人教版七年级数学上册 一元一次方程
人教版数学七年级上册一元一次方程
人教版数学七年级上册一元一次方程1. 引言一元一次方程是数学中非常重要的一个概念,也是数学学习中的基础。
在数学七年级上册中,我们将学习一元一次方程的概念、解法以及应用。
本文档将详细介绍一元一次方程的相关内容。
2. 一元一次方程的定义一元一次方程是指方程中只含有一个未知数,并且该未知数的最高次幂为一的方程。
一元一次方程通常可以表示为: ax+ b = 0,其中a、b为已知数,a ≠ 0。
3. 一元一次方程的解法解一元一次方程的一般步骤如下: 1. 移项:将方程中的项重新排列,使得未知数项与常数项在不同侧。
2. 合并同类项:合并方程两侧相同的项,得到简化形式的方程。
3. 消元:通过逆运算,将未知数项的系数化为1,得到最简形式的方程。
4. 求解:根据最简形式的方程,通过逆运算求得未知数的值。
5. 验证:将求得的未知数代入原方程,验证方程是否成立。
4. 一元一次方程的解的性质一元一次方程的解具有以下性质:- 方程有且仅有一个解。
- 方程无解。
- 方程有无限多解。
5. 一元一次方程的应用一元一次方程在生活中有许多实际应用,例如: - 商业应用:利润、成本和售价之间的关系可以通过一元一次方程来表示和解决。
- 几何应用:通过解一元一次方程,可以求得几何图形的边长、面积等。
- 动力学应用:物体运动过程中的速度、距离和时间之间的关系可以通过一元一次方程来描述。
6. 总结一元一次方程是数学学习中的重要内容,通过本文档的介绍,我们了解了一元一次方程的定义、解法、解的性质以及应用。
掌握一元一次方程的解法和应用,对于未来的学习和生活中的问题解决都具有重要意义。
提示:在撰写文档时,可以结合具体的例子和问题来说明一元一次方程的概念和解法,以增加文档的可读性和实用性。
人教版七年级数学上册解一元一次方程(去分母)
总结:像上面这样的方程中有些系数是分数, 如果能化去分母,把系数化为整数,则可以使 解方程中的计算更方便些。
仔细视察、积极思考
解方程:
3x+1 2
-2=
3x-2 10
-
2x+3 5
思考: (1)这个方程中各分母的最小公倍数 是多少?
(2)你认为方程两边应该同时乘以多少?
(3)方程两边同乘上这个数以后分别变成了 什么?
归纳、总结
通过解方程
3x+1 -2= 2
3x-2 10
-
2x+3 5
解一元一次方程的一般步骤为:
(1)去分母;(2)去括号;(3)移项;(4)合 并;(5)系数化为1.
用去分母解下列方程
1.
3 x+
X-1 2
=3-
2X-1 3
.
2.
5x-1 4
=
3x+1 2
-
2-x 3
;
3.
3x+2 2
-1=
2x-1 4
=1
2x+3x-3=1
5x=4
x=
4 5
(2)
1 2
-
x+3 3
=0
3-2x+6=0
-2x=-9
x=
9 2
6.小明在做解方程作业时,不谨慎将方程中
的一个常数污染了看不清楚,被污染的方
程是2y-
1 2
=
1 2
y-■,怎么办呢?小明想了
一想,便翻看了书后的答案,此方程的解是
y=-
5 3
.很快补好了这个常数,这个常数应
是_____.
能力提高
当m为什么整数时,关于x的方程
2024年人教版七年级上册教学设计 第五章 一元一次方程第五章 一元一次方程
一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
新人教版七年级数学上册第三章《一元一次方程》知识点和题型总结
新人教版七年级数学上册第三章《一元一次方程》应知应会知识点和题型总结一、方程定义【一元一次方程的认识】1.下列各式:①3x+2y=1②m-3=6③x/2+2/3=0.5④x 2+1=2⑤z/3-6=5z ⑥(3x-3)/3=4⑦5/x+2=1⑧x+5中,一元一次方程的个数是( )A.1 B.2 C.3 D.42.下列各式中是一元一次方程的是( )。
A.1232x y -=-B.2341x x x -=-C.1123y y -=+D.1226x x -=+ 3.下列方程①313262-=+x x ②4532x x =+③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个. A.1 B.2 C.3 D.4【利用定义求参数】4.如果(m-1)x |m| +5=0是一元一次方程,那么m = .【列方程】5.根据“x 的3倍与5的和比x 的13多2”可列方程( )。
A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523x x +=+) 二、方程的解【方程解的应用】1.若x=1是方程k (x-2)=2的解,则k= .2.已知3是关于x 的方程mx+1=0的根,那么m=3.一个一元一次方程的解为2,请写出这个一元一次方程 .4.若关于x 的一元一次方程23132x k x k ---=的解是1x =-,则k 的值是()A .27B .1C .1311- D .0 5.已知方程3x 2x -9x+m=0的一个根是1,则m 的值是 。
6.方程2152x kx x -+=-的解为-1时,k 的值为( )。
A.10 B.-4 C.-6 D.-87.y=1是方程12()23m y y --=的解,求关于x 的方程(4)2(3)m x mx +=+的解。
8.已知x=-1是关于x 的方程328490x x kx -++=的一个解,求23159k k --5的值。
解一元一次方程课件(共20张PPT)人教版初中数学七年级上册
x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得
七年级上册人教版数学一元一次方程计算题
七年级上册人教版数学一元一次方程计算题一、引言一元一次方程是初中阶段数学学习的重要内容,也是数学解题方法中的一个重要部分。
在七年级数学上册的学习中,一元一次方程计算题是常见的题型之一,通过解一元一次方程的计算题,可以帮助学生巩固所学的知识,提高解题能力。
下面将结合人教版七年级上册数学教材中的一元一次方程计算题,进行讲解和解析,帮助学生更好地学习和掌握这一知识点。
二、基础知识回顾在进行一元一次方程计算题的学习之前,我们需要回顾一下一元一次方程的基础知识。
一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。
一元一次方程的一般形式为ax+b=0,其中a和b为已知数,且a≠0。
解一元一次方程的过程就是求出未知数的值,使得方程式成立。
三、一元一次方程计算题的基本形式一元一次方程计算题在七年级上册的数学习题中通常以文字的形式出现,通过文字描述给出一元一次方程的具体情境,学生需要根据描述求出未知数的值。
一般来说,一元一次方程计算题可以分为以下几种基本形式:1. 简单的线性方程汤姆的岁数比他的弟弟大3岁,汤姆现在的岁数是弟弟的2倍,求弟弟多大了?解:设弟弟的岁数为x,则根据题意得到方程:x+3=2x,解方程得到x=3,所以弟弟现在3岁。
2. 带有系数的线性方程一件衣服原价180元,现在降价20,求现在的价格是多少?解:设现在价格为x元,则根据题意得到方程:x=180×(100-20),解方程得到x=144,所以现在价格为144元。
四、一元一次方程计算题的解题方法在解一元一次方程计算题时,可以采用逆运算法、分配法、合并同类项等方法进行求解。
为了更好地帮助学生理解和掌握解题方法,这里以具体的例子进行解析和说明。
1. 逆运算法题目:小明的芳龄是小李的3/5,现在小明的芳龄是15岁,求小李的芳龄是多少?解:设小李的芳龄为x岁,根据题意得到方程:3/5×x=15,解方程得到x=25,所以小李的芳龄是25岁。
人教版七年级上册数学一元一次方程题
人教版七年级上册数学一元一次方程题全文共5篇示例,供读者参考人教版七年级上册数学一元一次方程题篇1一、设计1、复习回顾:什么叫一元一次方程?解方程就是最终将方程转化为什么形式?2、让学生尝试解这两个方程:(1)x+2x+4x=;(2)x+4=-64、学生练习巩固、反馈。
5、最后小结收获与运用合并、移项的注意点。
二、反思1、本堂课是在利用等式的性质的基础上归纳解一元一次方程的常规步骤,使解题更趋合理、简洁。
因此在设计复习题时有意为后面做铺垫,一题多用。
2、合并同类项起到化简的作用,把含有未知数x的项合并成一项,从而达到把方程转化为ax=b的形式,其中a、b是常数;移项使方程中含未知数x的项归到方程的同一边(一般在左边),不含x的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为ax=b的形式,其中a、b是常数;再将系数化为1,从而得到方程的解x=m,m为常数。
整个过程体现了化归的数学思想。
3、在练习的过程中始终让学生铭记要移项首先要变号(变号移项),并知道它的依据,加深对变号的理解。
4、本堂课如果前面能更紧一些,最后有足够的时间让学生自主小结就更好了。
人教版七年级上册数学一元一次方程题篇2在上这节课时,我采用了这样的流程:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的几个方程,让学生动手去做。
由于这节课是同课异构,我发现第一位老师上完课,学生做题过程大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(①、②两种情况出现最多);针对以上情况,我在上课时,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。
人教版数学七年级上册一元一次方程(方程的概念)课件
再见
从算式到方程是数学的进步!
根据下列问题,设未知数并列出方程: (1) 用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?
解:设正方形的边长为x cm. 等量关系:正方形边长×4=周长, 列方程:4x=24.
根据下列问题,设未知数并列出方程: (2) 一台计算机已使用1700 h,估计每月再使用150 h,经过多少 月这台计算机的使用时间到达规定的检修时间2450 h? 解:设x月后这台计算机的使用时间到达2450 h.
一元一次方程中的“元”是指未知数,“一元”是指只 含有一个未知数;“一次”是指含未知数的项的次数都是1.
怎样将一个实际问题转化为方程问题?列方程的根据是什么? 实际问题 抓关键句子找等量关系 一元一次方程 设未知数列方程
分析实际问题中的数量关系,利用其中的相等关系列出方程, 是用数学解决实际问题的一种方法.
巩固练习
②③⑤
本题源于《教材帮》
课堂练习
D
2.某市对城区主干道进行绿化,计划把某段公路的一侧全部栽上
树苗,要求公路的两端各栽一棵,并且每两棵的间隔相等.如果
每隔5米栽一棵,则缺21棵树苗;如果每隔6米栽一棵,则树苗
正好用完.设原有树苗x棵,则根据题意列出方程正确的是( A )
A.5(x+21-1)=6(x-1)
视察下列方程,它们有什么共同点?
x - x 1 60 70
70 y=60(y+1)
70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个
问题2:说一说每个方程中未知数的次数. 1次
问题3:等号两边的式子有什么共同点? 都是整式
只含有一个未知数,未知数的次数都是1,等号两边都是整式, 这样的方程叫做一元一次方程.
七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)
为x元,则依题意可列出下列哪一个一元一次方程式( )
(A)15(2x20)=900
(B)15x202=900
(C)15(x202)=900 (D)15x220=900
【解析】选C.每份礼物的价格是(x+202)元,15份礼
物的价格是15(x202)元.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
人教版七年级数学上册第三章一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
人教版七年级数学上册第三章一元一次方程
一般地,要检验某个值是不是方程的解,可以用这个 值代替未知数代入方程,看方程左右两边的值是否相等.
任取x的值 代入 不成立
1 700+150x=2 450 成立
得方程的解
求方程的解的过程,叫做解方程.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册解一元一次方程课件
解方程时经常要“合并同类项”和“移 项”,前面提到的古老的代数书中的“对消” 和“还原”,指的就是“合并同类项”和 “移项”.
(1) 3x+7=32 -2x
解:移项,得:3x + 2x = 32-7 化简,得: 5x = 25
方程两边同时除以5,得 x =5
(2)
x-3
解:合并同类项,得: 4y=12
系数化为1,得: y=3
解下列方程
(1)5x-2=8 (2)3x=2x+1
解方程:5_x__-__2_=___8_ 解:方程两边同时加上2,得
5x-2+2=8+2 (性质1)
即5_x_=__8_+__2
5x=10 化简,得 x=2 (性质2)
解方程 3__x__=___2__x__+____1
一切问题都可以转化为数学 问题,一切数学问题都可以转化 为代数问题,而一切代数问题又 都可以转化为方程问题。因此, 一旦解决了方程问题,一切问题 将迎刃而解。
笛卡儿
七年级数学上册
小刚在做作业时,遇到方程
9x=-4,他得到x=- 他错在什么地方?
9 4
!请问:
等式的基本性质是什么?
解方程:8y- 4y=12
解:方程两边同时减去2x,得
3x-2x=2x+1-2x (性质1)
即__3_x_-__2_x_=__1_ 化简,得x=1
5x -2 =8
3x = 2X + 1
5x=8 +2 3x -2X =1
把方程中的某一项改变符号后,从方程的一
边移到另一边,这种变形叫移项。
1.下面的移项对不对?如果不对,应当怎样改 正? (1)从5+x=10,得x=10+5 (2)从3x=8-2x,得3x+2x=-8
人教版数学七年级上册 行程问题 一元一次方程常见题型
■ 例1 小明和小红约定一起去操场打羽毛球,两人都步行从教室 出发,并且沿同一路线走,教室距离操场1800米.小红先出发,步行 的速度是30米 /分,小明比小红晚出发10分钟 ,比小红早20分钟 到达图书馆.
■ (1 )求小明步行的速度;
■ (2 )求小红出发多长时间后小明追上小红(要 求列方程解答).
■ 解 :设火车的速度为x米/秒,则火车的长度 可表示为(60x-1000) 米,车长又可以表示为(1000 -40x)米,
■ 因此根据题意有60x-1000=1000-40x, ■ 解得x=20,则60x-1000=200 ■ 所以火车的速度为20米/秒,火车的长度为 200米.
谢谢观看!
■ 因此甲船从A码头出发行驶了24/7或24小时
环形相遇问题
■ 人在圆、椭圆、多边形等封闭线路上的运动问 题,若是相向而行,则为相遇问题。 ■ 同起点、同时间、背向出发,首次相遇时,两者合 走了1圈.等量关系:从出发到相遇
所用时间=环形 周长/两者速度和.第n次相遇时,两者合走了n圈. ■ 不同起点、同时出发的追及或相遇问题,也有类 似的等量关系.但要注意,第一次相
■ 解 :设小明和小红跑了x秒后第一次相遇,则 小狗跑了x-(6)秒, ■ 根据题意有2x+3x=400, ■ 解得x=80, ■ 则小狗跑的时间为x-6=80-6=74秒, ■ 所以小狗共跑了6×74=444米
火车过桥问题
■ 这是一类车过桥、车过隧道的问题.相关的概念 有车长、桥长(隧道长) 车速等,问题类似“车完全在 桥上(或隧道里)的时间,车从上桥到完全离 开桥的 时间”等。
■ 解: ■ (1)1800÷(1800÷30-10-20)=60, 因此小明的速度为60米/分。 ■ (2)设小红出发x分钟后小明追上小红,则此 时小明出发x-(10)分
人教版数学七年级上册.1一元一次方程公开课课件
一辆客车和一辆卡车同时从A地出 发沿同一公路同方向行驶,客车的行 驶速度是70 km/h,卡车的行驶速度是 60 km/h,客车比卡车早1 h经过B地. A,B两地间的路程是多少?
问题:你能归纳出方程定义吗?
解:设小水杯的单价是x 元,大水杯的单价是 (x+5) 元,
列方程: 15x=10 x 5.
1、下列式子中,一元一次方程是( C)
(A)2x2-4x=5 (B)x-y=5; (C)2y+3=-6y (D)
2 、已知:方程 是关于x的一 元 一次方程, 则m=_±_1
3、 甲乙两运输队,甲队32人,乙队28人, 若 从乙队调走x人到甲队,那么甲队人数恰 好是乙队人数的2倍,列出方程是 _3_2_+_x_=_2_(2_8_-x_)__.
解:设买甲种铅笔x支,则买 乙种铅笔(20-x)支.
列方程:0.3x+0.6(20-x)=9
(3)一个梯形的下底比上底多2cm, 高是5cm,面积是40cm ,2 求上底。
解:设上底为xcm。 列方程:
(4)用买10个大水杯的钱,可以买15个小水 杯,大水杯比小水杯的单价多5元,两种水杯的 单价各是多少元?
列方程时,要先设字母表示未知数,然 后根据问题中的相等关系,写出含有未知 数的等式——方程.
例1 根据下列问题,设未知数并列方程 (1)用一根长24cm的铁丝围成一个正方形,
正方形的边长是多少?
解:设正方形的边长是x cm。
列方程:4x=24
(2) 一台计算机已使用1700小时,估计每月再 使用150小时,经过多少月这台计算机的使用时 间到达规定的检修时间2450小时?
七年级数学上册第三章一元一次方程《从算式到方程:一元一次方程》
听课记录:新2024秋季七年级人教版数学上册第三章一元一次方程《从算式到方程:一元一次方程》1. 教学目标(核心素养)教学目标:1.知识与技能:学生能够理解从算式到方程的自然过渡,掌握一元一次方程的基本概念和表示方法,能够识别并构建一元一次方程。
2.过程与方法:通过具体实例,引导学生经历从实际问题抽象出数学模型(即一元一次方程)的过程,培养学生的抽象思维能力和数学建模能力。
3.情感态度与价值观:激发学生对数学的兴趣,体会数学与实际生活的紧密联系,培养解决问题的信心和毅力。
核心素养:•数学抽象:从具体情境中抽象出一元一次方程的数学模型。
•数学建模:运用数学知识解决实际问题,建立一元一次方程。
•逻辑推理:理解一元一次方程的结构和性质,进行简单的逻辑推理。
2. 导入教师行为:•教师展示一个贴近学生生活的实际问题,如“小明买了5个苹果,每个苹果的价格是x元,他一共花了多少钱?”•引导学生用算式表示这个问题,即“5x元”。
•接着,教师提出:“如果我们知道小明一共花了10元,那么我们可以怎样表示这个问题呢?”引导学生思考并引出方程“5x = 10”。
学生活动:•学生积极思考,用算式“5x”表示苹果的总价。
•在教师的引导下,学生理解到当知道总价时,可以用“=”连接已知数和未知数,形成方程“5x = 10”。
过程点评:导入环节通过贴近生活的实例,有效地激发了学生的兴趣,自然地从算式过渡到方程,为学生理解一元一次方程的概念奠定了基础。
3. 教学过程3.1 一元一次方程的概念教师行为:•讲解一元一次方程的定义:只含有一个未知数,且未知数的次数都是1的方程叫做一元一次方程。
•举例说明,如“2x + 3 = 7”,“-5y = 10”等都是一元一次方程。
学生活动:•认真听讲,理解一元一次方程的定义。
•尝试自己判断给出的式子是否为一元一次方程。
过程点评:教师讲解清晰,通过举例帮助学生更好地理解一元一次方程的概念,学生参与度高,对概念有了初步的认识。
人教版七年级上册数学精品教学课件 第3章 一元一次方程 第1课时 利用去括号解一元一次方程
解:-2x-10 = 3x-15-6, -2x-3x =-15-6+10, -5x =-11,
x 11. 5
二 去括号解方程的应用
例2 一艘船从甲码头到乙码头顺流而行,用了 2 h; 从乙码头返回甲码头逆流而行,用了 2.5 h. 已知水 流的速度是 3 km/h,求船在静水中的平均速度.
分析:这艘船往返的路程相等,即等量关系为: 顺流速度_×__顺流时间_=__逆流速度_×__逆流时间
解:设壶中原有 x 斗酒, 依题意,得
2 [2(2x-1)-1]-1 = 0.
解得 x = 0.875. 答:壶中原有 0.875 斗酒.
课堂小结
1. 解一元一次方程的步骤:去括号→移项→合并 同类项→系数化为 1.
2. 若括号外的因数是负数,去括号时,原括号内 各项的符号要改变.
解:设他这个月用电 x 度,根据题意,得 0.50×100 + 0.65×(200 - 100) + 0.75(x - 200) = 310, 解得 x = 460.
答:他这个月用电 460 度.
方法总结:对于此类阶梯收费的题目,需要弄清楚各 阶段的收费标准,以及各节点的费用,然后根据缴纳 费用的金额,判断其处于哪个阶段,再列方程求解即 可.
6
解得 x = 840.
则 3×(840-24) = 2448.
答:两城之间的距离为 2448 km.
例3 为鼓励居民节约用电,某地对居民用户用电收费 标准作如下规定:每户每月用电如果不超过 100 度, 那么每度按 0.50 元收费;如果超过 100 度不超过 200 度,那么超过部分每度按 0.65 元收费;如果超过 200 度,那么超过部分每度按 0.75 元收费.若某户居民 在 9 月份缴纳电费 310 元,则他这个月用电多少度? 提示:若一个月用电 200 度,则这个月应缴纳电费 为 0.50×100 + 0.65×(200 - 100) = 115 元. 故当缴纳 电费为 310 元时,该用户 9 月份用电量超过 200 度.
人教版七年级数学上册.1一元一次方程课件
PPT素材:/sucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
个人简历:/jianli/
教案下载:/jiaoan/
PPT课件:/kejian/
数学课件:/kejian/shuxue/
美术课件:/kejian/meis hu/
物理课件:/kejian/wuli/
生物课件:/kejian/shengwu/
(5) + 2 = 5
(6)3 = 9
(7)2 − 2 = 3
(8) = 7
归纳: 1、像这种用等号“=”来表示相等关系的式子,叫等式。
2、像这样含有未知数的等式叫做方程。
练习
判断下列各式是不是方程,是的打“√”,不是的打“X”并说明原因。
PPT模板:/moban/
PPT背景:/beijing/
女生人数-男生人数=80
解:设这个学校的学生数为x,那么女生数为0.52x,
男生数为(1-0.52)x.
列方程
.
0.52 x 1 0.52 x 80
一元一次方程
4 x 24
PPT模板:/moban/
PPT背景:/beijing/
PPT下载:/xiazai/
资料下载:/ziliao/
试卷下载:/shiti/
手抄报:/shouchaobao/
语文课件:/kejian/yuwen/
英语课件:/kejian/yingyu/
科学课件:/kejian/kexue/
化学课件:/kejian/huaxue/
地理课件:/kejian/dili/
PPT素材:/sucai/
PPT图表:/tubiao/
解:∵V客=70 km/h,V卡=60 km/h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)(3)
列方程
一辆快车和一辆慢车同时从A地出发沿同一公路 同方向行驶,快车的行驶速度是70 km/h,慢车的行 驶速度是60 km/h,快车比慢车早1 h经过B地,A,B 两地间的路程是多少?
实际问题
找等量关系
设未知数列方程
一元一次方程
x x 1 60 70
(1)当x=420时,方程等号左边=__1___,右边= 1,
只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程. 3. 方程的解: 解方程就是求出使方程中等号两边相等的未知 数的值,这个值就是方程的解.
自我检测
1. 下列方程
①x
2
1 x
;②3x
11;③
x 2
5x
1;④y 2
4y
3;
⑤x 2 y 1 .
其中是方程的是___________.(填序号)
【超越自我】 (m 1)x m 1 0 是关于x的一元一次 方 程,则 m= 1 .(2分)
课后作业
习题3.1 第一题
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
学习目标
1.掌握方程、一元一次方程的定义以及解的概念.(重点) 2. 学会寻找等量关系,并列出方程. (难点) 3. 体验用方程解决某些问题的优越性.
温故知新
(1)观察 3 2 1 2 3 2a 1 9
= 用“___”连接表示相等关系的式子叫等式。 (2)小学我们已经学过简易方程,你能判断
左边和右边相等吗?
1
(2)当x=60时,方程等号左边=___7__,右边=1,
左边和右边相等吗?
知识要 点
方程的解 使方程左右两边相等的未知数的值叫方程的
解.求方程解的过程叫做解方程.
疑问:我们每次都要一个数字一个数字试吗?
有没有更好的寻找方程的解的办法?
练一练
x = 2和 x = 4是不是方程 2x-3 = 5x-15的解.(1分)
知识要 点
一元一次方程
(一元)
(一次)
只含有一个未知数, 未知数的次数都是1,
等号两边都是整式,这样的方程叫做一元一次方程.
练一练
下列哪些是一元一次方程?(1分)
(1;
(3)3x 5 5x 4 ;(4)x2 2x 6 0 ;
(5) 3x 1.8 3y ; (6)3a 9 15 ;
解:当x=2时,方程左边=__1__,右边=_-_5__, 左边__≠___右边, 所以x=2不__是___此方程的解.
当x=4时,方程左边=__5__,右边=_5___, 左边__=___右边, 所以x=4_是___此方程的解.
课堂小结
1.方程: 含有未知数的等式叫做方程. 2.一元一次方程的概念:
是一元一次方程的是
.(填序号)
2.根据下列问题,设未知数并列出方程:
(1)用一根长24cm的铁丝围成一个正方形,正方形 的边长是多少?
(2)某校女生占全体学生数的52%,比男生多80人, 这个学校有多少学生?
3. x =1是下列哪个方程的解
()
A. 1 x 2 C. x 1 x 2
2
B. 2x 1 4 3x
(1)x 的2倍与3的差是5.
(2)a 的三分之一与2的和为7.
(3)比 x 的3倍大5的数等于x 的4倍. (4)长方形的宽为 x ,长比宽大5,周长为36.
观察与思考
观察你列出的列方程,它们有什么共同点? 问题1 每个方程中,各含有几个未知数? 1个 问题2 说一说每个方程中未知数的次数. 1次 问题3 等号两边的式子都是我们上一章节学的_整__式___?
D. x 4 5x 2
4. 若 x =1是方程2mx -2=0的一个解,则m的值为( )
A. 0
B. 2
C. 1
D. -1
让我更聪明
若关于x的方程 2x n 1 9 0 是一元一次方程,则 n 的值为 2或-2 . (1分)
【变式题】 x m 1 0 是关于x的一元一次方 程, 则 m=1或-1.(1分)
出下列各式哪些是方程吗?(1分)
(1) 2 5 3 ( × ) (2) 3x 1 7 (√ )
(3) 2a b ( × )
(4) x 3
( ×)
(5) x y 8 ( √ )
(6) 2x2 5x 1 0 (√ )
含有未知数的等式叫做方程.
探索新知:一元一次方程的概念
例:根据下列条件,列出等式(1分)