式20cx bx a ++>的解集为(),m n ,利用韦达定理建立,αβ与,m n 的关系,进而用,αβ表示出,m n ,即可得不等式20cx bx a ++>的解集. 【详解】不等式20ax bx c ++>的解集是{}|x x αβ<< 所以20ax bx c ++=的两个根分别为12,x x αβ== 因为0α>,所以0β>,所以0a < 由韦达定理可知120b x x a αβ+=+=->,120cx x aαβ⋅=⋅=> 由0a <,可知0,0b c ><因为0c <,所以可设20cx bx a ++>的解集为(),m n .由于m n <,所以11n m< 则,b a m n m n c c+=-⋅= 因为b c αβαβ+=-⋅,caαβ⋅= 所以111m n m n m n αβαβαβαβ+⎧+==+⎪⋅⎪⎪⋅=⎨⋅⎪⎪<⎪⎩解方程组可得11m n βα⎧=⎪⎪⎨⎪=⎪⎩所以不等式20cx bx a ++>的解集为11,βα⎛⎫⎪⎝⎭故选:A 【点睛】本题考查了不等式与方程的关系,韦达定理在解方程中的应用,属于中档题.11.A解析:A 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解即2a x x>-在[]15x ∈,上成立,设函数数()2f x x x=-,[]15x ∈,()2210f x x ∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.12.B解析:B 【分析】把要求的式子变形为21x y y x++,再利用基本不等式求得它的最小值. 【详解】已知0x >,0y >,23x y +=,则22223(2)2221211x y x x y y x xy y x y x yxy xy xy y x y x+++++===+++=,当且仅当222x y = 时,即当3x =-,且y ,等号成立,故23x y xy+的最小值为1+故选:B . 【点睛】本题考查基本不等式的运用,考查常数代换法,注意最值取得的条件,考查运算能力,属于中档题.二、填空题13.9【分析】由已知条件得出将代数式与相乘展开后利用基本不等式可求得的最小值【详解】因为正数满足所以即所以当且仅当即时等号成立故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条 解析:9【分析】 由已知条件得出11x y +=,将代数式1x y +与4y x+相乘,展开后利用基本不等式可求得4y x+的最小值. 【详解】因为正数,x y 满足10xy y -+=, 所以1xy y +=,即11x y+=,所以4144()()559y x y xy x y x xy +=++=++≥+=, 当且仅当2xy =,即3y =,23x =时,等号成立. 故答案为:9【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.6【分析】利用基本不等式得出的不等式解之可得的最小值【详解】∵∴∴当且仅当即时等号成立故答案为:6【点睛】方法点睛:本题考查用基本不等式求最小值解题方法是用基本不等式得出关于的不等式然后通过解不等式 解析:6【分析】利用基本不等式得出3a b +的不等式,解之可得3a b +的最小值.【详解】∵0,0a b >>,∴211933(3)(3)(3)312ab a b a b a b a b a b =++=⋅++≤+++. (318)(36)0a b a b +++-≥,∴36a b +≥,当且仅当3a b =,即3,1a b ==时等号成立,故答案为:6.【点睛】方法点睛:本题考查用基本不等式求最小值,解题方法是用基本不等式得出关于3a b +的不等式,然后通过解不等式得出结论.不是直接由基本不等式得最小值,解题时也要注意基本不等式成立的条件.即最小值能否取到.15.【分析】由题意可得在恒成立运用参数分离和讨论结合恒成立思想和不等式的解法即可得到所求范围【详解】函数对任意恒成立即有即有在恒成立当时由于不满足题意;当时由于可得解得或即有成立则的取值范围是故答案为: 解析:(,1)-∞-【分析】 由题意可得212ax a a<+在[2,)+∞恒成立,运用参数分离和讨论0a >,0a <,结合恒成立思想和不等式的解法,即可得到所求范围.【详解】 函数4()f x x x =-,对任意[2x ∈,)+∞,()()0f ax af x +<恒成立, 即有440a ax ax ax x-+-<, 即有212ax a a ⎛⎫<+ ⎪⎝⎭在[2,)+∞恒成立, 当0a >时,22121x a ⎛⎫<+ ⎪⎝⎭,由于2[4x ∈,)+∞,不满足题意; 当0a <时,22121x a ⎛⎫>+ ⎪⎝⎭,由于2[4x ∈,)+∞,可得21214a ⎛⎫+< ⎪⎝⎭, 解得1a >或1a <-,即有1a <-成立.则a 的取值范围是(,1)-∞-.故答案为:(,1)-∞-.【点睛】本题考查不等式恒成立问题的解法,注意运用参数分离和单调性,考查分类讨论思想方法,以及运算能力,属于中档题.16.②④【分析】利用基本不等式和题设得到答案即可【详解】解:且即当且仅当时取等号故选项①错误;当且仅当时取等号选项②正确;即选项③错误;当且仅当时取等号选项④正确故答案为:②④【点睛】利用基本不等式求最解析:②④【分析】利用基本不等式和题设得到答案即可.【详解】解:0a >,0b >,且4a b +=,42a b ab ∴+=,即4ab ,当且仅当2a b ==时取等号,∴114ab ,故选项①错误;222()82a b a b ++=,当且仅当2a b ==时取等号,∴选项②正确;42a b ab +=,即2,∴选项③错误;1111111()()(2)(221444b a a b a b a b a b +=++=+++=,当且仅当2a b ==时取等号,∴选项④正确,故答案为:②④.【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.【分析】由题意可得利用基本不等式可求得的最小值由此可求得实数的取值范围【详解】由于不等式对任意实数恒成立则由基本不等式可得当且仅当时即当时等号成立所以因此实数的取值范围是故答案为:【点睛】本题考查利解析:(),1-∞【分析】由题意可得3231x x k -<+⋅-,利用基本不等式可求得3231x x -+⋅-的最小值,由此可求得实数k 的取值范围.【详解】由于不等式32310x x k --+⋅->对任意实数x 恒成立,则3231x x k -<+⋅-,由基本不等式可得323111x x -+⋅-≥=,当且仅当323x x -=⋅时,即当31log 22x =时,等号成立,所以,1k <,因此,实数k 的取值范围是(),1-∞.故答案为:(),1-∞.【点睛】本题考查利用基本不等式求解不等式恒成立问题,考查参变量分离法的应用,考查计算能力,属于中等题. 18.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号. 则32233838y x x y xy ++==,故答案为:8.【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.19.k<-1或k>1【分析】利用定义先求出函数为单调减函数与奇函数然后化简得到然后利用不等式得恒成立条件求出答案【详解】对于函数定义域为且所以为奇函数且对求导可得则在时为减函数可得利用为奇函数化简得利用 解析:k <-1或k >1.【分析】利用定义,先求出函数()f x 为单调减函数与奇函数,然后化简()()2223220f t t f k t ++-<得到222t t k --<,然后利用不等式得恒成立条件求出答案【详解】对于函数()f x ,定义域为R ,且()12122x x f x ---+-=+1122222xx x x+-+=+()12122x x f x +-==-+,所以,()f x 为奇函数,且对()f x 求导可得()'0f x <,则()f x 在x ∈R 时为减函数, ()()2223220f t t f k t ++-<,可得()()222322f t t f k t +<--,利用()f x 为奇函数 化简得()()222322f t t f t k +-<,利用()f x 在x ∈R 时为减函数,得222322t t t k +->,化简得222t t k --<恒成立,令()22g t t t =--,则有()2max g t k <,而()()max 11g t g =-=,所以21k <,得到1k >或1k <-答案:1k >或1k <-【点睛】本题考查函数的单调性、奇偶性以及不等式的恒成立问题,属于中档题20.【分析】由可得且则利用基本不等式可求出的最小值【详解】由可得且则(当且仅当即时取=)故的最小值为故答案为:【点睛】利本题考查基本不等式求最值注意用基本不等式求最值必须具备三个条件:①各项都是正数;②解析:94【分析】由1x y +=,可得(1)(2)4x y +++=且10,20x y +>+>,则()()()112411411412412214142y x x y x y x y x y ⎛⎫⎛⎫+=+=+++⎡⎤ ⎪+ +⎪⎣⎦++++++⎝+⎭⎝+⎭+,利用基本不等式可求出1412x y +++的最小值. 【详解】由1x y +=,可得()()124x y +++=且10,20x y +>+>, 则()()114114124122x y x y y x ⎛⎫+=+⎡⎤ ⎪⎣⎦++++⎝+⎭++ ()11914541244412x y y x =+⎛⎛⎫ +++≥+= ⎪ ++⎝⎭⎝+,(当且仅当()24121x y x y =++++即12,33x y ==时取“=”). 故1412x y +++的最小值为94. 故答案为:94. 【点睛】 利本题考查基本不等式求最值,注意用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件,属于中档题.三、解答题21.无22.无23.无24.无25.无26.无。
九年级上学期数学《一元二次方程》单元测试题含答案
x (7-x)=6,
解得x=3或4,故该直角三角形两个直角边分别为3和4,
利用勾股定理可得斜边长为: ,
故斜边为5.
[点睛]本题利用三角形面积公式和勾股定理考察了一元二次方程的应用.
9.三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0一个实数根,则该三角形的面积是()
∴k+2≠0且△=(-3)2-4(k+2)•1≥0,
解得:k≤ 且k≠-2,
故选C.
[点睛]本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.
8.直角三角形两条直角边的和为7,面积为6,则斜边为().
A. B. 5C. D. 7
[答案]B
[解析]
[分析]
设一条直角边为x,则另一条直角边为7-x,利用三角形面积公式可得: x (7-x)=6.
故选D.
[点睛]本题考查了一元二次方程 解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
3.已知x=A是方程x2﹣3x﹣5=0的根,则代数式4﹣2A2+6A的值为()
A.6B.9C.14D.﹣6
[答案]D
[解析]
[分析]
利用一元二次方程解的定义得到A2-3A=5,再把4-2A2+6A变形为4-2(A2-3A),然后利用整体代入的方法计算即可.
A. k< 且k≠﹣2B. k≤ C. k≤ 且k≠﹣2D. k≥
8.直角三角形两条直角边的和为7,面积为6,则斜边为().
A B.5C. D.7
9.三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0一个实数根,则该三角形的面积是()
最新人教版初中数学九年级数学上册第一单元《一元二次方程》测试卷(有答案解析)
一、选择题1.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5% 2.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x +=D .()()5011266x x ++=3.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4 C .-1或4D .1或-4 4.方程22x x =的解是( ) A .0x =B .2x =C .10x =,22x =D .10x =,22x = 5.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 6.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 7.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=8.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0 9.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >- 10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1 11.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 12.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定二、填空题13.一元二次方程 x ( x +3)=0的根是__________________.14.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.15.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______. 16.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.17.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____.18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.19.若t 是一元二次方程()200++=≠ax bx c a 的根,则判别式24b ac =-△与完全平方式()22M at b =+的大小关系为___________20.函数()2835m y m x -=+-是一次函数,则m =______.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.22.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?23.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,我市一家“大学生自主创业”的快递公司,今年7月份与9月份完成投递的快递总件数分别是10万件和12.1万件,现假设该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果每人每月最多可投递0.6万件,那么该公司现有的22名快递业务员能否完成今年10月份的快递投递任务?请说明理由.24.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩ 25.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值. 26.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 2.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额.3.D解析:D【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值.【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0,得:()()222-23-2-20a a ⨯+⋅=,化简得:2+340a a -=,解得:a=1或a=-4.故选:D .【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式.4.C解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键. 5.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.6.D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根;B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 7.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 8.A解析:A【分析】本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x )(50+2x )=5400,即4000+260x+4x 2=5400,化简为:4x 2+260x-1400=0,即x 2+65x-350=0.故选:A .【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.9.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案.【详解】∵关于x的方程()32a x4x10---=有两个不相等的实数根∴a-3≠0,且2=(4)4(3)(1)440a a∆--⨯-⨯-=+>解得:1a≥-且a≠3故选B.【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a的不等式,是解题的关键.10.C解析:C【分析】先把已知条件变形得到a2+(m+n) a+mn﹣2=0,b2+( m+n) b+mn﹣2=0,则可把a、b看作方程x2+( m+n) x+mn﹣2=0的两实数根,利用根与系数的关系得到ab=mn﹣2,从而得到ab﹣mn的值.【详解】解:∵(a+m)( a+n)=2,(b+m)( b+n)=2,∴a2+( m+n)a+mn﹣2=0,b2+( m+n)b+mn﹣2=0,而a、b、m、n为互不相等的实数,∴可以把a、b看作方程x2+(m+n)x+mn﹣2=0的两个实数根,∴ab=mn﹣2,∴ab﹣mn=﹣2.故选:C.【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a、b看作方程x2+(m+n)x+mn﹣2=0的两实数根”是解题关键.11.B解析:B【分析】根据方程的系数结合根的判别式,可得出△21432k⎛⎫=-+⎪⎝⎭>0,由此即可得出:无论k(k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中, ∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=--- 214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B .【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”. 12.C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题13.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程. 15.-1【分析】根据方程有两个相等的实数根可得判别式△=0可得关于k 的一元二次方程解方程求出k 值即可得答案【详解】∵方程有两个相等的实数根∴解得:k1=k2=-1故答案为:-1【点睛】此题主要考查了根的解析:-1【分析】根据方程()210x k x x -++=有两个相等的实数根可得判别式△=0,可得关于k 的一元二次方程,解方程求出k 值即可得答案.【详解】∵方程()221(1)0x k x x x k x k -++=---=有两个相等的实数根, ∴()2140k k =-+=, 解得:k 1=k 2=-1,故答案为:-1.【点睛】此题主要考查了根的判别式,对于一元二次方程ax 2+bx+c=0(a≠0),根的判别式△=b 2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根;熟练掌握相关知识是解题关键.16.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0∴(x﹣5)(x﹣7)=0则x﹣5=0或x﹣7=0解得x1=5x2=7故答解析:x1=5,x2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x﹣5)2﹣2(x﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.17.﹣2【分析】直接根据根与系数的关系求解即【详解】解:∵mn是一元二次方程x2+2x﹣7=0的两个根∴m+n=﹣2故答案为﹣2【点睛】本题考查一元二次方程根与系数的关系是重要考点难度较易掌握相关知识是解析:﹣2.【分析】直接根据根与系数的关系求解,即bm na +=-.【详解】解:∵m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2.故答案为﹣2.【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.18.10【分析】设这个百分率为x然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x由题意得:300(1-x)2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.相等【分析】由t 是一元二次方程()的根利用公式法解一元二次方程即可得出t 的值将其代入完全平方式中即可得出M 的值由此即可得出结论【详解】∵t 是一元二次方程()的根∴或当时则;当时则;∴故答案为:相等【解析:相等【分析】由t 是一元二次方程20ax bx c ++=(0a ≠)的根利用公式法解一元二次方程即可得出t 的值,将其代入完全平方式()22M at b =+中即可得出M 的值,由此即可得出结论.【详解】∵t 是一元二次方程20ax bx c ++=(0a ≠)的根,∴t =t =当t =()224M b b b ac =-=-;当t =时,则()224M b b b ac =-=-; ∴24b ac M =-=.故答案为:相等.【点睛】本题考查了根的判别式、完全平方式以及利用公式法解一元二次方程,利用公式法解一元二次方程求出t 值是解题的关键.20.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m 的值【详解】解:依题意得:m2-8=1且m +3≠0 解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;【分析】根据一次函数的定义得到m 2-8=1且m+3≠0,据此求得m 的值.【详解】解:依题意得:m 2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.会利用x 的指数构造方程,会解方程,会利用k 限定字母的值是解题关键三、解答题21.(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.(1)2或4;(2)2;(3)10-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC S cm =.(2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.23.(1)该快递公司投递总件数的月平均增长率为10%;(2)不能,理由见解析【分析】(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年7月份与9月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年10月份的快递投递任务,再求出22名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年10月份的快递投递任务.【详解】解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意得:210(1)12.1x +=,解得:10.1x =,2 2.1x =-(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年10月份的快递投递任务是12.1(110%)13.31⨯+=(万件).平均每人每月最多可投递0.6万件, 22∴名快递投递员能完成的快递投递任务是:0.62213.213.31⨯=<,∴该公司现有的22名快递投递业务员不能完成今年10月份的快递投递任务.【点睛】此题主要考查了一元二次方程的应用,根据增长率一般公式列出方程即可解决问题. 24.(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.25.m =5.【分析】先根据根与系数的关系求得x 1+x 2=6、x 1x 2=m +1,再对x 12+x 22=24变形,然后将x 1+x 2=6、x 1x 2=m +1代入得到关于m 的方程,最后求解即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-6x +m +1=0的两根,∴x 1+x 2=6,x 1x 2=m +1,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=24,∴62-2(m +1)=24,解得:m=5.【点睛】本题主要考查了一元二次方程根与系数的关系和完全平方公式的应用,正确应用完全平方公式成为解答本题的关键.26.(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y ,根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.。
一元二次方程(知识归纳+题型突破)(原卷版)-2023-2024学年九年级数学上册单元巧练(人教版)
一元二次方程(知识归纳+题型突破)1、理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.2、会用一元二次方程根的判别式判别方程是否有实根及两个实根是否相等.3、了解--元二次方程的根与系数的关系.4、能根据具体问题的实际意义,检验方程解的合理性.1.一元二次方程的相关概念(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.(2)一般形式:ax 2+bx +c =0(a ≠0),其中ax 2、bx 、c 分别叫做二次项、一次项、常数项,a 、b 、c 分别称为二次项系数、一次项系数、常数项.2.一元二次方程的解法(1)直接开平方法:形如(x +m )2=n (n ≥0)的方程,可直接开平方求解.(2)因式分解法:可化为(ax +m )(bx +n )=0的方程,用因式分解法求解.(3)公式法:一元二次方程ax 2+bx +c =0的求根公式为x b 2-4ac ≥0).(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.3.根的判别式(1)当Δ=24b ac ->0时,原方程有两个不相等的实数根.(2)当Δ=24b ac -=0时,原方程有两个相等的实数根.(3)当Δ=24b ac -<0时,原方程没有实数根.4.列一元二次方程解应用题(1)解题步骤:①审题;②设未知数;③列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答.(2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b =a (1±x )n ,a 表示基数,x 表示平均增长率(降低率),n 表示变化的次数,b 表示变化n 次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.注意:运用一元二次方程解决实际问题时,方程一般有两个实数根,则必须要根据题意检验根是否有意义.题型一一元二次方程的解【例1】(2023春·浙江温州·八年级校考期中)已知关于x 的一元二次方程210ax bx ++=有一个根是x m =,则方程20x bx a ++=有一个根是()A .x m =B .x m=-C .1x m=D .1x m=-巩固训练:1.(2023·全国·九年级专题练习)若关于x 的一元二次方程()223790m x x m -++-=的一个根为0,则m 的值为()A .3B .0C .3-D .3-或32.(2023春·山东东营·八年级东营市实验中学校考期中)若m 是一元二次方程220x x --=的一个根,则代数式222m m -的值为()A .0B .2C .2-D .43.(2023春·山东济宁·八年级济宁学院附属中学校考期中)已知m 是一元二次方程2520x x --=的一个根,则代数式220235m m -+的值是()A .2020B .2021C .2022D .20234.(2023·全国·九年级专题练习)已知关于x 的一元二次方程20ax bx c ++=,若0a b c ++=,则此方程必有一个根为()A .0B .1C .-1D .±15.(2023春·浙江宁波·八年级校考阶段练习)若关于x 的一元二次方程()2200ax bx a ++=≠有一根为2023x =,则一元二次方程()212a x bx b -+-=-必有一根为()A .2021B .2022C .2023D .20246.(2023春·山东泰安·八年级统考期中)若2250x x --=的一个解为a ,则()()231a a a a -+-的值为()A .5B .4CD .5-7.(2022秋·上海静安·八年级上海市民办扬波中学校考期中)若1x =-是方程230x mx --=的一个根,则m 的值为.8.(2023·全国·九年级专题练习)(2023·山东枣庄·统考中考真题)若3x =是关于x 的方程26ax bx -=的解,则202362a b -+的值为.9.(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)关于x 的一元二次方程22(1)2230k x x k k -+--+=的一个根为0,则k =.10.(2023·四川·九年级专题练习)先化简,再求值2211121x x x x x ⎛⎫+-÷ ⎪+++⎝⎭,其中x 的值是方程2230x x --=的根.题型二一元二次方程的解法【例2】(2023秋·河南许昌·九年级许昌市第一中学校联考期末)下面是小明同学解一元二次方程2223x x -=的过程,请认真阅读并完成相应的任务.2223x x -=.解:二次项系数化为1,得2312x x -=,第一步移项,得2312x x -=,第二步配方,得239124x x -+=,第三步变形,得2312x ⎛⎫-= ⎪⎝⎭,第四步开方,得312x -=±,第五步解得112x =,252x =,第六步(1)上面小明同学的解法中运用“配方法”将一元二次方程“降次”为两个一元一次方程,体现的数学思想是______,其中“配方法”依据的一个数学公式是______;(2)上述解题过程,从第______步开始出现错误,请写出正确的解答过程.【例3】(2023春·北京门头沟·八年级统考期末)阅读材料,并回答问题:小明在学习一元二次方程时,解方程2230x x --=的过程如下:解:∵2a =,1b =-,3c =-①∴()()2241423b ac =-=--⨯⨯-∆②124230=-=-<③∴此方程无解问题:(1)上述过程中,从步开始出现了错误(填序号);(2)发生错误的原因是:;(3)在下面的空白处,写出正确的解答过程.【例4】(2023·全国·九年级专题练习)按要求解方程(1)21(2603y -=(直接开平方法);(2)231220x x --=(配方法);260x --=(公式法)(4)21(2)12x x -=-(因式分解法)(5)2(35)5(35)60x x ---+=(换元法)【例5】(2023春·陕西咸阳·八年级统考期末)先阅读下面的内容,再解答问题.【阅读】例题:求多项式2224m mn n +++的最小值.解:()()2222224244m mn n m mn n m n +++=+++=++,∵()20m n +≥,∴()244m n ++≥∴多项式2224m mn n +++的最小值是4(1)请写出例题解答过程中把一个三项二次式转化为一个二项式的平方运用的公式是______;(2)求多项式2224230x xy y -+-+的最大值.巩固训练1.(北京市石景山区2022-2023学年八年级下学期期末数学试题)解方程243x x -=,下列用配方法进行变形正确的是()A .2(2)19x -=B .2(4)7x -=C .2(2)4x -=D .2(2)7x -=2.(2022秋·上海奉贤·八年级校考期中)用配方法解一元二次方程282x x -=-时,在方程两边应同时加上()A .4B .8C .16D .643.(2023·全国·九年级专题练习)用配方法解方程2410x x +-=,配方后得到的方程()A .2(2)5x +=B .2(2)5x -=C .2(4)3x +=D .2(4)3x -=4.(2023春·浙江杭州·八年级统考期末)用配方法解一元二次方程2290x x --=配方后可变形为()A .()2110x -=B .()2110x +=C .()218x -=-D .()218x +=-5.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为()A .10-B .10C .3-D .96.(2022秋·山西太原·九年级校考阶段练习)在解方程22410x x ++=时,对方程进行配方,图1是小思做的,图2是小博做的,对于两人的做法,说法正确的是()A .两人都正确B .小思正确,小博不正确C .小思不正确,小博正确D .两人都不正确7.(2023秋·山西长治·九年级统考期末)用配方法解一元二次方程289x x -=时,变形正确的是()A .2(4)9x -=B .2(4)9x +=C .2(4)25x -=D .2(4)25x +=8.(2022秋·天津滨海新·九年级校考期中)若()()160x y x y ++--=,则x y +的值是()A .2B .3C .2-或3D .2或3-9.(2023秋·湖南湘西·九年级统考期末)一元二次方程2830x x +-=配方后可化为.10.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x ----=,则代数式22020x x -+的值为.11.(2022秋·上海青浦·八年级校考期中)用配方法解一元二次方程:22510x x +-=12.(2023春·安徽合肥·八年级统考期末)用配方法解方程:()()311x x -+=.13.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)解方程:23270x x --=14.(2022秋·天津津南·九年级校考期中)选取最恰当的方法解方程:(1)()2214x +=(2)23648x x -=15.(2023春·黑龙江哈尔滨·八年级哈尔滨市萧红中学校考阶段练习)用指定的方法解下列方程(1)26160x x +-=(配方法)(2)21090x x ++=(公式法)16.(2023春·辽宁大连·八年级统考期末)解方程:(1)22310x x -+=(用公式法)(2)2470x x --=(用配方法)17.(2022秋·湖北荆州·九年级校考期中)请用指定方法解下列方程:(1)公式法:2120x x +-=;(2)因式分解法:241440x -=.18.(2023春·山东威海·八年级统考期末)按指定方法解方程:(1)()()223143x x -=+;(因式分解法)(2)22330x x --=.(配方法)题型三一元二次方程根的判别式【例6】(2023春·山东济宁·八年级济宁学院附属中学校考期中)已知关于x 的方程()()221200mx m x m +-+=≠.(1)求证:无论m 取何值,这个方程总有实数根;(2)若等腰ABC 的底边长1a =,另两边b 、c 恰好是这个方程的两个根,求ABC 的周长.巩固训练1.(2023·吉林·统考中考真题)一元二次方程2520x x -+=根的判别式的值是()A .33B .23C .17D2.(2023春·北京昌平·八年级统考期末)下列方程中有两个不相等的实数根的方程是()A .2440x x -+=B .2510x x --=C .2230x x -+=D .2220x x -+=3.(2022秋·天津滨海新·九年级校考期中)关于x 的方程()220x m x m +++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定4.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)下列二次三项式在实数范围内一定能因式分解的是()A .223x x ++B .222x x m --C .22x x m--D .22345x xy y -+5.(2022秋·山西临汾·九年级统考期末)关于x 的方程2320ax x +-=有实数根,则a 的取值范围是()A .98≥-a B .98≥-a 且0a ≠C .98a >-D .98a >-且0a ≠6.(2022秋·河南南阳·九年级南阳市第三中学校考阶段练习)方程()21210m x x ---=有两个实数根,则m 的取值范围()A .34m -≤≤且12m ≠B .4m ≤且12m ≠C .34m -≤<D .34m -≤<且12m ≠7.(2023春·浙江绍兴·八年级统考期末)已知()1a a >是关于x 的方程20x bx b a -+-=的实数根.下列说法:①此方程有两个不相等的实数根;②当1a t =+时,一定有1b t =-;③b 是此方程的根;④此方程有两个相等的实数根.上述说法中,正确的有()A .①②B .②③C .①③D .③④8.(2023秋·河南许昌·九年级许昌市第一中学校联考期末)对于实数a ,b ,定义新运算:2a b ab b =-※,若关于x 的方程1x k =※有两个相等的实数根,则k 的值是()A .4B .4-C .14D .14-9.(湖北省荆州市2022-2023学年九年级上学期期中数学试题)对于实数u 、v 定义一种运算“*”为:*u v uv v =+.若关于x 的方程1*(*)4x a x =-有两个相等的实数根,求满足条件的实数a 的值为.10.(2023·贵州·统考中考真题)若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是.11.(北京市石景山区2022-2023学年八年级下学期期末数学试题)已知关于x 的一元二次方程22210x kx k +-=-.(1)请判断这个方程根的情况;(2)若该方程有一个根小于1,求k 的取值范围.12.(2022秋·上海奉贤·八年级校考期中)已知关于x 的方程()()212110k x k x k +--+-=(1)当k 取什么值时,方程只有一个根?(2)若方程有两个不相等的实数根,求k 的取值范围.题型四一元二次方程的实际应用【例7】(北京市石景山区2022-2023学年八年级下学期期末数学试题)某工厂由于采用新技术,生产量逐月增加,原来月产量为2000件,两个月后增至月产量为3000件.若设月平均增长率为x ,则下列所列的方程正确的是()A .2000(1)3000x +=B .22000(1)3000x +=C .22000(1%)3000x +=D .20002000(1)3000x ++=【例8】(2022秋·山西吕梁·九年级校考阶段练习)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支.已知1个主干长出的枝干和小分支的总数是72,则这种植物每个枝干长出小分支的个数是()A .9B .8C .7D .6【例9】(2023春·八年级单元测试)如图,在Rt ABC 中,90B Ð=°,8AB =cm ,6BC =cm ,动点P 由点A 出发沿AB 方向向点B 匀速移动,速度为1cm/s ,动点Q 由点B 出发沿BC 方向向点C 匀速移动,速度为2cm/s .动点P ,Q 同时从A ,B 两点出发,当PBQ 的面积为152cm 时,动点P ,Q 的运动时间为s .【例10】(2022秋·上海青浦·八年级校考期中)为助力攻坚脱贫,某村村委会在网上直播销售该村优质农产品礼包,已知其3月份的销售量达到400包,若农产品礼包每包的进价25元,原售价为每包40元,该村在今年4月进行降价促销,经调查发现,若农产品礼包每包降价1元,销售量可增加5袋,当农产品礼包每包降价多少元时,这种农产品在4月份可获利4620元?巩固训练1.(2023·全国·九年级专题练习)广东春季是流感的高发时期,某校4月初有一人患了流感,经过两轮传染后,共25人患流感,假设每轮传染中平均每人传染x 人,则可列方程()A .2125x x ++=B .225x x +=C .()2125x +=D .()125x x x ++=2.(2022秋·陕西咸阳·九年级统考期中)有一人感染了某种病毒,若不及时控制就会传染其他人,假设每轮传染中平均一个人传染了x 个人,经过两轮传染后共有64人感染,则x 的值是()A .8B .7C .6D .53.(重庆市开州区2022-2023学年九年级上学期期末数学试题)李师傅去年开了一家商店,今年1月份开始盈利,2月份盈利2400元,4月份盈利达到3456元,若设2月到4月每月盈利的平均增长率为x ,则可列方程为()A .22400(1)3456x +=B .22400(1)3456x -=C .()2400123456x +=D .()2400123456x -=4.(2023春·河北沧州·九年级校考阶段练习)国家卫健委临床检验中心数据,因疫情防控需求,全国新冠病毒核酸检测实验室数量从2020年的2081家,增长至2022年的1.31万家,如果这两年核酸检测实验室的年平均增长率为x ,则下列方程正确的是()A .342.08110(1) 1.3110x ⨯+=⨯B .3242.08110(1) 1.3110x ⨯+=⨯C .2081(12)13100x ⨯+=D .22081(12)13100x ⨯+=5.(2023·黑龙江·统考中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是()A .5mB .70mC .5m 或70mD .10m6.(2023·全国·九年级专题练习)如图,在一张长宽分别为50cm 和30cm 的长方形纸板上剪去四个边长为cm x 的小正方形,并用它做成一个无盖的小长方体盒子,若要使长方体盒子的底面积为2300cm ,求x 的值,根据题意,可列得的方程为()A .()()5030300x x --=B .()()502302300x x --=C .()()50230300x x --=D .215004300x -=7.(2023·江苏无锡·统考中考真题)《九章算术》中提出了如下问题:今有户不知高、广,竿不知长短,横之不出四尺,从之不出二尺,邪之适出,问户高、广、邪各几何?这段话的意思是:今有门不知其高宽:有竿,不知其长短,横放,竿比门宽长出4尺:竖放,竿比门高长出2尺:斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少?则该问题中的门高是尺.8.(2023秋·江西萍乡·九年级统考期末)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客尽可能多得实惠的前提下,商家还想获得6080元的利润,则该商品的销售定价为元.9.(2023春·八年级单元测试)在ABC 中,90ABC ∠=︒,4cm AB =,3cm BC =,动点P ,Q 分别从点A ,B 同时开始移动(移动方向如图所示),点P 的速度为1cm/s 2,点Q 的速度为1cm/s ,点Q 移动到点C 后停止,点P 也随之停止移动,若使PBQ 的面积为2154cm ,则点P 运动的时间是s .10.(2023春·山东德州·八年级校考阶段练习)如图,90AOB ∠=︒,36cm =OA ,12cm OB =,一个小球从点A 出发沿着AO 方向滚向点O ,另一小球立即从点B 出发,沿BC 匀速前进拦截小球,恰好在点C 处截住了小球.若两个小球滚动的速度相等,则另一个小球滚动的路程BC 是cm .11.(2023春·重庆渝北·八年级礼嘉中学校考期末)今年春季是甲流病毒的高发期.为了遏制甲流病毒的传播,建议市民朋友们在公共场合要佩戴口罩,现在,有一个人患了甲流,经过两轮传染后共有81个人患了甲流.(1)每轮传染中平均一个人传染了几个人?(2)某药房最近售出了100盒口罩.已知售出的95N 医用口罩的数量不超过普通医用口罩的4倍,每盒95N 医用口罩的单价为15元,每盒普通医用口罩的价格为10元,则售出95N 医用口罩和普通医用各多少盒时,总销售额最多?请说明理由.12.(2023·广东阳江·统考一模)自2023年1月以来,甲流便肆虐横行,成为当前主流流行疾病.某一小区有1位住户不小心感染了甲流,由于甲流传播感染非常快,小区经过两轮传染后共有121人患了甲流.(1)每轮感染中平均一个人传染几人?(2)如果按照这样的传播速度,经过三轮传染后累计是否超过1500人患了甲流?13.(2023春·安徽安庆·八年级安庆市石化第一中学校考期末)我市某超市于今年年初以每件30元的进价购进一批商品.当商品售价为40元时,一月份销售250件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到360件.设二、三这两个月的月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加6件,当商品降价多少元时,商场获利1950元?14.(北京市石景山区2022-2023学年八年级下学期期末数学试题)如图,矩形草地ABCD 中,16AB =m ,10AD =m ,点O 为边AB 中点,草地内铺了一条长和宽分别相等直角折线甬路(PO PQ =,OM QN =),若草地总面积(两部分阴影之和)为2132m ,求甬路的宽.15.(2022秋·上海奉贤·八年级校考期中)如图,正方形ABCD 分割成两个小正方形和两个长方形.(1)若正方形ABCD 边长为10,正方形BFPE 的面积是正方形PGDH 的一半,求正方形BFPE 的边BF 的长.(2)若正方形ABCD 面积为10,设BF x =,四边形APGD 的面积为y ,求y 关于x 的函数解析式,并写出定义域.(3)四边形APGD 的面积是否能够等于正方形ABCD 面积的一半,如果能,请求出BF 长,如果不能请说明理由.16.(2023春·江苏南通·八年级统考期末)某学校在“美化校园,幸福学习”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用20m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).75m,求AB的长;(2)若在直角墙角内点P处有一棵桂花树,且到墙CD的距离为12m,若要将这棵树围在矩形花园内(含边100m若能,求出AB的长;若不能,请说明理由.界,不考虑树的粗细),问该花园的面积能否为217.(2023·山东东营·统考中考真题)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为6402m的羊圈?(2)羊圈的面积能达到6502m吗?如果能,请你给出设计方案;如果不能,请说明理由.18.(2022秋·山西晋城·九年级统考期末)某公园中有一块长为32米,宽为20米的矩形花坛,现在要在花坛中间修建一条如图所示的文化长廊,已知长廊的宽度均相等,且横纵相交成直角,若要使花坛的种植面积为540平方米,问长廊的宽度应为多少米?19.(辽宁省辽阳市2022-2023学年九年级上学期期末数学试题)今年元旦期间,某网络经销商进购了一批节日彩灯,彩灯的进价为每条40元,当销售单价定为52元时,每天可售出180条,为了扩大销售,决定采取适当的降价措施,经调查:销售单价每降低1元,则每天可多售出10条.若设这批节日彩灯的销售单价为x(元),每天的销售量为y(条).(1)求每天的销售量y(条)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这批节日彩灯每天所获得的利润为2000元?20.(2023春·浙江金华·八年级义乌市绣湖中学教育集团校联考期中)某水果店以相同的进价购进两批樱桃,第一批80千克,每千克16元出售;第二批60千克,每千克18元出售,两批车厘子全部售完,店主共获利960元.(1)求樱桃的进价是每千克多少元?(2)该水果店一相同的进价购进第三批樱桃若干,第一天将樱桃涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批樱桃,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时樱桃售完,店主销售第三批樱桃获得的利润为850元,求第二天樱桃的售价是每千克多少元?21.(2023春·安徽阜阳·八年级统考期末)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价-进货价)类别价格A款钥匙扣B款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数?(2)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?22.(2023春·浙江宁波·八年级统考期末)第19届亚运会即将在杭州举行,某商店购进一批亚运会纪念品进行销售,已知每件纪念品的成本是30元,如果销售单价定为每件40元,那么日销售量将达到100件.据市场调查,销售单价每提高1元,日销售量将减少2件.(1)若销售单价定为每件45元,求每天的销售利润;(2)要使每天销售这种纪念品盈利1600元,同时又要让利给顾客,那么该纪念品的售价单价应定为每件多少元?23.(2023春·江苏无锡·八年级统考期末)服装店购进一批甲、乙两种款型的时尚T恤衫,甲种款型共用了10400元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的2倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)该服装店第一个月甲种款型的T恤衫以200元/件的价格售出20件、乙种款型的T恤衫以250元/件的价格售出10件;为了促销,第二个月决定对甲、乙两种款式的T恤衫都进行降价a元销售,其中甲种款型的T恤衫的销售量增加4a件、乙种款型的T恤衫的销售增加a件,结果第二个月的销售总额比第一个月的销售总额增加了1000a元,求第二个月的销售利润.24.(2022秋·陕西咸阳·九年级统考期中)今年某村农产品喜获丰收,该村村委会在网上直播销售A、B两种优质农产品礼包.(1)已知今年7月份销售A 种农产品礼包256包,8、9月该礼包十分畅销,销售量持续走高,在售价不变的基础上,9月份的销售量达到400包.若设8、9两个月销售量的月平均增长率为x ,求x 的值;(2)若B 种农产品礼包每包成本价为16元,当售价为每包30元时,每月销量为200包.为了尽快减少库存,该村准备在10月进行降价促销,经调查发现,若B 种农产品礼包每包每降价1元,月销售量可增加20包,当B 种农产品礼包每包降价多少元时,该村销售B 种农产品礼包在10月份可获利2860元?25.(2023春·山东济南·八年级统考期末)如图,在ABC 中,90B Ð=°,6cm AB =,8cm BC =点P 从A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.点P ,Q 同时出发,当点Q 运动到点C 时,两点停止运动,设运动时间为t 秒.(1)填空:BQ =______cm ,PB =______cm ;(用含t 的代数式表示);(2)当t为几秒时,PQ 的长度等于(3)是否存在某一时刻t ,使四边形APQC 的面积等于ABC 面积的23?如果存在,求出t 的值,如果不存在,请说明理由.26.(2022秋·广东广州·九年级校考阶段练习)如图,在Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =.点P 、Q 同时由A 、C 两点出发,分别以1cm 和2cm s 的速度沿线段AC 、CB 匀速移动,当一点到达终点时,另一点也停止移动.(1)设经过t 秒,用含t 的代数式表示PC 、CQ .PC =______、CQ =______.(2)几秒后,PCQ △的面积是ABC 面积的1327.(2020秋·广东惠州·九年级惠州一中校考阶段练习)如图,在长方形ABCD 中,10cm AB =,12cm BC =,点P 从点A 开始沿边AB 向终点B 以2cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以3cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ =______cm ,PB =______cm (用含t 的代数式表示)(2)当t 为何值时,PQ 的长度等于10cm ?(3)是否存在t ,使得五边形APQCD 的面积等于278cm ?若存在,请求出t 的值;若不存在,请说明理由.28.(2022春·广西梧州·八年级校考期中)如图,在ABC ∆中,90B Ð=°,6cm AB =,8cm BC =点P 从A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.点P ,Q 同时出发,当点Q 运动到点C 时,两点停止运动,设运动时间为t 秒.(1)填空:BQ =___________cm ,PB =___________cm ;(用含t 的代数式表示)(2)当t 为几秒时,PQ 的长度等于8cm ?(3)是否存在某一时刻t ,使四边形APQC 的面积等于ABC 面积的23?如果存在,求出t 的值,如果不存在,请说明理由,29.(2023春·江苏泰州·八年级统考期末)问题:“某工程队准备修建一条长3000米的下水管道,由于采用新的施工方式,________________,提前2天完成任务,求原计划每天修建下水管道的长度?”条件:(1)实际每天修建的长度比原计划多25%;(2)原计划每天修建的长度比实际少75米.在上述的2个条件中选择1个________________(仅填序号)补充在问题的横线上,并完成解答.30.(2023春·重庆北碚·八年级西南大学附中校考期中)甲、乙两工程队合作完成某修路工程,该工程总长为4800米,原计划32小时完成.甲工程队每小时修路里程比乙工程队的2倍多30米,刚好按时完成任务.(1)求甲工程队每小时修的路面长度;(2)通过勘察,地下发现大型溶洞,此工程的实际施工里程比最初的4800米多了1000米,在实际施工中,m )小时;甲工程队的修路速度比原计划每乙工程队修路效率保持不变的情况下,时间比原计划增加了(25小时下降了3m米,而修路时间比原计划增加m小时,求m的值.31.(重庆市开州区2022-2023学年九年级上学期期末数学试题)随着人们对健康生活的追求,全民健身意识日益增强,徒步走成为人们锻炼的日常,中老年人尤为喜爱.(1)张大伯徒步走的速度是李大伯徒步走的1.2倍,张大伯走5分钟,李大伯走10分钟,共走800米,求张大伯和李大伯每分钟各走多少米?(2)天气好,天色早,张大伯和李大伯锻炼兴致很浓,又继续走,与(1)中相比,张大伯的速度不变,李大伯的速度每分钟提高了2a米,时间都各自多走了10a分钟,结果两人又共走了6900米,求a的值.。
数学九年级上册《一元二次方程》单元检测(附答案)
人教版数学九年级上学期《一元二次方程》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、62.(2019·南山第二外国语学校集团海德学校初三期中)若关于 x 的一元二次方程中 20ax bx c ++= 有一个根是-1,则下列结论正确的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=-3.(2019·厦门市第五中学初三期中)方程:x 2﹣25=0的解是( )A .x=5B .x=﹣5C .x 1=﹣5,x 2=5D .x=±254.(2019·湖北初三期中)方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则( )A.m =±2B.m =2C.m =﹣2D.m ≠±2 5.(2017全国初三课时练习)方程 229(1)4(1)0x x +--= 正确解法是( )A .直接开方得 3(1)2(1)x x +=-B .化为一般形式 21350x +=C .分解因式得 [][]3(1)2(1)3(1)2(1)0x x x x ++-+--=D .直接得 x+1=0或 x-1=06.(2019·山东初三期中)已知关于的一元二次方程21(2)02m x x -++=有两个不等的实数根,则实数m 的取值范围为 ( )A.52m <B.52m >C.52m <且2m ≠D.52m >且2m ≠ 7.(2019·广东初三期中)已知α、β满足α+β=5,αβ=6,则以α、β为根的一元二次方程( ) A .x 2+5x +6=0 B .x 2-5x +6=0C .x 2-5x -6=0D .x 2+5x -6=08.(2019·江苏东绛实验学校初三期中)过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( ) A.()113802x x -= B.x (x ﹣1)=380C.2x (x ﹣1)=380D.x (x +1)=380 9.(2019·湖南初三期中)如图,在宽度为20 m ,长为32 m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m 2 , 求道路的宽.如果设小路宽为x m ,根据题意,所列方程正确的是( )A.(20+x )(32+x )=540B.(20﹣x )(32﹣x )=100C.(20﹣x )(32﹣x )=540D.(20-2x )(32﹣2x )=54010.(2019·黑龙江省哈尔滨市第一五六中学初三期中)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( )A.50(1+x )²=182B.50+50(1+x )+50(1+x )²=182C.50(1+2x )=182D.50+50(1+x )+50(1+2x )²=182二、填空题(每小题4分,共24分)11.(2018全国初三期末)把方程3x (x ﹣2)=4(x+1)化为一元二次方程的一般形式是_______; 12.(2019·江苏初三期中)已知(m −3)x 2 −3x + 1 = 0是关于x 的一元二次方程,则m 的取值范围是______. 13.(2019·湖北初三期中)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______.14.(2019·江西省宜春实验中学初三期中)已知a 、b 为方程x 2+4x+2=0的两实根,则a 3+14b+50=_______. 15.(2019·上海市市八初级中学初二月考)已知方程220x kx +-=的一个根是1,则另一个根是_________. 16.(2019·江苏初三期中)方程(x -1)(x +2)=0的两根分别为________.三、解答题一(每小题6分,共18分)17.(2019·青浦区华新中学初二月考)解方程:3x 2﹣6x+1=0(用配方法)18.(2019·河南省实验中学初三月考)已知关于x 的一元二次方程22(1)(2)0x m x m m ---+=.(1)求证:方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求方程的另一个根.19.已知关于x 的方程2(1)2(1)0k x k x k +--+=有两个实数根1x ,2x .(1)求k 的取值范围;(2)若12122x x x x +=+,求k 的值.四、解答题二(每小题7分,共21分)20.(2019·湖南初三月考)先化简,再求值:32111m m m m +⎛⎫--÷ ⎪++⎝⎭,其中m 满足方程260m m --=. 21.(2019·上海初二期中)解方程:(1)(x-1)(x+3)=5(2)x 2+x-3=0(公式法)22.(2019·农安县前岗乡初级中学初三月考)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若每件衬衫降价4元,商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?五、解答题三(每小题9分,共27分)23.(2019·河南初三月考)已知:如图所示.在△ABC 中,∠B =90°,AB =5cm ,BC =7cm .点P 从点A 开始沿AB 边向点B 以1c m/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2c m/s 的速度移动,当其中一点达到终点后,另外一点也随之停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.24.(2019·上海民办浦东交中初级中学初二月考)阅读材料:用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.(1)当x=___时,代数式3(x+3)2+4有最小____(填写大或小)值为____.(2)当x=_____时,代数式-2x2+4x+3有最大____(填写大或小)值为____.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?25.(2019·江苏初三期中)我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.(应用):(1)代数式(x-1)2有最小值时,x=___1;(2)代数式m2+3的最小值是____3;(探究):求代数式n2+4n+9的最小值,小明是这样做的:n2+4n+9=n2+4n+4+5=(n+2)2+5∴当n=-2时,代数式n2+4n+9有最小值,最小值为5.请你参照小明的方法,求代数式a2-6a-3的最小值,并求此时a的值.(拓展):(3)代数式m2+n2-8m+2n+17=0,求m+n的值.(4)若y=-4t2+12t+6,直接写出y的取值范围.参考答案一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、6【答案】C【解析】首先将方程()223x x =-化为一般形式: 2260x x -+=,然后根据此一般形式,即可求得答案. 【详解】解:方程()223x x =-化成一般形式是2260x x -+=, ∴二次项系数为1,一次项系数为-2,常数项为6.所以C 选项是正确的.【点睛】此题考查了一元二次方程的一般形式.注意一元二次方程的一般形式是:ax 2+bx+c=0(a,b,c 是常数且a≠0),其中a,b,c 分别叫二次项系数,一次项系数,常数项.2.(2019·南山第二外国语学校集团海德学校初三期中)若关于 x 的一元二次方程中 20ax bx c ++= 有一个根是-1,则下列结论正确的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=-【答案】B【解析】把x=-1代入已知方程可以求得a-b+c=0.【详解】依题意,得x=-1满足关于x 的一元二次方程ax 2+bx+c=0,则a-b+c=0.故选B .【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3.(2019·厦门市第五中学初三期中)方程:x 2﹣25=0的解是( )A .x=5B .x=﹣5C .x 1=﹣5,x 2=5D .x=±25【答案】C【解析】利用直接开平方法解方程即可.【详解】移项得:x 2=25,∴x 1=﹣5,x 2=5.故选C .【点睛】本题考查了解一元二次方程﹣直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.4.(2019·湖北初三期中)方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则( )A.m =±2B.m =2C.m =﹣2D.m ≠±2【答案】C【解析】根据一元二次方程的定义即可得.【详解】解:∵方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,∴|m |=2,且m ﹣2≠0.解得:m =﹣2.故选:C .【点睛】本题主要考查一元二次方程的定义,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.5.(2017·全国初三课时练习)方程 229(1)4(1)0x x +--= 正确解法是( ) A .直接开方得 3(1)2(1)x x +=-B .化为一般形式 21350x +=C .分解因式得 [][]3(1)2(1)3(1)2(1)0x x x x ++-+--=D .直接得 x+1=0或 x-1=0【答案】C【解析】A :直接开平方应得到两个方程:3(x+1)=2(x-1)和3(x+1)=-2(x-1),所以A 不正确; B :化成一般形式应是:5x 2+26x+5=0;所以B 不正确;C :方程左边满足平方差形式,可以用平方差公式因式分解为:[3(x+1)+2(x-1)][3(x+1)-2(x-1)]=0,所以C 正确.D :两个完全平方的差为0,不能直接得到两个式子分别是0,只有两个完全平方的和是0,才能直接得到两个式子分别是0,所以D 不对.故选:C .点睛:本题考查的是用因式分解法解一元二次方程,根据题目的结构特点,用平方差公式因式分解.6.(2019·山东初三期中)已知关于的一元二次方程21(2)02m x x -++=有两个不等的实数根,则实数m 的取值范围为 ( )A.52m <B.52m >C.52m <且2m ≠D.52m >且2m ≠ 【答案】D【解析】∵关于x 的一元二次方程21(2)02m x x -++=有两个不等的实数根, ∴220{12(2)0m m -≠∆=--> 解得:52m <且2m ≠ 故选C.7.(2019·广东初三期中)已知α、β满足α+β=5,αβ=6,则以α、β为根的一元二次方程( ) A .x 2+5x +6=0 B .x 2-5x +6=0C .x 2-5x -6=0D .x 2+5x -6=0【答案】B【解析】分析: α 、β为一元二次方程的两根,且α、β满足α+ β=5、αβ=6.所以这个方程的系数应满足两根之和是b a - =5,两根之积是c a=6 ,当二次项系数为”1”时,可直接确定一次项系数、常数项. 本题解析:∵所求一元二次方程的两根是α、β,且α、β满足α+ β=5、αβ=6. ∴这个方程的系数应满足两根之和是b a -=5,两根之积是c a =6. 当二次项系数a=1时,一次项系数b=−5,常数项c=6.故选B8.(2019·江苏东绛实验学校初三期中)过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( )A.()113802x x -=B.x (x ﹣1)=380C.2x (x ﹣1)=380D.x (x +1)=380 【答案】B【解析】设该班级共有同学x 名,每个人要发(x-1)条短信,根据题意可得等量关系:人数×每个人所发的短信数量=总短信数量.【详解】设全班有x 名同学,由题意得:x(x-1)=380,故选:B.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键是正确理解题意,找出题目中的等量关系,列出方程.9.(2019·湖南初三期中)如图,在宽度为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m2,求道路的宽.如果设小路宽为x m,根据题意,所列方程正确的是()A.(20+x)(32+x)=540B.(20﹣x)(32﹣x)=100C.(20﹣x)(32﹣x)=540D.(20-2x)(32﹣2x)=540【答案】C【解析】把白色部分经过平移合并成长为32-x,宽为20-x的小长方形,再根据小长方形的面积等于草坪的面积建立等式.【详解】白色部分经过平移合并成长为32-x,宽为20-x的小长方形则小长方形的面积为(20﹣x)(32﹣x)由小长方形的面积等于草坪的面积可得:(20﹣x)(32﹣x)=540故答案为:C.【点睛】本题考查了一元二次方程的应用,解题关键在于把白色部分的图形平行合并成一个小长方形. 10.(2019·黑龙江省哈尔滨市第一五六中学初三期中)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)²=182B.50+50(1+x)+50(1+x)²=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)²=182【答案】B【解析】设二、三月份平均每月的增长率为x,根据某农机厂一月份生产零件50万个,第一季度共生产182万个,可列出方程.【详解】解:设二、三月份平均每月的增长率为x,则二月份生产零件50(1+x)个,三月份生产零件50(1+x)2个,则得:50+50(1+x)+50(1+x)2=182.故选:B.【点睛】本题考查理解题意的能力,关键设出增长率,表示出每个月的生产量,以一季度的产量做为等量关系列出方程.二、填空题(每小题4分,共24分)11.(2018·全国初三期末)把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;【答案】3x2-10x-4=0.【解析】先把一元二次方程3x(x﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.12.(2019·江苏初三期中)已知(m−3)x2−3x + 1 = 0是关于x的一元二次方程,则m的取值范围是______.【答案】m≠3【解析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0,由这两个条件得到相应的关系式,再求解即可.【详解】由题意,得m-3≠0.解得m≠3,故答案为:m≠3.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.13.(2019·湖北初三期中)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.【答案】k<1.【解析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=2241k 0-⨯⨯>,解得:k 1<,故答案为:k 1<.【点睛】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k 的一元一次不等式.熟知”在一元二次方程()2ax bx c 0a 0++=≠中,若方程有两个不相等的实数根,则△=2b 4ac 0->“是解答本题的关键.14.(2019·江西省宜春实验中学初三期中)已知a 、b 为方程x 2+4x+2=0的两实根,则a 3+14b+50=_______.【答案】2【解析】试题解析:∵a 、b 为方程x 2+4x+2=0的两实根,∴a+b=-4,a•b=2,a 2+4a+2=0,∴a 2=-4a-2,∴a 3+14b+50=a (-4a-2)+14b+50=-4a 2-2a+14b+50=-4(a 2+4a+2)+14a+14b+50+8=14(a+b )+58=14×(-4)+58=2.15.(2019·上海市市八初级中学初二月考)已知方程220x kx +-=的一个根是1,则另一个根是_________.【答案】2-【解析】直接利用根与系数的关系求出另外一根即可,【详解】解:设方程的另一根为2x ,根据根与系数的关系得:212x ⋅=-,∴22x =-,故答案为2-.【点睛】本题考查了一元二次方程的根与系数的关系,掌握一元二次方程中根与系数的关系是解题的关键. 16.(2019·江苏初三期中)方程(x -1)(x +2)=0的两根分别为________.【答案】121,2x x ==-【解析】根据A·B=0,则A 、B 中至少有一个为0,化为一元一次方程即可解出方程. 【详解】解:(x -1)(x +2)=0x -1=0或x +2=0解得:121,2x x ==-【点睛】此题考查的是一元二次方程的解法,根据A·B=0,则A 、B 中至少一个为0,掌握将一元二次方程化为一元一次方程的方法是解决此题的关键.三、解答题一(每小题6分,共18分)17.(2019·青浦区华新中学初二月考)解方程:3x 2﹣6x+1=0(用配方法)【答案】x 1,x 2=1 【解析】试题分析:先移项,再将二次项系数化为1,然后配方解出x 即可.试题解析:3x 2-6x +1=0,移项,得3x 2-6x =-1,二次项系数化为1,得x 2-2x =-13, 配方,得x 2-2x +12=-13+12,即(x -1)2=23, 解得,x -1=±3,即x 1,x 2=1. 点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)解出未知数.18.(2019·河南省实验中学初三月考)已知关于x 的一元二次方程22(1)(2)0x m x m m ---+=.(1)求证:方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求方程的另一个根.【答案】(1)证明见解析;(2)方程的另一个根为0或4.【解析】(1)根据根的判别式求出△的值,再进行判断即可;(2)先把x=-2代入方程,然后解关于m 的一元二次方程,即可求出m 的值.【详解】(1)证明:()()222141284m m m m ∆=---⨯⨯-+=+⎡⎤⎡⎤⎣⎦⎣⎦. 20m ≥2840m ∴+>,即>0∆,∴方程总有两个不相等的实数根.(2)当2x =-时,原方程为()()44120m m m +--+=,即2 20m m -=,解得:10m =,22m =.设方程的另一根为1x ,当0m =时,有120x -=,解得:10x =;当2m =时,有128x -=,解得:14x =(将m 代入方程,解方程得到亦可)综上所述:当=-2x 是此方程的一个根时,方程的另一个根为0或4.【点睛】此题考查一元二次方程的根的判别式,解题关键在于利用方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.19.已知关于x 的方程2(1)2(1)0k x k x k +--+=有两个实数根1x ,2x .(1)求k 的取值范围;(2)若12122x x x x +=+,求k 的值.【答案】(1)13k ≤且k 1≠-;(2)4-. 【解析】(1)方程有两个实数根,则0k+10≥≠△,,解出即可;(2)根据根与系数的关系,求出1212x x x x +,的值,解出即可.【详解】解:(1)方程有两个实数根,则0k+10≥≠△,,即[]2=2(1)4(1)0k+10k k k ---+≥≠△,,解得:13k ≤且k 1≠-; (2)()()12211k b x x a k -+=-=+,121c k x x a k ==+,则()()21211k k k k -=+++,解得:4k =-,143-<, 则k 的值为4-.【点睛】本题是对一元二次方程的综合考查,熟练掌握一元二次方程的根的判别式及根与系数的关系是解决本题的关键.四、解答题二(每小题7分,共21分)20.(2019·湖南初三月考)先化简,再求值:32111m m m m +⎛⎫--÷ ⎪++⎝⎭,其中m 满足方程260m m --=. 【答案】1【解析】根据分式的运算法则先化简分式.再解一元二次方程求出m ,代入化简后的式子,注意代入时原分式要有意义,m 不等于-1和-2. 【详解】原式213112m m m m --+=⋅++ (2)(2)112m m m m m +-+=⋅++ 2m =-解方程260m m --=得:3m =或2m =-20m +≠2m ∴≠-当3m =时,原式321=-=【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,注意代入分式中字母的值必须使分式必须有意义.21.(2019·上海初二期中)解方程:(1)(x-1)(x+3)=5(2)x 2+x-3=0(公式法)【答案】(1)x 1=-4,x 2=2;(2)x 1x 2. 【解析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用求根公式解方程.【详解】(1)x 2+2x-8=0,(x+4)(x-2)=0,所以x 1=-4,x 2=2;(2)△=12-4×1×(-3)=13,,所以x 1x 2. 【点睛】此题考查解一元二次方程-因式分解法,解题关键在于掌握运算法则.22.(2019·农安县前岗乡初级中学初三月考)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若每件衬衫降价4元,商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?【答案】(1)1008;(2)20【解析】(1)降价4元时,根据题意分别求出单件利润和销量,再根据销售利润问题的等量关系:单件利润×销量=总利润,可求出总利润;(2)设降价x 元,然后根据题意找出单件利润和销量的表达式,再根据销售利润问题的等量关系:单件利润×销量=总利润,列出方程求解,最后根据题意舍去不符合题意的解.【详解】(1)降价4元时,每件盈利为40-4=36元,销量为10204=285+⨯件, ∴总盈利36×28=1008元.(2)设降价x 元,由题意得()104020=12005x x ⎛⎫-+⋅ ⎪⎝⎭化简得2302000x x -+=,解得1=10x ,2=20x ,要尽量减少库存,则取=20x ,所以平均每天要盈利1200元,每件衬衫应降价20元.【点睛】本题考查一元二次方程的应用:销售利润问题,根据等量关系建立方程是解题的关键.五、解答题三(每小题9分,共27分)23.(2019·河南初三月考)已知:如图所示.在△ABC 中,∠B =90°,AB =5cm ,BC =7cm .点P 从点A 开始沿AB 边向点B 以1c m/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2c m/s 的速度移动,当其中一点达到终点后,另外一点也随之停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.【答案】(1)1;(2)2;(3)不能.【解析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm 则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解; (2)利用勾股定理列出方程求解即可;(3)看△PBQ 的面积能否等于7cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【详解】设t 秒后,则:AP =tcm ,BP =(5﹣t )cm ;BQ =2tcm .(1)S △PBQ =BP ×BQ ,即1(5)242x x -⨯=,解得:t =1或4.(t =4秒不合题意,舍去) 故:1秒后,△PBQ 的面积等于4cm 2.(2)PQ =5,则PQ 2=25=BP 2+BQ 2,即25=(5﹣t )2+(2t )2,t =0(舍)或2.故2秒后,PQ 的长度为5cm .(3)令S △PQB =7,即:BP ×2BQ =7,1(5)272x x -=,整理得:t 2﹣5t +7=0. 由于b 2﹣4ac =25﹣28=﹣3<0,则方程没有实数根.所以,在(1)中,△PQB 的面积不等于7cm 2.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.24.(2019·上海民办浦东交中初级中学初二月考)阅读材料:用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.(1)当x=___时,代数式3(x+3)2+4有最小____(填写大或小)值为____.(2)当x=_____时,代数式-2x2+4x+3有最大____(填写大或小)值为____.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【答案】(1)-3,小,4;(2)1,大,5;(3)当边长为4米时,花园面积最大为32m2.【解析】(1)由完全平方式的最小值为0,得到x=-3时,代数式的最小值为4;(2)将代数式前两项提取-2,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;(3)设垂直于墙的一边长为xm,根据总长度为16m,表示出平行于墙的一边为(16-2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.【详解】(1)∵(x+3)2≥0,∴当x=-3时,(x+3)2的最小值为0,则当x=-3时,代数式3(x+3)2+4的最小值为4;(2)代数式-2x2+4x+3=-2(x-1)2+5,则当x=1时,代数式-2x2+4x+3的最大值为5;(3)设垂直于墙的一边为xm,则平行于墙的一边为(16-2x)m,∴花园的面积为x(16-2x)=-2x2+16x=-2(x2-8x+16)+32=-2(x-4)2+32,则当边长为4米时,花园面积最大为32m2.【点睛】此题考查配方法的应用,解题关键在于要注意配方法的步骤.注意在变形的过程中不要改变式子的值.25.(2019·江苏初三期中)我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.(应用):(1)代数式(x-1)2有最小值时,x=___1;(2)代数式m2+3的最小值是____3;(探究):求代数式n2+4n+9的最小值,小明是这样做的:n2+4n+9=n2+4n+4+5=(n+2)2+5∴当n=-2时,代数式n2+4n+9有最小值,最小值为5.请你参照小明的方法,求代数式a2-6a-3的最小值,并求此时a的值.(拓展):(3)代数式m2+n2-8m+2n+17=0,求m+n的值.(4)若y=-4t2+12t+6,直接写出y的取值范围.【答案】(1)1;(2)3;(3)3;(4)y≤15.【解析】(1)由(x-1)2≥0可得x=1时,取得最小值0;(2)由m2≥0知m2+3≥3可得答案;(3)将方程变形为(m-4)2+(n+1)2=0,由非负数性质求得m、n的值即可得;(4)由y=-4t2+12t+6=-4(t-32)2+15知-4(t-32)2+15≤15,从而得出答案.【详解】(1)代数式(x-1)2有最小值时,x=1,故答案为:1;(2)代数式m2+3的最小值是在m=0时,最小值为3,故答案为:3.(3)∵m2+n2-8m+2n+17=0,∴(m-4)2+(n+1)2=0,则m=4、n=-1,∴m+n=3;(4)y=-4t2+12t+6=-4(t2-3t)+6=-4(t2-3t+94-94)+6=-4(t-32)2+15,∵(t-32)2≥0,∴-4(t-32)2≤0,则-4(t-32)2+15≤15,即y≤15.【点睛】此题考查配方法的应用,完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的性质进行解答.。
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)1 / 6第21章 一元二次方程 单元测试卷一、单选题(共10题;共30分)1.下列方程是关于 的一元二次方程的是 A.B.C.D.2.将一元二次方程x 2-6x+5=0配方后,原方程变形为( )A. (x-3)2=5 B. (x-6)2=5 C. (x-6)2=4 D. (x-3)2=4 3.已知点A (m 2-2,5m+4)在第一象限角平分线上,则m 的值是( )A. 6B. -1C. 2或3D. -1或64.若关于x 的一元二次方程x 2﹣2x ﹣k+1=0有两个不相等的实数根,则一次函数y=kx ﹣k 的大致图象是( )A.B.C.D.5.如果关于 的方程 有两个实数根,则 满足的条件是( )A.B.C.且D.且6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A. 9人 B. 10人 C. 11人 D. 12人7.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣3x =4(x ﹣3)的两个实数根,则该直角三角形斜边上的中线长是( )A. 3B. 4C. 6D. 2.58.若一元二次方程x 2﹣x ﹣2=0的两根为x 1 , x 2 , 则(1+x 1)+x 2(1﹣x 1)的值是( ) A. 4 B. 2 C. 1 D. ﹣29.王叔叔从市场上买了一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm 的正方形后,剩余的部分刚好能围成一个底面积为3000cm 2的无盖长方形工具箱,根据题意列方程为( )A. (80﹣x )(70﹣x )=3000B. 80×70﹣4x 2=3000C. (80﹣2x )(70﹣2x )=3000D. 80×70﹣4x 2﹣(70+80)x=300010.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A. B. C. 2﹣ D. 4﹣2二、填空题(共6题;共18分)11.方程 转化为一元二次方程的一般形式是________.12.一元二次方程的根是________.13.关于x 的一元二次方程(m ﹣3)x 2+x+(m 2﹣9)=0的一个根是0,则m 的值是________. 14.若一元二次方程x 2+2kx+k 2-2k+1=0的两个根分别为x 1 , x 2 , 满足x 12+x 22=4,则k 的值=________。
上海汇贤中学九年级数学上册第二十一章《一元二次方程》(含答案解析)
一、选择题1.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=6050D 解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根A 解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.3.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-D 解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).4.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17B 解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.5.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%D解析:D设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 6.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( )A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.7.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x ==A 解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x 1=0,x 2=1,【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 8.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或0A 解析:A【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x 2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键. 9.下列方程中,有两个不相等的实数根的是( )A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=0C 解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意; 故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3B .-1C .3或1D .3或-1A 解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题11.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.12.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.13.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣72【分析】 根据根与系数的关系得到x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,然后利用整体代入的方法计算.【详解】 根据题意得x 1+x 2=﹣42=﹣2,x 1x 2=﹣32, 所以x 1+x 2+x 1x 2=﹣2﹣32=﹣72. 故答案为:﹣72. 【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a. 14.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20%设每年绿化面积的增长率为x,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x,依题意,得:3000(1+x)2=4320,解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.写出有一个根为1的一元二次方程是______.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考解析:20-=(答案不唯一)x x【分析】有一个根是1的一元二次方程有无数个,只要含有因式x-1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可,x x-=,如()10化为一般形式为:20-=x x故答案为:20-=.x x【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.16.如图,要设计一幅宽20cm,长30cm的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.3cm【分析】设横彩条的宽度是xcm竖彩条的宽度是3xcm根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm竖彩条的宽度是3xcm则(30-3x)(20-2x)=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.17.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____.-3【分析】设方程的另一个根为x2根据两根之积列出关于x2的方程解之可得答案【详解】解:设方程的另一个根为x2则2x2=﹣6解得x2=﹣3故答案为:﹣3【点睛】本题考查了一元二次方程ax2+bx+c解析:-3.【分析】设方程的另一个根为x 2,根据两根之积列出关于x 2的方程,解之可得答案.【详解】解:设方程的另一个根为x 2,则2x 2=﹣6,解得x 2=﹣3,故答案为:﹣3.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 18.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.19.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α 解析:40402021【分析】 由一元二次方程根与系数的关系解题,即+=-b c a a αβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021;∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++- 1=2(1)2021⨯-4040=2021故答案为:40402021. 【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.解析:(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.22.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.解析:(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.23.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?解析:(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系. 24.解方程:2410y y --=.解析:12y =22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 25.(1)()2120x --=;(2)21212t t += (3)()22x x x -=-(4)23520.x x --=解析:(1)1211==x x 2)1222t t =-=-3)1221x x ==,(4)12123x x ==-,. 【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可;(3)方程整理后,利用因式分解法求出解即可;(4)利用因式分解法解方程.【详解】解:(1)()212x -=,x-1=,11x x -=-=,1211x x ∴==(2)242t t +=,()226t ∴+=2t ∴+=1222t t ∴=-=-(3)()2(2)0x x x ---=,() 1)20(x x ∴--=122,1x x ∴==(4)23520.x x --=()2310()x x -+=1212,3x x ∴==-. 【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解题的关键.26.解方程:2420x x ++=.解析:12x =-22x =-【分析】方程利用配方法求出解即可.【详解】∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=, ∴2x =-±∴12x =-22x =-【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 27.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件.(1)若每件衬衫降价5元,则每件商品盈利________元,每天可售出________件,商场每天盈利________元;(2)若每件衬衫降价x 元,则每件商品盈利________元,每天可售出________件(用含x 的代数式表示);(3)若商场平均每天盈利2100元,每件衬衫应降价多少元?解析:(1)40,40,1600;(2)45x -,204x +;(3)每件衬衫应降价30元【分析】(1)每件衬衫降价5元,每件盈利=原来的盈利-5元;所售件数=20+多售出的件数;商场每天盈利=(原来的盈利-5元)×(20+多售出的件数);(2)每件衬衫降价x 元,每件盈利=原来的盈利-x 元;所售件数=20+多售出的件数; (3)商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.设每件衬衫应降价x 元,然后根据前面的关系式即可列出方程,解方程即可求出结果.【详解】解:(1)若每件衬衫降价5元,则每件商品盈利:45-5=40(元),每天可售出:20+4×5=40(件),商场每天盈利:40×40=1600(元),故答案为:40,40,1600;(2)若每件衬衫降价x 元,则每件商品盈利:45-x (元),每天可售出:20+4x (件)故答案为:45x -,204x +;(3)每件衬衫应降价x 元,根据题意得:(45)(20)2100x x --=2403000x x -+=解得:110x =,230x =当10x =时,20460x +=;当30x =时,204140x +=;∵要减少库存,∴应增加销售量,∴30x =∴每件衬衫应降价30元.【点睛】此题主要考查了一元二次方程的应用的销售问题,关键是正确理解题意,找出题目中等量关系,列出方方程.28.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.。
上海市格致中学2024-2025学年高一上学期第一次测验数学试卷(含答案)
格致中学 二○二四学年度第一学期第一次测验高一年级 数学试卷(共4页)(测试90分钟内完成,总分100分,试后交答题卷)友情提示:昨天,你既然经历了艰苦的学习,今天,你必将赢得可喜的收获祝你:诚实守信,沉着冷静,细致踏实,自信自强,去迎接胜利一、填空题:(本题共有10个小题,每小题4分,满分40分)1.不等式的解集为______.2.已知关于的一元二次方程的两个实数根为,则的值为______.3.设,,,若,则______.4.设,则“”是“”的______条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)5的解集为______.(用列举法表示)6.给出下列关系式,其中正确的是______(填序号).①;②;③;④;⑤.7.设集合,则集合的非空真子集的个数为______.8.若不等式恒成立,则实数的取值范围是______.9.已知对于实数,满足且,则的最大值为______.10.已知集合,,定义集合,则中元素的个数为______.二、选择题:(本题共有4个小题,每小题4分,满分16分)11.用反证法证明命题“已知是正整数,如果能被7整除,那么至少有一个能被7整除”时,第一步应该假设的内容是( )A .只有一个能被7整除B .都不能被7整除C .都能被7整除D .只有不能被7整除12.若,则下列结论不正确的是( )A .B .C .D .11x≤x 2310x x --=12,x x 1211x x +,a b ∈R {}1,P a ={}1,Q b =--P Q =a b -=,a b ∈R 2b a <220a bb->20y ++={}a ∅⊆{}a a ⊆{}{}a a ⊆{}{},a a b ∈{}{},a ∅⊆∅{}21,14,M a x a x x =-=≤≤∈Z M 24223x mx x +<-+m ,x y 2x y +≤3x y -≤3x y -()()()()(){}0,0,0,1,1,0,0,1,1,0A =--(){},2,1,,B x y x y x y =≤≤∈Z ()()(){}12121122,,,,A B x x y y x y A x y B ⊕=++∈∈A B ⊕,x y xy ,x y ,x y ,x y ,x y x 110a b<<0a b +<22a b <2ab b <2ab a <13.若关于的不等式的解集为,则的值( )A .与有关,且与有关B .与有关,但与无关C .与无关,且与无关D .与无关,但与有关14.设,若关于的不等式的解集中的整数解个数恰为3个,则满足条件的实数所在区间可以是( )A .B .C .D .三、解答题:(本题共有5大题,满分44分。
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试(包含答案解析)(3)
一、选择题1.若关于x 的一元二次方程(k ﹣1)x 2﹣2kx +k ﹣3=0有实数根,则k 的取值范围为( )A .k ≥0B .k ≥0且k ≠1C .k ≥34D .k ≥34且k ≠1 2.下列关于x 的方程中,一定是一元二次方程的是( )A .221x x +B .20ax x +=C .()()121x x -+=D .223250x xy y --= 3.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0B .211x x +=C .x 2+2x =y 2-1D .3(x +1)2=2(x +1) 4.某商品的售价为100元,连续两次降价%x 后售价降低了36元,则x 的值为( ) A .60B .20C .36D .18 5.一元二次方程x 2﹣3x +1=0的两个根为x 1,x 2,则x 12+3x 2+x 1x 2+1的值为( ) A .10 B .9C .8D .7 6.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +=( ) A .2- B .3- C .4-D .6- 7.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .6 8.关于x 的方程()11340a a xx ++-+=是一元二次方程,则( ) A .1a ≠± B .1a =- C .1a = D .1a =±9.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( )A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+ 10.下列说法不正确的是( )A .打开电视剧,电视里播放《小猪佩奇》是偶然事件B .了解一批灯泡的使用寿命,适合抽样调查C .一元二次方程2210x x -+=只有一个根D .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定 11.若关于x 的方程2210ax ax -+=的一个根是1-,则a 的值是( )A .1B .1-C .13-D .3-12.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有( )个;①方程220x x --=是倍根方程;②若()()20x mx n -+=是倍根方程,则22450m mn n ++=;③若p 、q 满足2pq =,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,则必有229b ac =.A .1B .2C .3D .4二、填空题13.关于x 的一元二次方程2(21)0kx k x k -++=总有两个实数根,则常数k 的取值范围是________.14.阅读理解:对于()321x n x n -++这类特殊的代数式可以按下面的方法分解因式:()()()()3232222()()(1)()1x n x n x n x x n x x n x n x x n x n x n x n x nx -++=--+=---=+-=-+--一理解运用:如果()3210x n x n -++=,那么()2(10)x n x nx -+-=,即有0x n -=或210x nx +-=,因此,方程0x n -=和210x nx +-=的所有解就是方程()321x n x n -++=0 的解.解决问题:求方程31030x x -+=的解为___________.15.若3x =是方程230x bx -+=的一个根,则b 的值为______.16.如果关于x 的方程22(1)210x a x a -+++=有一个小于1的正数根,那么实数a 的取值范围是_______________.17.如图,某小区规划在一个长30m 、宽20m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为78m 2,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程__________________________.18.已知方程240x x k -+=的一个根是11x =-,则方程的另一根2x =____.19.将一元二次方程2310x x -+=变形为()2x h k +=的形式为________.20.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是 _________%.三、解答题21.解方程:220x x +=.22.某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,解答以下问题. (1)当销售单价定为每千克35元时,销售量是 千克、月销售利润是 元;(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?23.用适当的方法解下列方程:(1)3x 2+x =0;(2)x 2﹣x ﹣2=0.24.阅读材料:若22228160x xy y y -+-+=,求x ,y 的值.解:∵22228160x xy y y -+-+=∴()()22228160x xy yy y -++-+= ∴()()2240x y y -+-=∴()20x y -=,()240y -= ∴4,4y x ==根据上述材料,解答下列问题:(1)2222210m mn n n -+-+=,求2m n +的值;(2)6a b -=,24130ab c c +-+=,求a b c ++的值.25.劳动是财富的源泉,也是幸福的源泉.某中学对劳动教育进行积极探索和实践,创建学生劳动教育地,让学生参与到农耕劳作中.如图,现准备利用校园围墙的一段MN (MN 最长可用25m ),用40m 长的篱笆,围成一个矩形菜园ABCD .(1)当AB 长度为多少时,矩形菜园的面积为2150m ?(2)能否围成面积为2210m 的矩形菜园?为什么?26.已知:关于x 的方程220x kx k ++-=.(1)试说明无论k 取何值时,方程总有两个不相等的实数根;(2)若6k =,请解此方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次项系数不为0和△≥0列不等式组即可.【详解】解:根据关于x 的一元二次方程(k ﹣1)x 2﹣2kx +k ﹣3=0有实数根,列不等式组得,210(2)4(1)(3)0k k k k -≠⎧⎨----≥⎩, 解得,k ≥34且k ≠1, 故选:D .【点睛】本题考查了一元二次方程根的判别式,解题关键是熟练运用根的判别式列不等式,注意:一元二次方程二次项系数不为0.2.C解析:C【分析】利用一元二次方程定义进行解答即可.【详解】A.含有分式,不是一元二次方程,故此选项不符合题意;B.当a=0时,不是一元二次方程,故此选项不符合题意;C.由已知方程得到:x²+x-3=0,该方程是一元二次方程,故此选项符合题意;D.含有两个未知数,不是一元二次方程,故此选项不合题意;故选C .【点睛】本题考查了一元二次方程定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.3.D解析:D【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2,二次项系数不为0,是整式方程,含有一个未知数;【详解】A 、20ax bx c ++=当a=0时,不是一元二次方程,故A 错误;B 、2112x x+= ,不是整式方程,故B 错误;C 、2221x x y +=- ,含有两个未知数,故C 错误;D 、()()23121x x +=+ 是一元二次方程,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,正确理解一元二次方程的概念是解题的关键. 4.B解析:B【分析】起始价为100元,终止价为100-36=64元,根据题意列方程计算即可.【详解】∵起始价为100元,终止价为100-36=64元,∴根据题意,得1002(1-%)x =64,解得x=20或x=180(舍去),故选B .【点睛】本题考查了一元二次方程的增长率问题,熟练掌握增长率问题的计算方法,正确布列方程是解题的关键.5.A解析:A【分析】根据方程的根及根与系数的关系得到x 12﹣3x 1+1=0,x 1+x 2=3,x 1x 2=1,将其代入代数式计算即可.【详解】解:由题意得x 12﹣3x 1+1=0,x 1+x 2=3,x 1x 2=1,∴x 12+1=3x 1,∴x 12+3x 2+x 1x 2+1=3x 1+3x 2+x 1x 2=3(x 1+x 2)+ x 1x 2=331⨯+=10,故选:A .【点睛】此题考查一元二次方程的解,根与系数的关系式,求代数式的值,正确掌握根与系数的关系是解题的关键.6.A解析:A【分析】把1x =代入方程,得到a 与b 的式子,整体代入即可.【详解】解:把1x =代入220x ax b ++=得,120a b ++=,∴21a b +=-,∴242a b +=-,故选:A .【点睛】本题考查了一元二次方程的解和求代数式的值,解题关键是明确方程解的意义,树立整体代入思想.7.D解析:D【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB 与BC 的和为10,构造关于AB 的一元二方程可求解.【详解】解:当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为6. ∴12AB·12BC=6,即AB•BC=24. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,∴AB+BC=10.则BC=10-AB ,代入AB•BC=24,得AB 2-10AB+24=0,解得AB=4或6,因为AB >BC ,所以AB=6.故选:D .【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.8.C解析:C【分析】 根据一元二次方程的定义可得1a +=2,且a+1≠0,解方程即可;.【详解】 解:由题意得1a +=2,且a+1≠0,,解得:a=±1,因为一元二次方程的系数不为0,即a+1≠0,所以a=1,故选C.【点睛】本题考查了一元二次方程的定义,关键是注意一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;②只含有一个未知数;③未知数的最高次数是2.9.A解析:A【分析】用含有x的代数式分别表示出每轮传染的人数和总人数即可得解.【详解】∵每轮传染平均1人会传染x个人,∴2人感染时,一轮可传染2x人,∴一轮感染的总人数为2x+2=2(1+x)人;∵每轮传染平均1人会传染x个人,∴2(1+x)人感染时,二轮可传染2(1+x)x人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()221x+人;∴()221y x=+,故选A.【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.10.C解析:C【分析】根据必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差依次判断即可.【详解】解:A. 打开电视剧,电视里播放《小猪佩奇》是偶然事件,正确,不符合题意;B. 了解一批灯泡的使用寿命,适合抽样调查,正确,不符合题意;C. 一元二次方程2210x x-+=中,24440b ac∆=-=-=,有两个相等的实数根,故原说法错误,符合题意;D. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36 S=甲,20.54S=乙,甲的射击成绩稳定,正确,不符合题意;故选:C.【点睛】本题考查必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差,注意当0∆=时,一元二次方程有两个相等的实数根.11.C解析:C【分析】根据方程根的定义,回代原方程中,解关于a 的方程求解即可.【详解】∵x 的方程2210ax ax -+=的一个根是1-,∴2(-1)2(-1)10a a ⨯-⨯⨯+=,解得 a=13-,故选C.【点睛】本题考查了一元二次方程的根,熟记根的定义是解题关键. 12.C解析:C【分析】①求出方程的解,再判断是否为倍根方程;②根据倍根方程和其中一个根,可求出另一个根,进而得到m 、n 之间的关系,而m 、n 之间的关系正好适合;③当p ,q 满足2pq =,则()()2310px x q px x q ++=++=,求出两个根,再根据2pq =代入可得两个根之间的关系,进而判断是否为倍根方程;④用求根公式求出两个根,当122x x =,或122x x =时,进一步化简,得出关系式,进行判断即可.【详解】解:①解方程220x x --=(x-2)(x+1)=0,∴x-2=0或x+1=0,解得,12x =,21x =-,得,122x x ≠,∴方程220x x --=不是倍根方程;故①不正确;②若()()20x mx n -+=是倍根方程,12x =,因此21x =或24x =,当21x =时,0m n +=,当24x =时,40m n +=,()()224540m mn n m n m n ∴++=++=,故②正确;③∵pq=2,则:()()2310px x q px x q ++=++=, 11x p∴=-,2x q =-,2122x q x p∴=-=-=, 因此是倍根方程,故③正确;④方程20ax bx c ++=的根为:1x =2x =,若122x x =,则222b b a a-+--=,即2022b b a a-+---⨯=,02b a+∴=,0b ∴+=,b ∴=-,()2294b ac b ∴-=,229b ac ∴=.若122x x =2=,则2022b b a a-+--=,02b a-+∴=,0b ∴-+=,b ∴=,()2294b b ac ∴=-,229b ac ∴=.故④正确,∴正确的有:②③④共3个.故选:C .【点睛】本题考查一元二次方程的求根公式,新定义的倍根方程的意义,理解倍根方程的意义和正确求出方程的解是解决问题的关键.二、填空题13.且【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案【详解】解:∵关于x 的一元二次方程有两个实数根∴△=-(2k+1)2-4k k≥0且k≠0解得:且k≠0故答案为:且k≠0【点 解析:14k ≥-且0k ≠ 【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案.【详解】解:∵关于x 的一元二次方程2(21)0kx k x k -++=有两个实数根, ∴△=[-(2k+1)]2-4k ⨯k≥0,且k≠0, 解得:14k ≥-且k≠0. 故答案为:14k ≥-且k≠0. 【点睛】 本题考查一元二次方程根的判别式和一元二次方程的定义.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;注意一元二次方程的二次项系数不为0的隐含条件,避免漏解.14.【分析】通过因式分解的方法把方程左边分解因式这样把原方程转化为x−3=0或x2+3x−1=0然后解一次方程和一元二次方程即可【详解】解:∵x3−10x +3=0∴x3−9x−x +3=0x (x2−9)− 解析:1233133133,22x x x -+-=== 【分析】通过因式分解的方法把方程左边分解因式,这样把原方程转化为x−3=0或x 2+3x−1=0,然后解一次方程和一元二次方程即可.【详解】解:∵x 3−10x +3=0,∴x 3−9x−x +3=0,x (x 2−9)−(x−3)=0,(x−3)(x 2+3x−1)=0,∴x−3=0或x 2+3x−1=0, ∴1233133133,x x x -+--===. 故答案为:1233133133,22x x x --===. 【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.也考查了公式法解一元二次方程.15.4【分析】将x=3代入解方程即可【详解】将代入方程得9-3b+3=0解得b=4故答案为:4【点睛】此题考查一元二次方程的解解方程正确计算是解题的关键解析:4【分析】将x=3代入解方程即可.【详解】将3x =代入方程230x bx -+=,得9-3b+3=0,解得b=4,故答案为:4.【点睛】此题考查一元二次方程的解,解方程,正确计算是解题的关键.16.<a<0【分析】先利用方程的求根公式表示出方程的两个根再利用有一个小于1的正数根这一条件确定a 的取值范围【详解】解:根据方程的求根公式可得:x==解得x1=1x2=2a+1∵x1=1∴小于1的正数根 解析:12-< a<0 【分析】 先利用方程的求根公式表示出方程的两个根,再利用“有一个小于1的正数根”这一条件确定a 的取值范围.【详解】解:根据方程的求根公式可得:()2+22+12a a a a ±=±, 解得x 1=1,x 2=2a+1∵x 1=1,∴小于1的正数根只能为2a+1,即0<2a+1<1, 解得12-< a<0. 故答案为:12-< a<0. 【点睛】 本题考查一元二次方程的根的分布与系数的关系,求解问题的关键是正确理解有且仅有一个小于1的正数根,将能将其转化为函数在(0,1)内仅有一个0点.17.【分析】设道路的宽为将6块草地平移为一个长方形长为宽为根据长方形面积公式即可列方程【详解】设道路的宽为由题意得:故答案为:【点睛】本题主要考查了一元二次方程的应用掌握长方形的面积公式求得6块草地平移 解析:(302)(20)786x x --=⨯【分析】设道路的宽为xm ,将6块草地平移为一个长方形,长为()302-x m ,宽为()20x m -.根据长方形面积公式即可列方程(302)(20)786x x --=⨯.【详解】设道路的宽为xm ,由题意得:(302)(20)786x x --=⨯,故答案为:(302)(20)786x x --=⨯.【点睛】本题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.18.5【分析】利用根与系数的关系解答【详解】∵方程的根是x1x2∴∵∴5故答案为:5【点睛】此题考查一元二次方程根与系数的关系熟记根与系数的两个关系式并应用是解题的关键解析:5【分析】利用根与系数的关系解答.【详解】∵方程240x x k -+=的根是x 1、x 2,∴124x x +=,∵11x =-,∴2x =5,故答案为:5.【点睛】此题考查一元二次方程根与系数的关系,熟记根与系数的两个关系式并应用是解题的关键.19.【分析】将方程常数项移到方程右边左右两边都加上左边化为完全平方式右边合并即可得到所求的结果【详解】解:移项得配方得即故答案为:【点睛】本题考查了配方法解一元二次方程利用此方法解方程时首先将二次项系数 解析:23524x ⎛⎫-= ⎪⎝⎭ 【分析】将方程常数项移到方程右边,左右两边都加上232⎛⎫ ⎪⎝⎭,左边化为完全平方式,右边合并即可得到所求的结果.【详解】解:2310x x -+=移项得 231x x -=-, 配方得222333122x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭即 23524x ⎛⎫-= ⎪⎝⎭ 故答案为:23524x ⎛⎫-= ⎪⎝⎭ 【点睛】本题考查了配方法解一元二次方程,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解. 20.10%【分析】设平均每年下降的百分率是x 利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量列出方程解答即可【详解】设平均每年下降的百分率是x 解得x1=01=10x2=19(舍去)答:平均每解析:10%【分析】设平均每年下降的百分率是x ,利用原有降尘量乘以(1-平均每年下降的百分率)2=现在降尘量,列出方程解答即可.【详解】设平均每年下降的百分率是x ,250(1)40.5x -=,解得x 1=0.1=10%,x 2=1.9(舍去),答:平均每年下降的百分率是10%,故答案为:10%.【点睛】此题考查一元二次方程的实际应用—增长率问题,正确理解题意并掌握增长率问题计算公式是解题的关键.三、解答题21.120,2x x ==-【分析】方法一:根据提取公因式求解即可;方法二:根据配方法求解即可;【详解】解:方法一:原方程可化为(2)0x x +=.120,2x x ∴==-.方法二:配方,得22101x x ++=+,即2(1)1x +=.直接开平方,得11x +=±, 120,2x x ∴==-.【点睛】本题主要考查了一元二次方程的求解,准确计算是解题的关键.22.(1)450,6750;(2)销售单价应为60元/千克.【分析】(1)根据题意直接计算得出即可;(2)销售成本不超过6000元,即进货不超过6000÷20=300kg .根据利润表达式求出当利润是8000时的售价,从而计算销售量,与进货量比较得结论.【详解】解:(1)销售量:500-5×10=450(kg );销售利润:450×(35-20)=450×15=6750(元);故答案为:450,6750.(2)由于水产品不超过6000÷20=300(kg ),定价为x 元,则(x-20)[500-10(x-30)]=8000解得:x 1=40,x 2=60当x 1=40时,进货500-10(40-30)=400kg >300kg ,舍去,当x 2=60时,进货500-10(60-30)=200kg <300kg ,符合题意.答:销售单价应为60元.【点睛】本题考查了一元二次方程的应用,此题的创意在第2问,同时考虑进出两个方面的问题,比较后得结论.23.(1)x 1=0,x 2=﹣13;(2)x 1=2,x 2=﹣1 【分析】(1)将方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可; (2)将方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)3x 2+x =0,x (3x+1)=0,x =0或3x+1=0,x 1=0,x 2=﹣13; (2)x 2﹣x ﹣2=0,(x ﹣2)(x+1)=0,x ﹣2=0或x+1=0,x 1=2,x 2=﹣1.【点睛】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键;24.(1)23m n +=;(2)2a b c ++=.【分析】(1)将方程2222210m mn n n -+-+=的左边分组配方,再根据偶次方的非负性,可求得mn 、的值,最后代入2m n +即可解题; (2)由6a b -=整理得,6+a b =,代入已知等式中,利用完全平方公式化简,最后由偶次方的非负性解题即可【详解】解:(1)∵2222210m mn n n -+-+=∴()()2222210m mn nn n -++-+= ∴()()2210m n n -+-=∴()20m n -=,()210n -= ∴1n =,1m n ==∴22113m n +=⨯+=;(2)∵6a b -=,∴6a b =+∵24130ab c c +-+=2(6)4130b b c c ∴++-+=∴22(69)(44)0b b c c +++-+=∴()()22320b c ++-= ∴()230b +=,()220c -= ∴3b =-,2c =∴()633a =+-=∴()3322a b c ++=+-+=.【点睛】本题考查配方法的应用,涉及完全平方公式化简、偶次方的非负性,是重要考点,难度较易,掌握相关知识是解题关键.25.(1)当AB 长度为15m 时,矩形菜园的面积为2150m ;(2)不能围成面积为2210m 的菜园,见解析【分析】(1)设当AB 长度为xm ,根据“矩形菜园的面积为2150m ”,列出关于x 的方程,即可求解;(2)如果矩形菜园面积为2210m 时,列出关于x 的一元二次方程,利用判别式,即可得到结论.【详解】解:(1)设当AB 长度为xm ,矩形菜园的面积为2150m .则()402150x x -=,解得:5x =或15x =当5x =时,40230x -=,不符合题意.5x ∴=舍去答:当AB 长度为15m 时,矩形菜园的面积为2150m ;(2)不能围成,如果矩形菜园面积为2210m 时,则:22402100x x -+=,∵800∆=-<,方程没有实数根.∴不能围成面积为2210m 的菜园.【点睛】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.26.(1)证明见解析;(2)13x =-23x =-【分析】(1)根据一元二次方程判别式的性质分析,即可得到答案;(2)通过配方法求解一元二次方程,即可得到答案.【详解】(1)∵2224(2)48(2)40k k k k k ∆=--=-+=-+>∴无论k 取何值时,方程总有两个不相等的实数根;(2)当6k =时,原方程为:2640x x ++=,∴2695x x ++=∴()235x += ∴3x =-±∴13x =-23x =-.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式性质,从而完成求解.。
上海中学自招数学真题(含答案)
上海中学自主招生试题1、因式分解:326114x x x -++=.【答案】()()()13421x x x --+.【解析】容易发现1x =是方程3261140x x x -++=的解,因此原式可以提出因式(1)x -,得到2(1)(654)x x x ---,对2(654)x x --用十字相乘可以得到原式等于(1)(34)(21)x x x --+.2、设0a b >>,224a b ab +=,则a ba b+=- .【解析】由条件可得2()6a b ab +=,2()2a b ab -=.因此22()63()2a b aba b ab+==-.由于0a b +>,0a b ->,所以a ba b+=-3、若210x x +-=,则3223x x ++=.【答案】4.【解析】对多项式用带余除法可得32223(1)(1)4x x x x x ++=+-++,而由条件2(1)(1)0x x x +-+=,因此原式的值等于4.4、已知()()()24b c a b c a -=--,且0a ≠,则b ca+=_________. 【答案】2.【解析】令a b m -=,c a n -=,则c b m n -=+, 代入()()()24b c a b c a -=--中得()24m n mn +=, ()20m n ∴-=,m n ∴=,即a b c a -=-,即2a b c =+,2b ca+∴=.5、一个袋子里装有两个红球和一个白球(仅颜色不同),第一次从中取出一个球,记下颜色后放回,摇匀,第二次从中取出一个球,则两次都是红球的概率是 .【答案】49.【解析】第一次取出红球的概率为23,且无论第一次取出什么球,第二次取出红球的概率仍为23,因此两次都是红球的概率是224339⨯=.6、直线:l y =与x 、y 轴交于点A 、B ,AOB ∆关于直线AB 对称得到ACB ∆,则点C 的坐标是.【答案】32⎛ ⎝⎭.【解析】根据函数解析式可以算出A 、B 的坐标分别为(1,0)A,B .由于ACB 是AOB 关于直线AB 对称得到的,所以AC AO =,BC BO =.设(,)C m n,则可列方程组2222(1)1(3m n m n ⎧-+=⎪⎨+=⎪⎩,解得32m n ⎧=⎪⎪⎨⎪=⎪⎩O重合,舍去.因此3(2C .7、一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠,使A 、C 两点重合,折痕长是. 【答案】454. 【解析】由题意知折痕是线段AC 的中垂线,设它与AB ,CD 分别交于,M N .设MB x =,则由MC MA =可列方程2229(12)x x +=-,解得218x =.同理有218DN =.作ME CD ⊥,垂足为E ,则四边形MECB 是矩形,因此9ME BC ==,218CE BM ==.可知274NE CD DN CE =--=.而454MN ===.因此折痕长为454.8、任给一个正整数n ,如果n 是偶数,就将它减半——得到2n,如果n 是奇数,则将它乘以3加1——得到31n +,不断重复这样的运算,如果对正整数n (视为首项)按照上述规则实施变换后(有些书可能多次出现)的第8项为1,则n 的所有可能取值为________. 【答案】128,21,20,3,16,2.【解析】设某一项为k ,则它的前一项应该为2k 或者13k -. 其中13k -必为奇数,即()4mod 6k ≡, 按照上述方法从1开始反向操作7次即可.9、正六边形ABCDED 的面积是6平方厘米,联结AC 、CE 、EA 、BD 、DF 、FB ,求阴影部分小正六边形的面积为.【答案】22cm .【解析】右图中,阴影部分是正六边形,且与正六边形ABCDEF的相似比为1:3.因为ABCDEF 的面积是26cm ,所以阴影部分的面积为2632()cm ÷=.10、已知()()21244y x m x m =+-+-与2y mx =在x 取任意实数时,1y ,2y 至少有一个是正数,m 的取值范围是________. 【答案】4m <.【解析】取0x =,则14y m =-,20y =,40m ∴->,4m <, 此时函数1y 的对称轴404mx -=-<, 则对任意0x ≥总有10y >,只需考虑0x <; 若04m ≤<,此时20y ≤, 则对任意0x <,有10y >,()()24840m m ∴∆=---<,解得04m ≤<;若0m <,此时20y >对0x <恒成立; 综上,4m <.11、已知a ,b ,c 是互不相等的实数,x 是任意实数,化简:()()()()()()()()()222x a x b x c a b a c c b a b c a c b ---++=------________.【答案】1.【解析】令()()()()()()()()()()2222x a x b x c f x mx nx k a b a c c b a b c a c b ---=++=++------, ()()()1f a f b f c ∴===,即222111ma na k mb nb k mc nc k ⎧++=⎪++=⎨⎪++=⎩,01m n k ==⎧∴⎨=⎩ ,即()1f x ≡.12、已知实数a ,b 满足221a ab b ++=,22t ab a b =--,则t 的取值范围是________.【答案】133t -≤≤-.【解析】方法一:考虑基本不等式222a b ab +≥. 则2212a b ab ab +=-≥,则113ab -≤≤, 又2221t ab a b ab =--=-,133t ∴-≤≤-,其中1a =,1b =-时,3t =-成立;a b ==时,13t =-成立. 方法二:逆用韦达定理. 12t ab +=,()2302t a b ++=≥,3t ∴≥-,a b +=,故a ,b 是方程2102t x ++=的两个根, 314022t t ++∴∆=-⨯≥,解得13t ≤-,133t ∴-≤≤-.13、(1)求边长为1的正五边形对角线长;(2)求sin18︒.【答案】(1(2. 【解析】(1)设正五边形ABCDE ,联结,AC BE ,且设它们交于点M .可以计算得到36ABM ABC ∠=∠=︒,因此ABM ACB ,可得2AB AM AC =⋅.同时,72BMC CBM ∠=∠=︒,所以BC MC =.若正五边形边长为1,则1AB BC CM ===,设AC x =,则由2AB AM AC =⋅可列方程21(1)x x =-,解得x去). (2)根据诱导公式,sin18cos72︒=︒.在(1)的五边形中,BM AM AC CM ==-=.作CH BM ⊥,垂足为H ,则等腰三角形BMC 中12BH HM BM ===72CBM ∠=︒,所以sin18cos72BH BC ︒=︒==.14、(1)()32f x x ax bx c =+++,()()()01233f f f <-=-=-≤,求c 的取值范围;(2)()432f x x ax bx cx d =++++,()110f =,()220f =,()330f =,求()()106f f +-.【答案】(1)69c <≤ ;(2)8104.【解析】(1)()()()01233f f f <-=-=-≤,()0f x k ∴-=有三个实根1,2,3x =---,()()()()123f x k x x x ∴-=+++,展开得6c k =+,69c ∴<≤;(2)方程()100f x x -=有三个实根1,2,3x =,记第4个根为x p =,则()()()()()10123f x x x p x x x -=----,()()()()()12310f x x p x x x x ∴=----+,()()()()()()()106109871006789608104f f p p ∴+-=-⨯⨯⨯++--⨯-⨯-⨯--=.15、我们学过直线与圆的位置关系,根据材料完成问题(1)(2)类似给出背景知识:平面:0Ax By Cz D α+++=; 球:()()()2222x a y b z c R -+-+-=;点(),,a b c 到平面:0Ax By Cz D α+++=的距离公式:d =;球心到平面的距离为d ,当d R <时,球与平面相交,当d R =时,球与平面相切,当d R >时,球与平面相离;问题(1):若实数m 、n 、k 满足1m n k ++=,求222m n k ++的最小值; 问题(2)()12x y z =++. 【答案】(1)13;(2)123x y z =⎧⎪=⎨⎪=⎩.【解析】(1)条件可转化为点(,,)m n k 在平面10x y z ++-=上,而222m n k ++的最小值即该点到原点距离平方的最小值.这个距离最小为原点到平面10x y z ++-=的距离,而原点到平面的距离可由材料公式计算得到:3d ==,因此222m n k ++的最小值为213d =,等号在13m n k ===时取到.(2)移项后配方可以得到2221111)1)1)0222-+-+=,因此必有101010-==-=,于是解得123xyz=⎧⎪=⎨⎪=⎩.。
第22章 一元二次方程 华东师大版九年级数学上册单元测试卷(含答案)
第22章测试卷一、选择题:本大题共10小题,每小题3分,合计30分.1. 用公式法解一元二次方程3x2﹣4x=8时,化方程为一般式,当中的a,b,c依次为( )A.3,﹣4,8B.3,﹣4,﹣8C.3,4,﹣8D.3,4,8【答案】B解:∵3x2﹣4x=8,∴3x2﹣4x﹣8=0,则a=3,b=﹣4,c=﹣8,故选:B.2. (2020秋•内乡县期末)设a,b是方程x2+x﹣2021=0的两个实数根,则a2+b2+a+b的值是( )A.0B.2020C.4040D.4042【答案】D【分析】根据一元二次方程的解及根与系数的关系可得出a2+a=2021、b2+b=2021、a+b =﹣1,将其代入则a2+b2+a+b中即可求出结论.解:∵a,b是方程x2+x﹣2020=0的两个实数根,∴a2+a=2021、b2+b=2021、a+b=﹣1,∴则a2+b2+a+b=(a2+a)+(b2+b)=2021+2021=4042.故选:D.3. (2020秋•洛阳新安期中)某食品厂七月份生产面包52万个,第三季度生产面包共196万个,若x满足的方程是52+52(1+x)+52(1+x)2=196,则x表示的意义是( )A.该厂七月份的增长率B.该厂八月份的增长率C.该厂七、八月份平均每月的增长率D.该厂八、九月份平均每月的增长率【答案】D【分析】一般增长后的量=增长前的量×(1+增长率),根据方程结合题意确定x的意义即可.解:依题意得八、九月份的产量为52(1+x)、52(1+x)2,∴52+52(1+x)+52(1+x)2=196中的x表示的意义是该厂八、九月份平均每月的增长率,故选:D.4. (2020秋•宛城区期末)欧几里得的《原本》记载,方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=BC.则该方程的一个正根是( )A.AC的长B.CD的长C.AD的长D.BC的长【答案】C【分析】在Rt△ABC中,由勾股定理可得出AC2+BC2=AB2,结合AB=AD+BD,AC=b,BD=BC=,即可得出AD2+aAD=b2,进而可得出AD的长是方程x2+ax=b2的一个正根.解:在Rt△ABC中,由勾股定理可得AC2+BC2=AB2.∵AC=b,BD=BC=,∴b2+()2=(AD+)2=AD2+aAD+()2,∴AD2+aAD=b2.∵AD2+aAD=b2与方程x2+ax=b2相同,且AD的长度为正数,∴AD的长是方程x2+ax=b2的一个正根.故选:C.5. (2020驻马店新蔡期中)已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是()A. 34B.30C.30或34D.30或36【答案】A.【解析】分两种情况讨论:①若4为等腰三角形底边长,则a,b是两腰,∴方程x2-12x+m+2=0有两个相等实根,∴△=(-12)2-4×1×(m+2)=136-4m=0,∴m=34.此时方程为x2-12x+36=0,解得x1=x2=6.∴三边为6,6,4,满足三边关系,符合题意.②若4为等腰三角形腰长,则a,b中有一条边也为4,∴方程x2-12x+m+2=0有一根为4.∴42-12×4+m+2=0,解得,m=30.此时方程为x2-12x+32=0,解得x1=4,x2=8.∴三边为4,4,8,不满足三边关系,故舍去.综上,m的值为34.6. 如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P在AB上以1cm/s的速度向B点移动,点Q在BC上以2cm/s的速度向C 点移动.当点Q移动到点C后停止,点P也随之停止移动.下列时刻中,能使△PBQ的面积为15cm2的是( )A.2s B.3s C.4s D.5s【答案】B【分析】设当运动时间为t秒时,△PBQ的面积为15cm2,利用三角形面积的计算公式,可得出关于t的一元二次方程,解之即可得出t值,再结合当点Q移动到点C后停止点P 也随之停止移动,即可确定t值.解:设当运动时间为t秒时,△PBQ的面积为15cm2,依题意得:×(8﹣t)×2t=15,整理得:t2﹣8t+15=0,解得:t1=3,t2=5.又∵2t≤6,∴t≤3,∴t=3.故选:B.7.(2020•南阳南召期中)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是( )A.y2﹣2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y﹣2=0【答案】A【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2-2y+1=0即可求解.【解析】把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.8.(2020·湖北荆州·中考真题)定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数)是关于x的方程,则它的根的情况是()A.有一个实根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【答案】B【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,,可得,即可得出答案.【解析】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.9.(2020·洛阳孟津期末)关于x的一元二次方程有两个实数根,,则k的值()A.0或2B.-2或2C.-2D.2【答案】D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D. 10.(2021·驻马店新蔡期末)将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为()A.B.C.D.【答案】C【分析】先求得,代入即可得出答案.【解析】∵,∴,,∴=====,∵,且,∴,∴原式=,故选:C.二、填空题:本大题共5小题,每小题3分,合计15分.11. 一元二次方程的根是_____.【答案】【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【解析】解:或,所以.故答案为.12.(2021·南阳邓州期中)已知关于x的一元二次方程有两个相等的实数根,则的值等于_______.【答案】2.【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【解析】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:,则,故答案为2.13. 1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.【答案】x(x﹣12)=864.【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.14.(2020·2020·周口商水期末)如图是一张长,宽的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是的有盖的长方体铁盒.则剪去的正方形的边长为______.【答案】【分析】根据题意设出未知数,列出三组等式解出即可.【解析】设底面长为a,宽为b,正方形边长为x,由题意得:,解得a=10-2x,b=6-x,代入ab=24中得:(10-2x)(6-x)=24,整理得:2x2-11x+18=0.解得x=2或x=9(舍去).故答案为2.15. (2021·洛阳偃师期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程x2﹣6x+8=0的根为的x1=2,x2=4,则x1=x2,则称方程x2﹣6x+8=0为“半根方程”.若方程ax2+bx+c=0是“半根方程”,且点P(a,b)是函数y=x图象上的一动点,则的值为 .三、解答题:本大题共8小题,合计75分.第16题8分,第17、18、19、20题每题9分,第21、22题每题10分,第23题11分16. (2020·南阳镇平期中)(1)用配方法解方程;(2)用公式法解方程:.解:(1)移项得:x2-2x=2,配方得:x2-2x+1=2+1,(x-1)2=3,开方得:,,,所以原方程的解为:,;(2)∵a=1,b=2,c=-5,,∴,∴.17. (2020秋•北京期末)已知关于x的方程mx2+nx﹣2=0(m≠0).(1)求证:当n=m﹣2时,方程总有两个实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.【分析】(1)根据根的判别式符号进行判断;(2)根据判别式以及一元二次方程的解法即可求出答案.(1)证明:△=(m﹣2)2﹣4m×(﹣2)=m2+4m+4=(m+2)2≥0,∴方程总有两个实数根;(2)由题意可知,m≠0△=n2﹣4m×(﹣2)=n2+8m=0,即:n2=﹣8m.以下答案不唯一,如:当n=4,m=﹣2时,方程为x2﹣2x+1=0.解得x1=x2=1.18. (2020秋•洛阳偃师期中)如图,某居民小区改造,计划在居民小区的一块长50米,宽20米的矩形空地内修建两块相同的矩形绿地,使得两块矩形绿地之间及周边留有宽度相等的人行通道,且两块矩形绿地的面积之和为原矩形空地面积的,求人行通道的宽度是多少米?【分析】设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据两块矩形绿地的面积之和为原矩形空地面积的,即可得出关于x的一元二次方程,解方程即可.【解答】解:设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据题意得:(50﹣3x)(20﹣2x)=×50×20,整理得:x1=25(舍去),x2=,∴x=.答:人行通道的宽度是米.19. (2020•南阳镇平模拟)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为_______,第五个图中y的值为_______.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为_____,当时,对应的______.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?【答案】(1)10,15;(2),1128;(3)20【分析】(1)观察图形,可以找出第四和第五个图中的y值;(2)根据y值随x值的变化,可找出,再代入可求出当时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵,∴,当时,.故答案为:;1128.(3)依题意,得:,化简,得:,解得:(不合题意,舍去).答:该班共有20名女生.20. (2020秋•南阳市三中校级月考)阅读下面材料:若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=﹣,x1x2=.∵,∴=a[x2﹣(x1+x2)x+x1x2]=a(x﹣x1)(x﹣x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x﹣x1)(x﹣x2).(1)请用上面的方法将多项式4x2+8x﹣1分解因式.(2)判断二次三项式2x2﹣4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.(3)如果关于x的二次三项式mx2﹣2(m+1)x+(m+1)(1﹣m)能用上面的方法分解因式,试求出m的取值范围.【分析】(1)令多项式等于0,得到一个一元二次方程,利用公式法求出方程的两解,代入ax2+bx+c=a(x﹣x1)(x﹣x2)中即可把多项式分解因式;(2)令二次三项式等于0,找出其中的a,b及c,计算出b2﹣4ac,发现其值小于0,所以此方程无解,故此二次三项式不能利用上面的方法分解因式;(3)因为此二次三项式在实数范围内能利用上面的方法分解因式,所以令此二次三项式等于0,得到的方程有解,即b2﹣4ac大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.解:(1)令4x2+8x﹣1=0,∵a=4,b=8,c=﹣1,b2﹣4ac=64+16=80>0,∴x1=,x2=,则4x2+8x﹣1=4(x﹣)(x﹣);(2)二次三项式2x2﹣4x+7在实数范围内不能利用上面的方法分解因式,理由如下:令2x2﹣4x+7=0,∵b2﹣4ac=(﹣4)2﹣56=﹣40<0,∴此方程无解,则此二次三项式不能用上面的方法分解因式;(3)令mx2﹣2(m+1)x+(m+1)(1﹣m)=0,由此二次三项式能用上面的方法分解因式,即有解,∴b2﹣4ac=4(m+1)2﹣4m(m+1)(1﹣m)≥0,化简得:(m+1)[4(m+1)+4m(m﹣1)]≥0,即4(m+1)(m2+1)≥0,∵m2+1≥1>0,∴m+1≥0,解得m≥﹣1,又m≠0,1﹣m≠0则m≥﹣1且m≠0且m≠1时,此二次三项式能用上面的方法分解因式.21. (2020·南阳镇平期中)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”,例如,一元二次方程x2+x =0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”;(1)通过计算,判断下列方程是否是“邻根方程”.①x2﹣x﹣12=0;②x2﹣9x+20=0;(2)已知关于x的方程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值.解:(1)①分解因式得:(x﹣4)(x+3)=0,解得:x=4或x=﹣3,∵4≠﹣3+1,∴x2﹣x﹣12=0不是“邻根方程”;②分解因式得:(x﹣4)(x﹣5)=0,解得:x=4或x=5,∵5=4+1,∴x2﹣9x+20=0是“邻根方程”;(2)分解因式得:(x+m)(x﹣1)=0,解得:x=﹣m或x=1,∵方程程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程,∴﹣m=1+1或﹣m=1﹣1,∴m=0或﹣2.22. (2020•鹤壁市期末)发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴x==∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+=0,∴x1=,x2=.当为腰时,+<,∴、、不能构成三角形;当为腰时,等腰三角形的三边为、、,此时周长为++=.答:当m=2时,△ABC的周长为.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(﹣)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.23.(2020·内蒙古赤峰·中考真题)阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为,,则有,.问题解决:(1)请你写出三个能构成“和谐三数组”的实数;(2)若,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.【答案】(1),2,3(答案不唯一);(2)见解析;(3)m=﹣4或﹣2或2.【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出,然后再求出,只要满足=即可;(3)先求出三点的纵坐标y1,y2,y3,然后由“和谐三数组”可得y1,y2,y3之间的关系,进而可得关于m的方程,解方程即得结果.解:(1)∵,∴,2,3是“和谐三数组”;故答案为:,2,3(答案不唯一);(2)证明:∵,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,∴,,∴,∵是关于x的方程bx+c=0(b,c均不为0)的解,∴,∴,∴=,∴x1,x2,x3可以构成“和谐三数组”;(3)∵A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,∴,,,∵三点的纵坐标y1,y2,y3恰好构成“和谐三数组”,∴或或,即或或,解得:m=﹣4或﹣2或2.若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为( )A.2017B.2020C.2019D.2018B已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.。
上海进才中学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)
一、选择题1.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12 2.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20 3.用配方法解方程2x 4x 70+-=,方程应变形为( ) A .2(2)3x += B .2 (x+2)11= C .2 (2)3?x -= D .2()211x -= 4.若x=0是关于x 的一元二次方程(a+2)x 2- a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 5.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 6.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定7.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14- 8.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( ) A .4 B .1 C .﹣1 D .﹣49.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x += B .24410x x -+= C .210x x ++=D .210x x +-= 10.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定11.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .只有一个实数根D .没有实数根12.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3 B .-1 C .3或1 D .3或-1 二、填空题13.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.14.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.15.当m =___________时,方程(2150m m xmx --+=是一元二次方程. 16.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.17.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.18.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____. 20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根.求m 的取值范围.22.(1)x 2﹣8x+1=0;(2)2(x ﹣2)2=x 2﹣4.23.用适当的方法解下列方程:(1)22580x x --=;(2)23(5)2(5)x x -=-.24.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值.25.解方程:(1)2x 2+1=3x (配方法)(2)(2x-1)2=(3-x)2(因式分解法)26.(12. (2)解一元二次方程:x 2﹣4x ﹣5=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.3.B解析:B【分析】根据配方法解一元二次方程的方法解答即可.【详解】解:用配方法解方程2470x x ,方程应变形为24411x x ++=,即()2211x +=. 故选:B .【点睛】本题考查了一元二次方程的解法,熟练掌握配方的方法是解题的关键. 4.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根;故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6.C解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案.【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8.∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根.故选:C .【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.7.B解析:B【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0, m 1-4≥, 关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m 的取值范围是m 1-4≥且m≠2. 故选:B .【点睛】本题考查关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x 的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.8.C解析:C【分析】据一元二次方程的根与系数的关系得到两根之和即可.【详解】解:∵方程x 2-4x-1=0的两个根是x 1,x 2,∴x 1∙x 2=-1.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0的根与系数关系,两根之和是-b a ,两根之积是c a . 9.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.10.C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.11.B解析:B【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b 2﹣4ac =9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.A解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题13.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6根据新定义可得出m、n为方程x2+2x﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m2+n2=(m+n)2﹣2mn中即可得出结论.【详解】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m2+n2=(m+n)2﹣2mn=6.故答案为6.【点睛】本题考查了根与系数的关系,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.14.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x;第一年粮食的产量为:3000(1+x);第二年粮食的产量为:3000(1+x)(1+x)=3000(1+x)2;依题意,可列方程:3000(1+x)2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答.【详解】∵(2150m m x mx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.16.且【分析】根据题意结合一元二次方程的定义和根的判别式可得关于k 的不等式然后解不等式即可求解【详解】解:∵关于的一元二次方程有两个不相等的实数根∴∴的取值范围是且故答案为:且【点睛】本题考查了一元二次 解析:0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根, ∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩, ∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.17.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】解:∵a ,b 是方程22430x x +-=的两根,∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.18.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造 解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键19.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.m<2.【分析】根据方程有两个不相等的实数根列得4-4(m-1)>0,求解即可.【详解】∵方程有两个不相等的实数根,∴4-4(m-1)>0,解得m<2.【点睛】此题考查一元二次方程根的判别式:当∆>0时,方程有两个不相等的实数根;当∆=0时,方程有两个相等的实数根;当∆<0时,方程没有实数根,熟记根的判别式是解题的关键.22.(1)x 1=x 2=42)x 1=2,x 2=6.【分析】(1)先配方、然后运用直接开平方求解即可;(2)先将等式右边因式分解,然后移项,最后用因式分解法求解即可.【详解】解:(1)x 2﹣8x+1=0,x 2﹣8x =﹣1,x 2﹣8x+16=﹣1+16,(x ﹣4)2=15,∴x ﹣4=∴x1=x 2=4(2)∵2(x ﹣2)2=x 2﹣4,∴2(x ﹣2)2﹣(x+2)(x ﹣2)=0,则(x ﹣2)(x ﹣6)=0,∴x ﹣2=0或x ﹣6=0.解得x 1=2,x 2=6.【点睛】本题主要考查了一元二次方程的解法,掌握配方法、直接开平方法和因式分解法是解答本题的关键.23.(1)12x x ==2)12175,3x x == 【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,x ∴==,12x x ∴== (2)23(5)2(5)0x x ---=, 移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.24.(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.25.(1)11x =,212x =;(2)12x =-,243x = 【分析】(1)首先把方程移项变形为2x 2-3x=-1的形式,二次项系数化为1,再进行配方即可; (2)根据平方差公式可以解答此方程.【详解】(1)解:移项,得2x 2-3x=-1二次项系数化为1,得x 2-32x =12- 配方,得x 2-32x +234⎛⎫ ⎪⎝⎭=12-+234⎛⎫ ⎪⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 解得11x =,212x =. (2)解:原方程化为: ()()222130x x ---=()()2132130x x x x -+---+=()()2340x x +-=20x +=或340x -=解得 12x =-,243x =. 【点睛】 此题考查了解一元二次方程-因式分解法(公式法),配方法,熟练掌握各种解法是解本题的关键.26.(1)2;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
八年级数学下册-专题. 一元二次方程根与系数的关系【十大题型】(举一反三)(沪科版)(解析版)
专题17.4一元二次方程根与系数的关系【十大题型】【沪科版】【题型1由根与系数的关系直接求代数式的值】 (1)【题型2由根与系数的关系和方程的解通过代换求代数式的值】 (4)【题型3由根与系数的关系和方程的解通过降次求代数式的值】 (6)【题型4由方程两根满足关系求字母的值】 (10)【题型5不解方程由根与系数的关系判断根的正负】 (13)【题型6由方程两根的不等关系确定字母系数的取值范围】 (15)【题型7构造一元二次方程求代数式的值】 (19)【题型8已知方程根的情况判断另一个方程】 (21)【题型9根与系数关系中的新定义问题】 (25)【题型10根与系数的关系和根的判别式的综合应用】......................................................错误!未定义书签。
【知识点一元二次方程的根与系数的关系】若一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两根为x1,x2,则x1+x2=−b a,x1⋅x2=c a.注意它的使用条件为,a≠0,Δ≥0.【题型1由根与系数的关系直接求代数式的值】【例1】(2023春·广东广州·八年级统考期末)若1,2是一元二次方程2−2−3=0的两个根,则12+22+12的值是()A.−7B.−1C.1D.7【答案】D【分析】利用两根之和为1+2=−,两根之积为12=,计算即可.【详解】解:∵1、2是一元二次方程2−2−3=0的两个根,∴1+2=2,12=−3,∴12+22+12=1+22−12=4−−3=7,故选:D.【点睛】本题主要考查了根与系数的关系,解题的关键是掌握根与系数的关系的公式.【变式1-1】(2023·湖北武汉·统考模拟预测)已知m,n是一元二次方程2+3−2=0的两根,则2K−r32−2的值是()A.−3B.−2C.−13D.−12【答案】C【分析】根据一元二次方程根与系数的关系得出+=−3,然后将分式化简,代入+=−3即可求解.【详解】解:∵,是一元二次方程2+3−2=0的两根,∴+=−3,∴2r322===+=1+=−13,故选:C.【点睛】本题考查了一元二次方程根与系数的关系,分式的化简求值,熟练掌握以上知识是解题的关键.【变式1-2】(2023·上海·八年级假期作业)已知a,b是方程2+6+4=0的两个根,则+的值.【答案】−14【分析】由根与系数关系知+=−6,B=4,即知a<0,b<0,化简原式+=−B((rp2−2B B),所以原式=−14故答案为:﹣14.【详解】解:∵a,b是方程2+6+4=0的两个根,∴+=−6,B=4,∴a<0,b<0,∴=−B =−B(+) =−B(2+2B) =−B((rp2−2B B)∴原式=−4×(−6)2−2×44=−2×7=−14故答案为:﹣14.【点睛】本题主要考查根与系数关系、完全平方公式变形及二次根式的运算及化简;能够根据a,b的关系式确定其取值范围,进而准确处理二次根式的运算及化简是解题的关键.【变式1-3】(2023春·八年级单元测试)已知1、2是方程2−7+8=0的两根,且1>2,则21+32的值为.【分析】由题意可得1+2=7,2=.【详解】解:∵1、2是方程2−7+8=0的两根,∴1+2=7,==∵1>,∴2=∴21+32=2===【点睛】本题考查了一元二次方程的求解、根与系数的关系以及二次根式的混合运算,熟练掌握一元二次方程的相关知识、正确计算是解题的关键.【题型2由根与系数的关系和方程的解通过代换求代数式的值】【例2】(2023春·浙江·八年级专题练习)设α、β是方程2++2012=0的两个实数根,则2+2+的值为()A.-2014B.2014C.2013D.-2013【答案】D【分析】先根据一元二次方程的解的定义得到x2+x+2012=0,即α2+α=-2012,则α2+2α+可化为α2+α+α+β=-2012+α+β,然后利用根与系数的关系得到α+β=-1,再利用整体代入的方法计算即可.【详解】∵α是方程x2+x+2012=0的根,∴α2+α+2012=0,即α2+α=-2012,∴α2+2α+β=α2+α+α+β=-2012+α+β,∵α,β是方程x2+x+2012=0的两个实数根,∴α+β=-1,∴α2+2α+β=-2012-1=-2013.故选D.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.【变式2-1】(2023春·湖北恩施·八年级统考期中)已知,是关于x的一元二次方程2+3−1=0的两个实数根,则+22+的值为()A.32B.5C.2D.−2【答案】C【分析】根据一元二次方程的根的定义可得2+3=1,根据一元二次方程根与系数的关系可得B=−1,代入代数式即可求解.【详解】解:∵,是关于x的一元二次方程2+3−1=0的两个实数根,∴2+3=1,+=−3∴+22+=2+4+4+=2+3+++4=1−3+4=2,故选:C.【点睛】本题考查了一元二次方程的根的定义,一元二次方程根与系数的关系,得出2+3=1,+=−3是解题的关键.【变式2-2】(2023·江西萍乡·校考模拟预测)若、是一元二次方程2−3−9=0的两个根,则2−4−的值是.【答案】6【分析】根据一元二次方程根与系数的关系可得+=3,由根的定义可得2−3=9,代入即可得答案.【详解】∵2−3=9,+=3,∴2−4−=2−3−−=2−3−+=6.故答案为:6【点睛】本题考查一元二次方程根与系数的关系,解题的关键是掌握根与系数的关系及方程根的概念.【变式2-3】(2023春·安徽池州·八年级统考期末)已知和是方程2+2023+1=0的两个根,则2+2024+22+2024+2的值为()A.−2021B.2021C.−2023D.2023【答案】A【分析】由和是方程2+2023+1=0的两个根,根据根于系数关系可得,⋅=1,+=−2023,由一元二次方程根的定义可得2+2023+1=0,2+2023+1=0,即可求解;【详解】∵和是方程2+2023+1=0的两个根,∴2+2023+1=0,2+2023+1=0,⋅=1,+=−2023,∴2+2024+22+2024+2=2+2023+1++12+2023+1++1=+1+1=⋅+++1=1−2023+1=−2021故选A.【点睛】该题考查了根与系数的关系以及一元二次方程的解,熟记一元二次方程根与系数关系公式是解答该题的关键.【题型3由根与系数的关系和方程的解通过降次求代数式的值】【例3】(2023春·广东广州·八年级广州市第二中学校考阶段练习)若p、q是方程2−3−1=0的两个不相等的实数根,则代数式3−42−2+5的值为.【答案】−2【分析】根据一元二次方程的解的定义得到2−3−1=0,再根据根与系数的关系得到+=3,然后利用整体思想计算即可.【详解】∵若p、q是方程2−3−1=0的两个不相等的实数根,∴2−3−1=0,+=3,∴2=3+1,∴3−42−2+5=2−3−1−2+−2+5=−2+−2+5=−3−1+−2+5=−2−2+4=−2++4=−2×3+4=−2,故答案为:−2.【点睛】本题考查了一元二次方程B2+B+=0的根与系数的关系,一元二次方程的解,利用整体思想降次消元是解题的关键.【变式3-1】(2023春·山东日照·八年级统考期末)已知,是方程2−−3=0的两个根,则代数2+22+ +B的值为.【答案】8【分析】根据一元二次方程根与系数的关系以及解的定义,得+=1,B=−3,2−−3=0,2−−3=0,再代入降次求值即可.【详解】解:由题意,得+=1,B=−3,2−−3=0,2−−3=0,2=+3,2=+3,原式=+3+2+6+−3,=2(+p+6,=2×1+6,=8.故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,整式的化简求值,本题的关键是熟练掌握一元二次方程根与系数的关系.(2023春·浙江温州·八年级校考阶段练习)已知、是方程2+−1=0的两根,则4−3+5【变式3-2】的值是()A.7B.8C.9D.10【答案】C【分析】根据一元二次方程解的定义和根与系数的关系得出+=−1,B=−1,2=1−,2=1−,再对所求式子变形整理,求出答案即可.【详解】解:∵、是方程2+−1=0的两根,∴+=−1,B=−1,2=1−,2=1−,∴4−3+5=3×−1−3+5=−1−−1−+5=−+2−+2+5=−+1−−+1−+5=−2++7=−2×−1+7=9,故选:C.【点睛】本题考查了一元二次方程解的定义和根与系数的关系,若一元二次方程B2+B+=0(a、b、c 为常数,≠0)的两根为1,2,则1+2=−,1⋅2=.【变式3-3】(2023春·八年级课时练习)已知,是方程2−−1=0的两根,则代数式23+5+33+ 3+1的值是()A.19B.20C.14D.15【答案】D【分析】由根与系数的关系可得:a+b=1,再由a与b是方程的两根可得a2=a+1,b2=b+1,把a3与b3采用降次的方法即可求得结果的值.【详解】∵a与b是方程2−−1=0的两根∴a+b=1,a2-a-1=0,b2-b-1=0∴a2=a+1,b2=b+1∵3=2·=(+1)=2+=+1+=2+1,同理:3=2+1∴23+5+33+3+1=2(2+1)+5+3(2+1)+3+1=9+9+6=9(+p+6=9×1+6=15故选:D.【点睛】本题考查了一元二次方程的解的概论、一元二次方程根与系数的关系,求代数式的值,灵活进行整式的运算是解题的关键.【题型4由方程两根满足关系求字母的值】(2023·四川乐山·统考中考真题)若关于x的一元二次方程2−8+=0两根为1、2,且1=32,【例4】则m的值为()A.4B.8C.12D.16【答案】C【分析】根据一元二次方程根与系数的关系得出1+2=8,然后即可确定两个根,再由根与系数的关系求解即可.【详解】解:∵关于x的一元二次方程2−8+=0两根为1、2,∴1+2=8,∵1=32,∴2=2,1=6,∴=12=12,故选:C.【点睛】题目主要考查一元二次方程根与系数的关系,熟练掌握此关系是解题关键.【变式4-1】(2023·上海·八年级校考期中)已知关于x的方程2+(2−1)+2−1=0的两根为1,2满足:12+22=16+12,求实数k的值【答案】=−2【分析】利用根的判别式求出k的取值范围,利用根与系数的关系求出1+2=1−2,12=2−1,代入12+22=16+12,即可求得k的值.【详解】解:∵关于x的方程2+2−1+2−1=0的两根为1,2∴=2−4B=(2−1)2−4×1×(2−1)≥0解得:≤541+2=1−2,12=2−1∵12+22=16+12∴12+22−12=16(1+2)2−312=16代入1+2=1−2,12=2−1得:(1−2p2−3(2−1)=16解得:1=6,2=−2∵≤54∴=−2【点睛】本题考查一元二次方程根的判别式、根与系数的关系以及一元二次方程求解,熟练掌握相关知识点是解题关键.【变式4-2】(2023春·广东佛山·八年级校考阶段练习)方程2−2−4++1=0的两个实数根互为相反数,则的值是.【答案】−2【分析】设方程的两根分别为1,2,根据根与系数的关系得到1+2=2−4=0,解得=±2,然后分别计算Δ,最后确定=−2.【详解】解:设方程的两根分别为1,2,∵方程2−2−4++1=0的两个实数根互为相反数,,∴1+2=2−4=0,解得=±2,当=2,方程变为:2+3=0,Δ=−12<0,方程没有实数根,所以=2舍去;当=−2,方程变为:2−1=0,Δ=4>0,方程有两个不相等的实数根;∴=−2.故答案为:−2.【点睛】本题考查了一元二次方程B2+B+=0(≠0,,,为常数)根与系数的关系:若方程的两根分别为1,2,则1+2=−;1⋅2=.也考查了一元二次方程的根的判别式Δ=2−4B:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.【变式4-3】(2023春·安徽马鞍山·八年级安徽省马鞍山市第七中学校考期末)若、是关于的方程2+ 2+3+2=0的两个不相等的实数根,且1+1=−1,则的值为.【答案】3【分析】根据根与系数的关系得到+=−2−3,B=2,再根据1+1=−1得到2−2−3=0,解方程求出k的值,最后用根的判别式验证是否符合题意即可.【详解】解:∵、是关于的方程2+2+3+2=0的两个不相等的实数根,∴+=−2−3,B=2,∵1+1=−1,∴r B=−1,即+=−B,∴−−2−3=2,∴2−2−3=0,解得=3或=−1,又∵方程有两个不相等的实数根,∴Δ=2+32−42>0,∴>−34,∴=3,故答案为:3.【点睛】本题主要考查了一元二次方程根与系数的关系,根的判别式,解一元二次方程,熟知一元二次方程的相关知识是解题的关键.【题型5不解方程由根与系数的关系判断根的正负】【例5】(2023春·江苏南京·八年级专题练习)关于的方程−2+1=2(为常数)根的情况,下列结论中正确的是()A.有两个相异正根B.有两个相异负根C.有一个正根和一个负根D.无实数根【答案】C【分析】先对方程进行化简,然后再根据一元二次方程根的判别式可进行求解.【详解】解:由题意得:方程可化为2−−2−2=0,∴Δ=−12−4−2−2=1+8+42=42+9>0,∴该方程有两个不相等的实数根,设该方程的两个根为1,2,则根据根与系数的关系可知:1⋅2=−2−2<0,∴该方程的两个根为一正一负,故选C.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.【变式5-1】(2023春·安徽合肥·八年级统考期末)方程22−3+1=0根的符号是()A.两根一正一负B.两根都是负数C.两根都是正数D.无法确定【答案】C【分析】利用一元二次方程根与系数的关系分析求解.【详解】解:22−3+1=0的两根分别为1,2,则1+2=32>0,1⋅2=12>0,∴方程的两根同号,且两根都是正数,故选:C.【点睛】本题考查一元二次方程根与系数的关系,理解一元二次方程B2+B+=0≠0的两根1,2满足1+2=−,1⋅2=是解题关键.【变式5-2】(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)已知a、b、c是△A的三条边的长,那么方程B2+++4=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的负实根D.只有一个实数根【答案】C【分析】首先根据根的判别式Δ=2−4B,结合三角形三边关系,得出方程有两个不相等的实数根,再根据根与系数的关系,判断出两根之和和两根之积的符号,即可作出判断.【详解】解:在方程B2+++4=0中,可得:Δ=+2−4⋅4=+2−2,∵a、b、c是△A的三条边的长,∴>0,>0,>0.+>,即+2>2,∴+2−2>0,∴Δ>0,∴方程有两个不相等的实数根,又∵两根的和是−r<0,两根的积是4=14>0,∴方程有两个不等的负实根.故选:C【点睛】本题考查了一元二次方程根与系数的关系、一元二次方程根的判别式、三角形的三边关系,解本题的关键在熟练掌握根据一元二次方程根与系数的关系,判断出方程有两个不等的负实根.【变式5-3】(2023·八年级统考课时练习)已知<0,>0,<0,则方程B2−B−=0的根的情况是().A.有两个负根B.两根异号且正根绝对值较大C.有两个正根D.两根异号且负根绝对值较大【答案】D【分析】先计算△=b2+4ac,由a<0,b>0,c<0,得到△>0,然后根据判别式的意义得到方程有两个实数根.设方程两根为x1,x2.由12=−<0得到方程有异号两实数根,再由1+2=<0得到负根的绝对值大.【详解】△=(﹣b)2﹣4•a•(﹣c)=b2+4ac.∵a<0,b>0,c<0,∴b2>0,ac>0,∴△>0,∴方程有两个不相等的实数根.设方程两根为x1,x2.∵12=−<0,∴方程有异号两实数根.∵1+2=<0,∴负根的绝对值大.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式和根与系数的关系.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.【题型6由方程两根的不等关系确定字母系数的取值范围】【例6】(2023·四川成都·三模)若方程x2+(m﹣4)x+134﹣m=0有两个不相等的实数根x1和x2,且x1+x2>﹣3,x1x2<214,则m的取值范围为多少?【答案】﹣2<m<1或3<m<7【分析】由方程有两个不相等实数根结合根的判别式即可得出关于m的不等式,解不等式即可得出m的取值范围,结合根与系数的关系可得出关于m的不等式,解不等式可得出答案.【详解】解:∵方程x2+(m﹣4)x+134﹣m=0有两个不相等的实数根,∴b2﹣4ac=(﹣4)2﹣−>0,整理得:2−4+3>0,即(−3)(−1)>0,根据乘法法则得:−3>0−1>0或−3<0−1<0,解前一不等式组得:m>3;解后一不等式组得:m>1,∴原不等式的解集为:m>3或m<1;由题意得x1+x8=−=(4﹣m)>﹣3,解得m<7;∵x1x2==134−<214,解得m>﹣2.综上所述,﹣2<m<1或3<m<7.【点睛】本题考查了根与系数的关系、根的判别式,根据题意得出关于m的不等式是解题的关键【变式6-1】(2023·山东日照·日照港中学统考二模)已知关于x的一元二次方程2−4+−1=0的实数根1,2,满足312−1−2>5,则m的取值范围是.【答案】4<≤5【分析】根据根的判别式Δ≥0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【详解】解:由题意得:1+2=4,12=−1,所以312−1−2=3×(−1)−4,依题意得:(−4)2−4(−1)≥03×(−1)−4>5,解得4<m≤5.故答案是:4<m≤5.【点睛】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2-4ac>0时,一元二次方程有两个不相等的实数根,②当b2-4ac=0时,一元二次方程有两个相等的实数根,③当b2-4ac<0时,一元二次方程没有实数根.(2023春·江苏南通·八年级南通田家炳中学校考阶段练习)已知关于x的方程42−+5−−【变式6-2】9=0有两个不相等的实数根1,2,且1=−1,0<2<1,则k的取值范围是()A.−18<<−10B.0<<8C.−9<<−5D.−18<<−10且≠−13【答案】C【分析】根据一元二次方程的根的判别式,建立关于的不等式,求出的取值范围.根据12=−K94,1=−1,可得2=r94,结合0<2<1,从而最后确定的取值范围.【详解】解:∵方程42−+5−−9=0有两个不相等的实数根,∴Δ=−+52−4×4×−−9=+132>0,解得:≠−13,∵12=−K94,1=−1,∴2=r94又∵0<2<1,∴0<r94<1,解得:−9<<−5,综上,的取值范围为:−9<<−5.故选:C.【点睛】此题考查了一元二次方程根的判别式及根与系数的关系,关键是得到2=r94.【变式6-3】(2023春·八年级单元测试)设关于的方程B2+(+2)+9=0有两个不相等的实数根1,2,且1<−1<2,那么实数的取值范围是.【答案】0<<29【分析】由方程有两个不相等的实数根利用根的判别式Δ>0,可得出a的取值范围,利用根与系数的关系可得出1+2=−r2,12=9,由1<−1<2可得出(1+1)(2+1)<0,展开代入后可得出a的不等式,解之即可求出a取值范围.【详解】解:∵方程有两个不相等的实数根,∴△=(+2)2−4×9=−352+4+4>0,解得:−27<<25,∵1+2=−r2,12=9,1<−1<2,∴1+1<0,2+1>0,∴(1+1)(2+1)<0,∴12+(1+2)+1<0,即9−r2+1<0,当I0时,解得>29(舍去);当>0时,解得0<<29,又∵−27<<25,∴的取值范围为0<<29.故答案为:0<<29.【点睛】本题考查了根的判别式以及根与系数的关系,由根与系数的关系结合(1+1)(2+1)<0,找出关于a的不等式是解题的关键.【题型7构造一元二次方程求代数式的值】【例7】(2023·陕西西安·校考二模)已知mn≠1,且5m2+2010m+9=0,9n2+2010n+5=0,则的值为()A.﹣402B.59C.95D.6703【答案】C【详解】将9n2+2010n+5=0方程两边同除以n2,变形得:5×(1)2+2010×1+9=0,又5m2+2010m+9=0,∴m与1为方程5x2+2010x+9=0的两个解,则根据一元二次方程的根与系数的关系可得m•1==95.故选:C.【变式7-1】(2023春·广东梅州·八年级校考阶段练习)已知≥2,2−2B+2=0,2−2B+2=0,则(−1)2+(−1)2的最小值是().A.6B.3C.-3D.0【答案】A【分析】由已知得m,n是关于x的一元二次方程x2-2ax+2=0的两个根,根据根与系数的关系得到m+n =2a,mn=2,再根据完全平方公式展开化简,利用二次函数的性质解决问题.【详解】解:∵m2-2am+2=0,n2-2an+2=0,∴m,n是关于x的一元二次方程x2-2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m-1)2+(n-1)2=m2-2m+1+n2-2n+1=(m+n)2-2mn-2(m+n)+2=4a2-4-4a+2=4(a-12)2-3,∵a≥2,∴当a=2时,(m-1)2+(n-1)2有最小值,∴(m-1)2+(n-1)2的最小值=4(2-12)2-3=6,故选A.【点睛】本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【变式7-2】(2023·山东德州·统考一模)已知互不相等的三个实数a、b、c满足=−−3,=−−3,求2+2−9的值.【答案】﹣2【分析】将已知的两等式去分母得到关系式a2+3a+c=0和b2+3b+c=0,把a、b看成方程x2+3x+c=0的两根,由根与系数的关系得到a+b=﹣3,ab=c,所求式子变形后,把a+b=﹣3,ab=c代入,即可求出值.【详解】由=﹣a﹣3得:a2+3a+c=0①;由=﹣b﹣3得:b2+3b+c=0②;∵a≠b,∴a、b可以看成方程x2+3x+c=0的两根,∴a+b=﹣3,ab=c;∴2+2﹣9=2+2−9=(rp2−2B−9=9−2K9=−2=﹣2.故答案为﹣2.【点睛】本题考查了根与系数的关系以及分式的加减运算,灵活变换已知等式是解答本题的关键.【变式7-3】(2023春·江苏·八年级专题练习)设,,,为互不相等的实数,且(2−2)(2−2)=1,(2−2)(2−2)=1,则22−22的值为()A.-1B.1C.0D.0.5【答案】A【分析】把2,2看作以上方程的两个不同的根,可得4−2+22−22−1=0,根据一元二次方程根与系数的关系求解即可【详解】解:∵(2−2)(2−2)=1,(2−2)(2−2)=1,∴2,2看作以上方程的两个不同的根,即2,2是方程4−2+22−22−1=0的两根,故22=−22−1,即22−22=−1故选A【点睛】本题考查了一元二次方程的根的定义,一元二次方程根与系数的关系,整体代入是解题的关键.【题型8已知方程根的情况判断另一个方程】【例8】(2023春·浙江·八年级期中)若关于x的一元二次方程B2+2B+=0(≠0)的一个根为m,则方程(−1)2+2(−1)+=0的两根分别是().A.+1,−−1B.+1,−+1C.+1,+2D.−1,−+1【答案】A【分析】根据一元二次方程的根与系数的关系求出方程B2+2B+=0的另一个根,设−1=,根据方程B2+2B+=0的根代入求值即可得到答案;【详解】解:∵一元二次方程B2+2B+=0(≠0)的一个根为m,设方程另一根为n,∴+=−2=−2,解得:=−2−,设−1=,方程(−1)2+2(−1)+=0变形为B2+2B+=0,由一元二次方程B2+2B+=0(≠0)的根可得,1=,2=−2−,∴−1=−2−,−1=,∴1=−−1,2=1+,故答案为:A.【点睛】本题考查一元二次方程的根与系数的关系及换元法解一元二次方程,解题的关键是用换元法变形方程代入求解.【变式8-1】(2023春·江西萍乡·八年级统考期中)有两个一元二次方程::B2+B+=0;:B2+B+ =0,其中−≠0,以下四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么15是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是=1【答案】D【分析】求出方程:B2+B+=0的判别式△=2−4B,方程:B2+B+=0的判别式△=2−4B,再根据判别式的意义、根与系数的关系以及方程的解的意义求解即可.【详解】解:A、∵M有两个不相等的实数根,∴△>0即2−4B>0,∴此时N的判别式△=2−4B>0,∴N也有两个不相等的实数根,故此选项正确,不符合题意;B、∵M的两根符号相同:即1⋅2=>0,∴N的两根之积也大于0,∴N的两个根也是同号的,故此选项正确,不符合题意;C、如果5是M的一个根,则:25+5+=0①,我们只需要考虑将15代入N方程看是否成立,代入得:125+15+=0②,比较①与②,可知②式是由①式两边同时除以25得到,故②式成立,故此选项正确,不符合题意;D、比较方程M与N可得:B2+B+−B2−B−=0,∴−2=−,∵−≠0,∴2=1,∴=±1,∴它们如果有根相同的根可能是1或−1,故此选项错误,符合题意.故选:D.【点睛】本题主要考查了根的判别式,根与系数的关系以及一元二次方程的解的意义,解题的关键是熟练掌握一元二次方程,根的判别式△=2−4B,根与系数的关系1+2=−,1⋅2=.【变式8-2】(2023春·安徽合肥·八年级校考期末)关于x的一元二次方程2+B+=0有两个同号非零整数根,关于y的一元二次方程2+B+=0也有两个同号非零整数根,则下列说法正确的是()A.p是正数,q是负数B.(−2)2+(−2)2<8C.q是正数,p是负数D.(−2)2+(−2)2>8【答案】D【分析】设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.根据方程解的情况,结合根与系数的关系可得出x1•x2=q>0,y1•y2=p>0,即可判断A与C;②由方程有两个实数根结合根的判别式得出p2﹣4q≥0,q2﹣4p≥0,利用不等式的性质以及完全平方公式得出(p﹣2)2+(q﹣2)2>8,即可判断B 与D.【详解】解:设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴x1•x2=q>0,y1•y2=p>0,故选项A与C说法均错误,不符合题意;∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴p2﹣4q≥0,q2﹣4p≥0,∴(p﹣2)2+(q﹣2)2=p2﹣4q+4+q2﹣4p+4>8(p、q不能同时为2,否则两个方程均无实数根),故选项B说法错误,不符合题意;选项D说法正确,符合题意;故选:D.【点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项说法的正误是解题的关键.【变式8-3】(2023春·八年级单元测试)一元二次方程G B2+B+=0;G B2+B+=0,其中B≠0,≠,给出以下四个结论:①若方程M有两个不相等的实数根,则方程N也有两个不相等的实数根;②若方程M的两根符号相同,则方程N的两根符号也相同;③若m是方程M的一个根,则1是方程N的一个根;④若方程M和方程N有一个相同的根,则这个根必是=1,其中正确的结论是()A.①③B.①②③C.①②④D.①③④【答案】B【分析】根据根的判别式,根的定义,计算判断即可.【详解】∵G B2+B+=0有两个不相等的实数根,∴Δ=2−4B>0,∵G B2+B+=0的判别式为Δ=2−4B=2−4B>0,∴方程N也有两个不相等的实数根,故①正确;∵G B2+B+=0两根符号相同,∴Δ=2−4B≥0,>0,∴Δ=2−4B≥0,>0,∴方程N的两根符号也相同,故②正确;∵m是方程G B2+B+=0的一个根,∴B2+B+=0,∵2+×1+=rB+B22=0∴1是方程N的一个根;故③正确;设方程M和方程N相同的根为0,根据题意,得B02+B0+=0,B02+B0+=0,∴−02=−,∵B≠0,≠,∴02=1,解得0=±1,故这个根是=±1,故④错误;故选B.【点睛】本题考查了一元二次方程的根的判别式,公共根,方程根的定义即使方程左右两边相等的未知数的值,熟练掌握根的判别式是解题的关键.【题型9根与系数关系中的新定义问题】【例9】(2023春·山东日照·八年级日照市田家炳实验中学校考阶段练习)定义:如果实数a、b、c满足a²+b²=c²,那么我们称一元二次方程ax²+bx+c=0(a≠0)为“勾股”方程;二次函数y=ax²+bx+c(a≠0)为“勾股”函数.(1)理解:下列方程是“勾股”方程的有.①x²-1=0;②2-r2=0;③132+14r15=0;④4x²+3x=5(2)探究:若m、n是“勾股”方程ax²+bx+c=0的两个实数根,试探究m、n之间的数量关系.【答案】(1)①②④;(2)22-(rp2=1;【分析】(1)运用“勾股”方程的定义,即可得出答案;(2)利用根与系数关系可得:m+n=-,mn=,再结合2+2=2,即可得出答案;另解:根据题意可得:B2+B+J0①,B2+B+J0②,再结合2+2=2,即可得出答案;【详解】(1)根据“勾股”方程的定义,在方程2-1=0中,J1,J0,J-1,∵2+2=1,2=1,∴2+2=2,∴一元二次方程2-1=0为“勾股”方程;在方程2-r2=0中,J1,J-1,J2,∵2+2=12+(-1)2=2,2=(2)2=2,∴2+2=2,∴一元二次方程2-r2=0为“勾股”方程;在方程132+14r15=0中,J13,J14,J15,∵2+2=(13)2+(14)2=25144,2=(15)2=125,∴2+2≠2,∴一元二次方程132+14r15=0不是“勾股”方程;在方程42+3J5中,J4,J3,J-5,∵2+2=42+32=25,2=(-5)2=25,∴2+2=2,∴一元二次方程42+3J5为“勾股”方程;故答案为:①②④;(2)22-(rp2=1;理由如下:∵、是“勾股”方程B2+B+J0的两个实数根,。
上海风华初级中学九年级数学上册第二十一章《一元二次方程》经典练习卷(培优专题)
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x +=D .2(1)3x += 3.用配方法解方程x 2﹣4x ﹣7=0,可变形为( ) A .(x+2)2=3 B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11 4.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±- 5.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( ) A .k-4且k≠0 B .k≥-4C .k>-4且k≠0D .k>-4 6.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x += B .()238x += C .()2310x -=D .()238x -= 7.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+= 8.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 9.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .7 10.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2- 11.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x == 12.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定 13.一元二次方程x 2=4x 的解是( )A .x=4B .x=0C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案14.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 15.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020 二、填空题16.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.17.写出有一个根为1的一元二次方程是______.18.某商贸公司2017年盈利100万元,2019年盈利144万元,且2017年到2019年每年盈利的增长率相同,则该公司2018年盈利_____万元.19.一元二次方程22(1)210a x x a +++-=,有一个根为零,则a 的值为________.20.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.21.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.22.一元二次方程x 2=2x 的解为__________23.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根.24.当m =___________时,方程(2150m m x mx --+=是一元二次方程. 25.北京奥运会的主会场“鸟巢”让人记忆深刻.在鸟巢设计的最后阶段,经过了两次优化,鸟巢的结构用钢量从5.4万吨减少到4.2万吨.若设平均每次用钢量降低的百分率为x ,根据题意,可得方程_______26.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场三、解答题27.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?28.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.29.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+30.解下列方程:(1)x (x -1)=1-x(2)(x-3) 2 = (2x-1) (x +3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)当点 E 在线段 PQ 的垂直平分线上时, EQ PE ,得 EQ2 PE2 ,由 Rt CEQ 与
Rt△PDE 可得, CE2 CQ2 EQ2 , PD2 DE2 PE2 ,即
CE2 CQ2 PD2 DE2 ,代入 DE 6 3 t , CE 3 t , CQ 2t , PD 8 t
即 8 t DE , 86
∴ DE 6 3 t , 4
∴ CE 6 6 3 t 3 t , 44
∴ S△PDE
1 2
PD
DE
1 2
(8
t)
6
3 4
t
3 8
t2
6t
24
,
S△CEQ
1 CE 2
CQ
1 2
3t 4
2t
3t2 4
,
S
梯形
CDPQ
1 2
(QC
PD)
CD
1 2
(2t
8
t)
在 Rt CEQ 中, CE2 CQ2 EQ2 , 在 Rt△PDE 中, PD2 DE2 PE2 , ∴ CE2 CQ2 PD2 DE2 ,
即
3 4
t
2
(2t)2
(8
t)2
6
3t 4
2
解得 t1 5
73 6
25
, t2
5
73 25 (舍) 6
所以当 t 5 73 25 时,点 E 在线段 PQ 的垂直平分线上. 6
6
3t
24
,
∴
S
S
梯形 CDPQ
S△PDE
S△CEQ
9t2 8
9t(0
t
8)
(3)由题意, 9 t2 9t 9 8 6
8
32
解得 t1 2 , t2 6
所以当 t 2s 或 6s 时, PQE 的面积为矩形 ABCD 面积的 9 . 32
(4)当点 E 在线段 PQ 的垂直平分线上时, EQ PE , ∴ EQ2 PE2 ,
32
6
线上
【解析】
【分析】
(1)由四边形 PFCE 是平行四边形,可得 PF∥CE, 由 PD QC 得四边形 CDPQ 为平行
四边形,即 PD CQ ,列式8 t 2t ,计算可解.
(2)由 PE ∥ AC ,得 DP DE ,代入时间 t ,得 8 t DE 解得 DE 6 3 t ,
即 x=2 时,周长的最小值为 8;
故答案 x=90 时,“=”成立,
所以,当 x=90 时,函数取得最小值 9,
此时,百公里耗油量为
,
所以,该汽车的经济时速为每小时 90 公里,经济时速的百公里耗油量为 10L. 【点睛】 本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料, 易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.
【点睛】 本题考查的是一次函数与几何图形的实际应用,勾股定理,平行线的性质,解一元二次方 程,需要注意的是在解一元二次方程的实际应用中经常会涉及到解的验证,不可忽略.
2.阅读与应用: 阅读 1: a,b 为实数,且 a>0,b>0,因为( a+b≥2 (当 a=b 时取等号). 阅读 2:
)2≥0,所以 a﹣2 +b≥0,从而
若函数 y=x+ (m>0,x>0,m 为常数),由阅读 1 结论可知:x+ ≥2 ,所以当 x=
,即 x= 时,函数 y=x+ 的最小值为 2 .
阅读理解上述内容,解答下列问题: 问题 1:
已知一个矩形的面积为 4,其中一边长为 x,则另一边长为 ,周长为 2(x+ ),求当 x=
时,周长的最小值为
4
4
可得
3 4
t
2
(2t)2
(8
t)2
6
3 4
t
2
,计算验证可解.
【详解】
(1)当四边形 PFCE 是平行四边形时, PF∥CE ,
又∵ PD QC ,
∴四边形 CDPQ 为平行四边形,
∴ PD CQ ,
即 8 t 2t ,
∴t 8 3
(2)∵ PE ∥ AC ,
∴ DP DE , DA DC
;
问题 2:
汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时 70~110 公里之间行驶时(含
70 公里和 110 公里),每公里耗油(
)L.若该汽车以每小时 x 公里的速度匀速行驶,
1h 的耗油量为 yL.
(1)求 y 关于 x 的函数关系式(写出自变量 x 的取值范围);
(2)求该汽车的经济时速及经济时速的百公里耗油量.
DA DC
86
4
CE 3 t 4
再通过
S
S
梯形
CDPQ
S△PDE
S△CEQ
构建联系,可列函数式
S
9 8
t2
9t(0
t
8)
.
(3)由 PQE 的面积为矩形 ABCD面积的 9 得 S 9 t2 9t 9 8 6 ,可解
32
8
32
当 t 2s 或 6s 时, PQE 的面积为矩形 ABCD 面积的 9 . 32
【答案】问题 1:2,8;问题 2:(1)y=
;(2)10.
【解析】
【分析】 (1)利用题中的不等式得到 x+
=4,从而得到 x=2 时,周长的最小值为 8;
(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油 量最小的形式速度. 【详解】
(1)∵x+ ≥2 =4,
∴当 x= 时,2(x+ )有最小值 8.
上海上海中学数学一元二次方程单元测试卷(含答案解析)
一、初三数学 一元二次方程易错题压轴题(难) 1.如图,在矩形 ABCD 中, AB 6cm , AD 8cm,点 P 从点 A 出发沿 AD 向点 D 匀 速运动,速度是1cm / s ,过点 P 作 PE ∥ AC 交 DC 于点 E ,同时,点 Q 从点 C 出发沿 CB 方向,在射线 CB 上匀速运动,速度是 2cm / s ,连接 PQ 、 QE , PQ 与 AC 交与点 F ,设运动时间为 t(s)(0 t 8) . (1)当 t 为何值时,四边形 PFCE 是平行四边形; (2)设 PQE 的面积为 s(cm2 ) ,求 s 与 t 的函数关系式; (3)是否存在某一时刻 t ,使得 PQE 的面积为矩形 ABCD 面积的 9 ;
32 (4)是否存在某一时刻 t ,使得点 E 在线段 PQ 的垂直平分线上.
【答案】(1) t 8 ;(2) S 9 t2 9t(0 t 8) ;(3)当 t 2s 或 6s 时, PQE
3
8
的面积为矩形 ABCD 面积的 9 ;(4)当 t 5 73 25 时,点 E 在线段 PQ 的垂直平分