弹塑性力学题目
同济大学弹塑性力学试题和习题解答
弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。
( ) (2)可用矩阵描述的物理量,均可采用张量形式表述。
( ) (3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
( ) (4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
()(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么, 由()y x ,ϕ确定的应力分量必然满足平衡微分方程。
() (6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
( ) (7)Drucker 假设适合于任何性质的材料。
( ) (8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
( ) (9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。
(4)π平面上的一点对应于应力的失量的______________________。
P65 (5)随动强化后继屈服面的主要特征为:___________________________________________。
弹塑性理论考试题及答案
弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
《弹塑性力学》习题-26页精品文档
已知桁架各杆 EA 相同,材料的弹性关系
为 = E 。 A y l
P
C
x
D
B
l
28.09.2019
21
题2-3 左图示梁受荷载
q
作用,试利用虚位移原 M
理 或最小势能原理导出
EI
x
梁的平衡微分方程和力 y
l
的边界条件。
q
题2-4 利用最小余能
原理求左图示梁的弯
EI
x
矩。
l y
28.09.2019
题2-1 图示结构各杆等 截面杆,截面面积为A, 结点C承受荷载P作用, 材料应力—应变关系分
别为(1) =E ,(2) =E 1/2 。试计算结构
的应变能U 和应变余能 Uc。
A
ly
B
P
Cx
C’
l
28.09.2019
20
题2-2 分别利用虚位移原理、最小势能原
理和最小余能原理求解图示桁架的内力。
弹塑性力学部分习题
第一部分 静力法内容
28.09.2019
1
题 1-1 将下面各式展开
(1). 1 2 ij (ui,juj,i) (i,j1,2,3) (2). U01 2ij ij (i,j1,2,3)
(3). F i n iG u i,j u j,i i j e
x
y
其中 V 是势函数,则应力分量亦可用应
力函数表示为
x y 22V,y x 22V,xy x2 y
28.09.2019
11
题1-13 试分析下列应力函数能解决什么 问题?设无体力作用。
34Fcxy3xcy23q2y2
ox
(完整版)弹塑性力学习题题库加答案
第二章应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy ,τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x=γ1y ;T y =0 则σx =-γ1y ;τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a=0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cossinx xy yxy………………………………(a )将己知条件:σx=-γ1y ;τxy =-dx ;σy =cx+dy-γy代入(a )式得:1cossin 0cossin0y dx bdx cxdyy cL L L L L L L L L L L L L L L L L L化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1ctg 3β2—17.己知一点处的应力张量为312606100100Pa试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103σy =10×103 τxy =6×103,且该点的主应力可由下式求得:222231.2333312101210610222217.0831011371011 6.0828104.9172410xyxyxyPa则显然:3312317.08310 4.917100Pa Paσ1 与x 轴正向的夹角为:(按材力公式计算)22612sin 22612102cos2xy xytg 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°xO γyβBA n βγ1y则:θ=+40.2688B 40°16'或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学作业题
弹塑性力学练习题1、已知简单拉伸时的应力-应变曲线如图所示,(1)试导出当采用刚塑性模型时的应力-应变关系表达式(2)如采用等向强化模型,区服条件()0σψξ-=,这里内变量pp pd εξωσε==⎰。
试导出()ψξ的表达式。
2、 试导出平面应变条件的Mises 区服条件和Tresca 区服条件的具体表达式。
3、设材料的屈服条件为{}1233max ,,s s s k =,其中(1,2,3)i s i =为主偏应力。
试由简单拉伸试验确定3k 。
4、什么是Drucker 公设?试用Drucker 公设论述加载面的外凸性及正交流动法则。
5、试从弹性力学平面问题基本方程出发,推导平面直角坐标系中按应力求解的基本方程。
6、 试推导平面极坐标系中的平衡微分方程。
7、已知厚壁圆筒内径为a ,外径为b ,受均匀内压p 作用,体力不计。
(1)试导出圆筒内应力的弹性解答。
(2)若材料为服从Mises 屈服准则的理想弹塑性材料,简单拉伸屈服应力为s σ。
试导出塑性区半径ρ与内压p 之间的关系,并计算弹、塑性区的应力。
8、设某点应力张量ijσ的分量值已知,求作用在过此点平面ax by cz d ++=上的应力矢量(,,)n nx ny nz p p p p ,并求该应力矢量的法向分量n σ。
9、为了使幂强化应力-应变曲线在s εε≤时能满足虎克定律,建议采用以下应力-应变关系:()()()00s ms E B εεεσεεεε⎧≤≤⎪=⎨-≤⎪⎩ 为保证σ及d d σε在s εε=处连续,试确定B 、0ε值。
10、 设123S S S 、、为主偏应力,试证明用主偏应力表示Mises 屈服条件时,其形式为:()22212332s S S S σ++= 11、 设J 2为应力偏量的第二不变量,计算 ∂J2∂σij。
12、 函数 (x,y )=ax 3y 3+bxy 5+cx 3y 如作为应力函数,各系数之间应满足什么关系?为什么?13、 按应力求解弹性力学平面问题时,应力分量应满足的基本方程是什么?试验证下列应力分量在体力不计时是否可能发生? 23326,2,46Axy Ay Ay y Ax xy y x -==-=τσσ 其中,A 为非零常数。
弹塑性力学习题集_很全有答案_
题 2 —4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。 (E 为弹性模量、J 为惯性矩) 2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。 2—7* 试按材料力学方法推证各向同性材料三个弹性常数:弹性模量 E、剪切弹性模 量 G、泊松比 v 之间的关系:
1 1 1 , n y = , nz = 的微斜面上的全应力 Pα ,正 2 2 2
试求外法线 n 的方向余弦为: n x = 应力 σ α 和剪应力 τ α 。
2—10 已知物体的应力张量为: 30 − 80 50 σ ij = 0 − 30 MPa 110 (对称)
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
试确定外法线的三个方向余弦相等时的微斜面上的总应力 Pα ,正应力 σ α 和剪应力 τ α 。 2—11 试求以主应力表示与三个应力主轴成等倾斜面(八面体截面)上的应力分量, 并证明当坐标变换时它们是不变量。 2—12 试写出下列情况的应力边界条件。
题 2—12 图
弹塑性力学(工学专业工程硕士研究生)复习题
复习题一、选择题01.受力物体内一点处于空间应力状态(根据oxyz 坐标系),一般确定一点应力状态需( )独立的应力分量。
A .18个;B .9个;C .6个;D .2个;02.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小( )。
A .一般不等于零;B .等于极大值;C .等于极小值;D .必定等于零 ;03.一点应力状态主应力作用截面和主剪应力作用截面间的夹角为( )。
A .π/2;B .π/4;C .π/6;D .π;04.正八面体单元微截面上的正应力σ8为:( )。
A .零;B .任意值;C .平均应力;D .极值;05.从应力的基本概念上讲,应力本质上是( )。
A .集中力;B .分布力;C .外力;D .内力;06.若研究物体的变形,必须分析物体内各点的( )。
A .线位移;B .角位移;C .刚性位移;D .变形位移;07.若物体内有位移u 、v 、w (u 、v 、w 分别为物体内一点位置坐标的函数),则该物体( )。
A .一定产生变形;B .不一定产生变形;C .不可能产生变形;D .一定有平动位移;08.弹塑性力学中的几何方程一般是指联系( )的关系式。
A .应力分量与应变分量;B .面力分量与应力分量;C .应变分量与位移分量;D .位移分量和体力分量;09.当受力物体内一点的应变状态确定后,一般情况下该点必有且只有三个主应变。
求解主应变的方程可得出三个根。
这三个根一定是( )。
A .实数根;B .实根或虚根;C .大于零的根;D .小于零的根;10.固体材料受力产生了塑性变形。
此变形过程( )。
A .必定要消耗能量;B .必定是可逆的过程;C .不一定要消耗能量;D .材料必定会强化;11.理想弹塑性模型, 这一力学模型抓住了( )的主要特征。
A .脆性材料;B .金属材料;C .岩土材料;D .韧性材料;12.幂强化力学模型的数学表达式为σ=A εn ,当指数n=1时,该力学模型即为( )。
弹塑性力学简答题
弹塑性力学简答题1、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?2、对于各向同性弹性材料,应用广义胡克定律说明应力主轴与应变主轴重合。
3、泊松比是否可以大于0.5?大于0.5会导致什么结果?4、弹性力学平面问题中物体内的应力分布是否与其弹性常数有关?试根据问题求解的基本方程和边界条件加以说明。
5、虚位移原理等价于哪两个方程?它在塑性力学中能否成立,为什么?6、什么是正交流动法则?他是在什么假定下导出的?7、什么是硬化?什么是等向硬化?8、对于理想弹塑性体,试说明极限状态和极限荷载的概念。
9、全量(变形)理论在什么情况下与增量(流动)理论一致。
10、一混凝土矩形薄板,长边方向为y,短边方向为x,受均布荷载,试问哪个方向的配筋量应该大些?为什么?11、偏应力第二不变量的物理意义是什么?12、什么是比例加载?什么是比例变形?13、求解弹塑性力学问题的应力法能应用于求解其中的位移边界条件问题吗?为什么?14、物体在一定的外力作用下,位于稳定平衡状态,试想它的每一点都产生微小的位移,在这个微小位移上外力所做功和内力所做功哪个大?为什么?15、说明为什么弹性模量必须大于零。
16、什么是超弹性材料?超弹性材料的特点是什么?它的应力、应变和应变能之间的关系如何?17、什么是Mises应力?为什么要这样定义?18、理想弹塑性体内塑性区的变形是否总是协调的吗?为什么?19、对于各向同性超弹性体,其应变能是应力的三个不变量的函数,据此说明在线性弹性情况下独立的弹性常数只有两个。
20、与Ritz法相比,有限元方法的优点主要有哪些?21、物体稳定的充分条件如何用应力增量和应变增量表示?并说明对于线弹性体该条件室恒满足的。
22、用简单的位错模型说明为什么金属材料的屈服条件可以假定与静水压力无关。
23、理想塑性材料本构的塑形因子是通过什么来确定的?24、以Mises材料为例,试说明如何根据试验确定加载面的演化方程。
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学讲义简答题
研究生弹塑性考试试题1. 简答题:(每小题2分)(1) 弹性本构关系和塑性本构关系的各自主要特点是什么?(2) 偏应力第二不变量J 2的物理意义是什么?(3) 虚位移原理是否适用于塑性力学问题?为什么?(4) 塑性内变量是否可以减小?为什么?(5) Tresca 屈服条件和Mises 屈服条件是否适用于岩土材料?为什么?(6) 解释:在应力空间中为什么应力状态不能位于加载面之外?(7) π平面上的点所代表的应力状态有何特点?(8) 举例说明屈服条件为各向同性的物理含义?2. 岩土材料若服从Drucker-Prager 屈服条件,试使用关联流动法则求塑性体积应变增量的表达式?(8分)3. 试确定下面的平面应变状态是否存在?(6分)εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数4. 正方形薄板三边固定,另一边承受法向压力b x p p π-=sin0,如图所示,设位移函数为 0=u by b x a v 2sin sin 2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。
(15分)y xabA BC O(第4题图) (第5题图)5. 如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。
板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。
试证,为了将薄板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。
并求挠度和反力。
(15分)6. 如图所示矩形截面梁受三角形分布荷载作用,试检验应力函数ϕ=Ax 3y 3+Bxy 5+Cx 3y +Dxy 3+Ex 3+Fxy能否成立。
若能成立求出应力分量。
(15分)(第6题图)7.8. 一材料质点处在平面应变状态下(εz =0),若假定材料的弹性变形相对其塑性变形较小可忽略,应力应变关系服从Levy-Mises 增量理论,即d εij =d λs ij ,且材料体积是不可压缩的,试证明σz =21(σx +σy ) 进一步证明在此情况下,Tresca 屈服条件和Mises 屈服条件重合。
弹塑性力学部分习题及答案
厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。
弹塑性力学试题集锦(很全,有答案)
1 / 218弹塑性力学2008级试题一 简述题(60分) 1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。
塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。
2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的9个应力分量组成的新的二阶张量∑。
3)球张量和偏量球张量:球形应力张量,即σ=000000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦,其中2 / 218()13m x y z σσσσ=++5)转动张量:表示刚体位移部分,即110221102211022u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡⎤⎛⎫⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥=-- ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭⎝⎭⎣⎦6)应变张量:表示纯变形部分,即112211221122uu v u w x y x z x v u vv w ij x y yz y w u w v wx z y z zε⎡⎤⎛⎫⎛⎫∂∂∂∂∂++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥=++ ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭⎝⎭⎣⎦7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关3 / 218系,即应变协调条件。
22222y xyx y x x yεγε∂∂∂+=∂∂∂∂。
8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。
工程弹塑性力学题库及答案
解:刚塑性模型不考虑弹性阶段应变,因此刚塑性应力应变曲线即为
曲
线,这不难由原式推得
而在强化阶段,
,因为这时
将 都移到等式左边,整理之即得答案。
其中
5.7 已知简单拉伸时的 变的比值
曲线由(5.1)式给出,考虑横向应变与轴向应
在弹性阶段,
为材料弹性时的泊松比,但进入塑性阶段后 值开
始增大最后趋向于 。试给出 解:按题设在简单拉伸时总有
有
则
(2)纯剪切应力状态,
有
故 7.10 如何利用与 Tresca 屈服条件相关联的流动法则?
第八章 理想刚塑性的平面应变问题
8.1简述滑移线的概念: 解:在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移 线。 剪切应力是最大剪应力。 平衡方程——沿线: 2k=C 或 =2k ;
沿线: +2k=C 或 = 2k ; 速度方程——沿线:dv v d=0;
对,
,代入得
对,
,代入得
对,
,代入得
1.10当
时,证明
成立。
解: 由
,移项之得
证得
第五章 简单应力状态的弹塑性问题
5.1 简述 Bauschinger 效应: 解:拉伸塑性变形后使压缩屈服极限降低的现象
5.2 在拉杆中,如果 和 为试件的原始截面积和原长,而 和 为拉伸后的截
面积和长度。则截面收缩率为 时,有这样的关系: 证明: 体积不变,则有
在
中:
沿
线,
中: ,
中:
,
,
,
, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。
(完整word版)弹塑性力学简答题
(完整word版)弹塑性⼒学简答题弹塑性⼒学简答题第⼀章应⼒1、什么是偏应⼒状态?什么是静⽔压⼒状态?举例说明?静⽔压⼒状态时指微六⾯体的每个⾯只有正应⼒作⽤,偏应⼒状态是从应⼒状态中扣除静⽔压⼒后剩下的部分。
2、应⼒边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3、对照应⼒张量ij δ与偏应⼒张量ij S ,试问:两者之间的关系?两者主⽅向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+。
4、为什么定义物体内部应⼒状态的时候要采取在⼀点的领域取极限的⽅法?不规则,内部受⼒不⼀样。
5、解释应⼒空间中为什么应⼒状态不能位于加载⾯之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独⽴的,⽽是相关,否则导致位移不单值,不连续。
6、Pie 平⾯上的点所代表的应⼒状态有何特点?该平⾯上任意⼀点的所代表值的应⼒状态1+2+3=0,为偏应⼒状态,且该平⾯上任⼀法线所代表的应⼒状态其应⼒解不唯⼀。
固体⼒学解答必须满⾜的三个条件是什么?可否忽略其中⼀个?第⼆章应变1、从数学和物理的不同⾓度,阐述相容⽅程的意义。
从数学⾓度看,由于⼏何⽅程是6个,⽽待求的位移分量是3个,⽅程数⽬多于未知函数的数⽬,求解出的位移不单值。
从物理⾓度看,物体各点可以想象成微⼩六⾯体,微单元体之间就会出现“裂缝”或者相互“嵌⼊”,即产⽣不连续。
2、两个材料不同、但⼏何形状、边界条件及体积⼒(且体积⼒为常数)等都完全相同的线弹性平⾯问题,它们的应⼒分布是否相同?为什么?相同。
应⼒分布受到平衡⽅程、变形协调⽅程及⼒边界条件,未涉及本构⽅程,与材料性质⽆关。
3、应⼒状态是否可以位于加载⾯外?为什么?不可以。
保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独⽴的,⽽是相关,否则导致位移不单值,不连续。
4、给定单值连续的位移函数,通过⼏何⽅程可求出应变分量,问这些应变分量是否满⾜变形协调⽅程?为什么?满⾜。
弹塑性力学作业(含答案)
2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: 则显然:3312317.08310 4.917100PaPa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.268840°16' 或(-139°44') 5-2:给出axy ϕ=;(1):捡查ϕ是否可作为应力函数。
(2):如以ϕ为应力函数,求出应力分量的表达式。
(3):指出在图示矩形板边界上对应着什么样的边界力。
(坐标如图所示) 解:将axy ϕ=代入40ϕ∇=式得:220ϕ∇∇= 满足。
弹塑性力学习题集_很全有答案_
σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案
解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹塑性力学试题
考试时间:2小时
考试形式:笔试,开卷
一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。
每小
题3分,共21分)
1.应力状态不变量与坐标系的选取有关。
()
2.若受力物体中取出的微元体处于平衡状态,则整个物体也处于平衡状态。
()
3.在与三个应力主轴成相同角度的斜面上,正应力3/)(321σσσσ++=N 。
(
)4.弹性力学物理方程利用了连续性、线弹性、各向同性三个假设条件。
(
)
5.塑性力学假设屈服准则与静水压力无关。
(
)6.平面问题中应力函数ϕ的量纲为[FL]。
()7.Ritz 法和Galerkin 法解薄板小挠度弯曲问题时,都设∑=m m m w C
w ,但Ritz 法中m w 必
须满足全部边界条件,Galerkin 法中m w 只需满足几何边界条件。
(
)二﹑填空及简答题(填空每小题3分,共24分)
1.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是(
)。
2.空间问题物理方程:e G y y λεσ+=2,式中λ称为(
),其值为(),e 称为(),其值为()。
3.图示弹性体(平面问题)边界12
在极坐标系中的应力边界条件为()。
4.简述求解薄板小挠度弯曲问题的思路。
(5分)
5.简述弹性力学中逆解法和半逆解法成立所依据的原理。
(5分)
6.弹性力学空间问题,物体内任一点有6个应力、6个应变、3个位移共15个未知函数,弹性力学从哪些方面来建立这些未知函数之间的关系?(5分)
1o 301q 2q x
y
243
三﹑计算题(共55分)
1.试求平面应变问题的Tresca 屈服条件的表达式。
(8分)
2.一圆环内半径为a ,外半径为b 。
在极坐标系中设函数2
21ln r C r C +=ϕ,式中C 1,C 2均为常数。
1)ϕ是否可作为应力函数?2)写出应力分量表达式。
3)内外边界上对应着怎样的边界条件?(10分)
3.图示矩形薄板,边长分别为a ,b ,取挠度222222)4/()4/(b y a x C w --=,(C 为常数),
试求:
(1)板面上的荷载),(y x q ;
(2)板内的最大弯矩()()max max y x M M 、;
(3)矩形薄板所应满足的边界条件。
(12分)
4.圆形薄板,半径为a ,边界简支,在上板面中心受集中荷载P 作用,下板面中心有一刚度为k 的弹簧弹性支承,求挠度w 及内力r M 、θM 。
(10分)
5.一均质空心厚壁圆筒内外半径分别为a 和b ,受内压q 作用,该圆筒由不可压缩的理想材料制成,处于平面应变状态,q 增加时满足简单加载定理,本构方程为3εσA =(A 为常数),求应力分布θσσ,r 。
(15分)。