染色质免疫沉淀分析——植物ChIP解决方案
染色质免疫沉淀技术

染色质免疫沉淀技术
染色质免疫沉淀技术(ChIP)是一种常用的分子生物学实验技术,用
于研究基因表达和调控机制。
该技术利用特异性抗体识别和结合染色
质上的特定蛋白质,然后通过免疫沉淀和DNA提取等步骤分离出与目标蛋白质结合的DNA片段,从而确定该蛋白质在染色质上的结合位置和作用机制。
ChIP技术的基本步骤包括:交联、裂解、免疫沉淀、洗涤、反交联和DNA提取。
首先,通过交联剂如甲醛将细胞或组织中的染色质与蛋白质进行固定化。
然后将细胞或组织裂解并利用特定抗体选择性地捕获
目标蛋白质与其所结合的DNA片段。
接下来,通过洗涤去除非特异性结合并保留与目标蛋白质结合的DNA片段。
最后,通过反交联将DNA片段从蛋白质中释放出来,并进行PCR扩增或测序等分析。
ChIP技术可以用于研究许多生物学问题,如转录因子与DNA的结合、组蛋白修饰和染色质重塑等。
例如,可以通过ChIP技术确定某个转录因子在基因调控中的作用机制,或者确定某个组蛋白修饰对基因表达
的影响。
总之,染色质免疫沉淀技术是一种重要的分子生物学实验技术,可以
帮助我们更好地理解基因表达和调控机制。
免疫共沉淀实验流程--chip

染色体免疫共沉淀(Chip)实验报告步骤一:样品准备试剂和仪器:Biopulverizer(biospec)37% formaldehyde甘氨酸(Glycine)PBSprotease inhibitors步骤二:细胞交联1. 向客户提供的细胞沉淀中加入1ml 细胞培养基,混匀细胞后转移到15ml离心管中。
2. 向15ml离心管中加入270ul 37%甲醛溶液,使得甲醛的终浓度为1%,室温温育10min。
3. 向反应体系中各加入505ul 2.5M甘氨酸到终浓度为125mM,室温温育5min以终止交联反应。
4. 135x g,4°C离心10min,去上清,并用冰冷的10ml 1XPBS迅速漂洗两次。
5. 吸净PBS后,加入1ml PBS+protease inhibitors混合液,并转移到1.5ml离心管中。
800Xg,4°C离心5min,小心去掉上清。
步骤三:细胞裂解试剂:裂解缓冲液1: 50mM Hepes-KOH pH7.5; NaCl 140mM; EDTA 1mM; glycerol 10%;NP-40 0.5%;Tritonx -100 0.25%。
裂解缓冲液2: 10mM Tris-HCl pH8.0; NaCl 100mM; EDTA 1mM pH8.0; Na-Deoxycholate 0.1% Protease inhibitors。
步骤:1. 加入蛋白酶抑制剂(终浓度为1x) 到所有的裂解缓冲液中。
2. 用1ml的裂解缓冲液1重悬上述处理的样品,4°C旋转混合10min后,800g,4°C离心5min,弃上清。
3. 用300ul 裂解缓冲液2重悬样品,冰上放置30min。
步骤四:超声破碎DNA仪器:Bioruptor(Diagenode)步骤:(1)、将超声仪器Bioruptor 调到中档“Mid”(M)。
(2)、在超声池中注入一定量的冰水。
染色体免疫共沉淀(chip)步骤

染色体免疫共沉淀(chip)步骤
染色体免疫共沉淀(ChIP)是一种常用的实验技术,用于研究染色体上特定蛋白质与DNA的相互作用。
以下是染色体免疫共沉淀的基本步骤:
1. 交联:将细胞或组织与形成蛋白质-DNA复合物的交联剂(如甲醛)处理,使蛋白质与DNA之间形成致密的交联。
这一步骤有助于保持蛋白质与DNA的相互作用并固定其在细胞或组织中的位置。
2. 细胞破碎和核裂解:将交联后的细胞或组织进行破碎和核裂解,以释放细胞内的染色质。
这可以通过机械方法(如超声波处理)或化学方法(如利用细胞裂解缓冲液和蛋白酶进行破碎)完成。
3. 免疫共沉淀:在破碎的细胞或组织提取物中,加入特异性抗体,该抗体可以与目标蛋白质结合。
免疫抗体与目标蛋白质形成免疫复合物,并与形成蛋白质-DNA复合物的目标区结合。
4. 洗涤:通过一系列洗涤步骤,去除非特异性和非特定结合的蛋白质和核酸,以减少背景信号的干扰。
5. 解交联:通过加热或酶处理等方法,解除细胞或组织中的蛋白质-DNA交联,并将DNA释放出来。
6. DNA提取:通过加入DNA提取缓冲液和有机溶剂,从溶液中沉淀出DNA,并用适当的方法进行纯化和浓缩。
7. 分析:对提取的DNA进行进一步的分析,可使用PCR、测序等技术,以检测免疫共沉淀的蛋白质与目标DNA的相互作用。
这些步骤旨在允许研究人员从细胞或组织中获得特定蛋白质与DNA的结合信息,并进一步了解基因调控、表观遗传学等相关的生物学过程。
实际操作时,具体的步骤和条件可能会因实验目的和样本类型而有所不同。
因此,在进行染色体免疫共沉淀实验时,建议参考相关文献和实验室经验,以确保实验的准确性和
可重复性。
染色质免疫沉淀技术(ChIP)简介、原理及ChIP

染⾊质免疫沉淀技术(ChIP)简介、原理及ChIP ChIP简介:ChIP是染⾊质免疫沉淀技术(Chromatin ImmunoPrecipitation assay)的简称,属于免疫沉淀技术的⼀种,⽤于检测蛋⽩质与DNA的相互作⽤。
染⾊质免疫沉淀技术的⼀个重要⽤途是研究某个转录因⼦A(可以是发⽣某些特定修饰,如磷酸化、⼄酰化等修饰的蛋⽩)是否调控其预期靶基因B的特定转录调控区(主要是启动⼦区域)。
下⾯就以利⽤ChIP研究转录因⼦对基因的调控为例进⾏阐释。
检测⽔平:转录⽔平调控原理及操作流程:染⾊质免疫沉淀技术的原理及⼀般操作流程为:1. 在活细胞状态下,使⽤交联剂(常为甲醛)将蛋⽩质-DNA复合物固定下来;2. 然后通过理化⽅法(常为酶消化法或者超声破碎)将这种复合物中的DNA随机切割为⼀定长度范围内的染⾊质⼩⽚段;3. 继续使⽤蛋⽩质A的特异性抗体I(⼀般要求ChIP级别)处理,将含有蛋⽩质A的蛋⽩质-DNA⽚段特异性标记;4. 再利⽤⼀种可以结合抗体的Protein A(⼀般偶联到分选柱和磁珠上,便于分离),将含有抗体的复合物从作⽤体系中富集分离出来,未被抗体标记的蛋⽩质-DNA则被洗脱去除;5. 将得到的抗体-蛋⽩质-DNA复合物解交联,纯化富集其中的DNA⽚段;6. 利⽤针对⽬的基因B转录调控区的特异性引物(⼀般设计多个位点,覆盖多个区域)进⾏PCR(以前多为半定量PCR,现在随着设备的升级,使⽤荧光定量PCR也逐渐普及)等⼿段检测,如果其中有PCR检出阳性则表明蛋⽩质A可以与基因B的转录调控区有结合(可以是直接也可以是间接结合,具体区分还需要进⾏进⼀步的EMSA检测),⽽具体的结合位点就在引物覆盖区域及其周边位置。
ChIP-on-chip衍⽣技术:ChIP-on-chip有时也称ChIP-chip,要注意其中的⼤⼩写因为它们代表的意义不同,其中前⼀个ChIP表⽰染⾊质免疫沉淀技术,后⼀个chip表⽰基因芯⽚技术。
组织染色质免疫沉淀技术(chip)-步骤

Chip步骤组织裂解:1.新鲜组织。
切成1-3 mm3小块。
2.转移组织到50ML试管里。
加入10 ml of 1X PBS.3.加甲醛至终浓度为1%。
室温下转动15—20mins。
(10ul)4.加2.5 M Glycine至终浓度为0.125 M(终止交联)。
4°C下转动10mins。
(0.5ml)5.100 g, 4°C 离心样本5mins。
6.弃上清,取沉淀。
用45 ml 冰冻1X PBS和25 ml 冰冻1X PBS各洗一次。
离心弃上清。
7.再加入2 ml 冰冻1X PBS。
匀浆机裂解组织。
1000 rpm,4°C ,离心5 min。
弃上清。
8.细胞裂解液重悬细胞。
加入蛋白酶抑制剂PMSF (10 ul per ml), aprotinin (1 ul per ml) andleupeptin (1 ul per ml).冰上孵育10-15mins9.5,000 rpm ,4°C离心5分钟。
取沉淀10.细胞核裂解液重悬细胞加入(8)中的蛋白酶抑制剂。
冰上孵育10-20mins。
11.接下来就进去超声过程了。
(接下来第一天的5)第一天1.细胞中加入1%的甲醛,8ml的培养液加入216 ul的甲醛,37度十分钟。
2.配制含有蛋白酶抑制剂的PBS 20 ml和含有蛋白酶抑制剂的SDS溶液1ml3.将细胞拿出来,迅速的移除含甲醛的培养基,加入含蛋白酶抑制剂的PBS洗两遍。
胰酶消化20秒,加入含蛋白酶抑制剂的PBS 1ml。
用细胞刮刀把细胞刮下,收集到1.5ml的离心管里面。
4.4度2000rpm离心10min,弃上清液,加入200ul含蛋白酶抑制剂的SDS溶液。
吹打重悬细胞,冰上孵育10分钟。
5.超声切割DNA,总切割时间4min30sec,超声10sec,间隙10sec。
6.4度13000rpm离心10min,转移上清液到一个新的2ml的离心管,弃沉淀。
组织染色质免疫沉淀技术chip步骤

Chip环节组织裂解:1.新鲜组织。
切成1-3 mm3小块。
2.转移组织到50ML试管里。
加入10 ml of 1X PBS.3.加甲醛至终浓度为1%。
室温下转动15—20mins。
(10ul)4.加2.5 M Glycine至终浓度为0.125 M(终止交联)。
4°C下转动10mins。
(0.5ml)5.100 g, 4°C 离心样本5mins。
6.弃上清,取沉淀。
用45 ml 冰冻1X PBS和25 ml 冰冻1X PBS各洗一次。
离心弃上清。
7.再加入2 ml 冰冻1X PBS。
匀浆机裂解组织。
1000 rpm,4°C ,离心5 min。
弃上清。
8.细胞裂解液重悬细胞。
加入蛋白酶克制剂PMSF (10 ul per ml), aprotinin (1 ul per ml) andleupeptin (1 ul per ml).冰上孵育10-15mins9.5,000 rpm ,4°C离心5分钟。
取沉淀10.细胞核裂解液重悬细胞加入(8)中旳蛋白酶克制剂。
冰上孵育10-20mins。
11.接下来就进去超声过程了。
(接下来第一天旳5)第一天1.细胞中加入1%旳甲醛,8ml旳培养液加入216 ul旳甲醛,37度十分钟。
2.配制具有蛋白酶克制剂旳PBS 20 ml和具有蛋白酶克制剂旳SDS溶液1ml3.将细胞拿出来,迅速旳移除含甲醛旳培养基,加入含蛋白酶克制剂旳PBS洗两遍。
胰酶消化20秒,加入含蛋白酶克制剂旳PBS 1ml。
用细胞刮刀把细胞刮下,搜集到1.5ml旳离心管里面。
4.4度rpm离心10min,弃上清液,加入200ul含蛋白酶克制剂旳SDS溶液。
吹打重悬细胞,冰上孵育10分钟。
5.超声切割DNA,总切割时间4min30sec,超声10sec,间隙10sec。
6.4度13000rpm离心10min,转移上清液到一种新旳2ml旳离心管,弃沉淀。
7.稀释超声后旳上清液到10X旳CHIP稀释液,200ul旳上清液加入1.8ml旳CHIP稀释液,到达最终体积2ml。
染色质免疫共沉淀技术

染色质免疫共沉淀技术染色质免疫共沉淀技术(ChIP)是一种广泛应用于生物学研究的技术,它可以用来检测蛋白质与染色质之间的相互作用。
该技术能够帮助研究人员确定蛋白质在基因表达中的作用,以及探究细胞的调节机制。
本文将详细介绍染色质免疫共沉淀技术的原理、步骤、优缺点和应用。
一、原理染色质免疫共沉淀技术是基于抗体特异性识别蛋白质的原理。
在该技术中,首先将抗体与磁珠或琼脂糖等载体结合,形成免疫复合物。
接着,将该免疫复合物加入到含有细胞或组织的裂解液中,使其与目标蛋白结合。
随后,使用磁力或离心等手段将免疫复合物与与其结合的蛋白、核酸等分离出来。
最后,利用PCR、微阵列芯片等技术对分离出来的蛋白、核酸等进行检测和分析。
二、步骤染色质免疫共沉淀技术的步骤主要包括:1. 细胞或组织的裂解:将细胞或组织加入到含有蛋白酶抑制剂、核酸酶抑制剂、盐和缓冲液等的裂解液中,使其破裂并释放出蛋白、DNA等。
2. 免疫复合物的制备:将抗体与磁珠或琼脂糖等载体结合,形成免疫复合物。
3. 免疫复合物与目标蛋白的结合:将免疫复合物加入到裂解液中,与目标蛋白结合。
4. 免疫复合物的分离:使用磁力或离心等手段将免疫复合物与与其结合的蛋白、核酸等分离出来。
5. 分析:利用PCR、微阵列芯片等技术对分离出来的蛋白、核酸等进行检测和分析。
三、优缺点染色质免疫共沉淀技术具有以下优点:1. 高特异性:该技术可以通过抗体特异性识别蛋白质,具有高特异性。
2. 高灵敏度:该技术可以检测到极低浓度的蛋白质。
3. 可重复性:该技术具有较高的可重复性,可以用于多次实验。
4. 可广泛应用:该技术可以应用于不同种类的细胞和组织。
然而,染色质免疫共沉淀技术也存在以下缺点:1. 受抗体质量限制:抗体的质量、特异性和亲和力等因素会影响该技术的结果。
2. 受组织分解程度限制:组织分解不彻底会导致目标蛋白无法完全释放,从而影响该技术的结果。
3. 受背景干扰影响:免疫复合物的制备和分离过程中,可能会出现背景干扰,影响结果的准确性。
染色质免疫共沉淀技术

染色质免疫共沉淀技术
染色质免疫共沉淀技术(ChIP)是一种常用的分子生物学技术,也是
研究细胞基因组结构和功能的重要方法。
该技术可以用来鉴定某个转录因
子或其他核蛋白与某个特定DNA序列的结合关系,从而确定这个DNA序列
在基因表达调控中的重要性。
该技术包括以下步骤:(1)交联;(2)裂解;(3)免疫沉淀;(4)洗涤;(5)离解交联;(6)DNA提取。
在这个过程中,首先将细胞进行交联,使得染色质固定在原位。
之后,将染色质进行裂解并进行免疫沉淀,这里是将特定的抗体与目标蛋白质结合,从而使得目标蛋白质与某些DNA序列结合,并保持在染色质中。
然后
对免疫沉淀后的复合物进行洗涤,去除杂质物质,以提高免疫沉淀的特异
性和纯度。
之后,对免疫沉淀后的复合物进行离解交联,使免疫沉淀的蛋
白质与DNA分别被分解为单独的分子。
最后,从免疫沉淀复合物中提取DNA,用于进一步的分析,例如PCR扩增、Southern blotting、测序等。
该技术的优点是可以在整个基因组范围内寻找目标DNA序列的结合蛋白,相对快速、成本低、灵敏度高,并且可以直接从原位染色质富集DNA
序列。
缺点是免疫沉淀的特异性和纯度可能受到影响,需要对实验进行严
谨控制。
染色质免疫沉淀(ChIP)实验指南及技术总结

染色质免疫沉淀(ChIP)实验指南及技术总结第一篇:染色质免疫沉淀(ChIP)实验指南及技术总结染色质免疫沉淀(ChIP)实验指南及技术总结ChIP是一项比较流行的研究转录因子(transcription factor, TF)与启动子(promoter)相互结合的实验技术。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
在PCR分析这一块,比较传统的做法是半定量-PCR。
但是现在随着荧光定量PCR的普及,大家也越来越倾向于Q-PCR了。
此外还有一些由ChIP衍生出来的方法。
例如RIP(其实就是用ChIP的方法研究细胞内蛋白与RNA的相互结合,具体方法和ChIP差不多,只是实验过程中要注意防止RNase,最后分析的时候需要先将RNA逆转录成为cDNA);还有ChIP-chip(其实就是ChIP富集得到的DNA-片段,拿去做芯片分析,做法在ChIP的基础上有所改变,不同的公司有不同的做法,要根据公司的要求来准备样品)。
第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。
ChIP试剂盒染色质免疫共沉淀全套解决方案

ChIP试剂盒染色质免疫共沉淀全套解决方案染色质免疫沉淀-芯片试剂盒染色质免疫沉淀(芯片)的完整溶液是研究体内DNA与蛋白质相互作用的最佳方法。
其基本原理是将蛋白质-DNA复合物固定在活细胞状态,将其随机切割成一定长度范围内的小染色质片段,然后通过免疫学方法沉淀复合物,特异性富集与靶蛋白结合的DNA片段。
通过目标片段的纯化和检测,可以获得关于蛋白质和DNA之间相互作用的信息。
芯片不仅可以检测体内反式因子与DNA的动态相互作用,还可以研究组蛋白的各种共价修饰与基因表达的关系。
此外,芯片与其他方法的结合扩大了其应用范围:通过芯片与基因芯片的结合建立的芯片-芯片法已广泛用于高通量筛选特异的反式因子靶基因;芯片结合体内足迹法寻找反式因子的体内结合位点;核糖核酸芯片用于研究核糖核酸在基因表达调控中的作用因此,随着ChIP的进一步完善,它必将在基因表达调控研究中发挥越来越重要的作用。
就目前国内研究状况而言,教师在研究领域有分化、转录、发育、诱导多能性、肿瘤干细胞、表观遗传学等。
会做ChIP实验,一些老师会自己购买抗体,手动配置试剂。
然而,因为实验本身具有复杂的实验步骤,并且其中许多步骤非常关键,需要更多的试剂,所以很容易导致配置之间的错误,并且实验周期长。
如果没有设置阴性和阳性对照,结果就无法分析,从而导致无休止的混乱。
经典染色质免疫沉淀(ChIP)试剂盒(p-2002):提供细胞样品上染色质免疫沉淀反应所需的所有试剂此外,试剂盒包含阳性对照抗体(核糖核酸聚合酶2抗体)、阴性对照抗体(正常小鼠的IgG)和GAPDH引物(可用作阳性对照,以确保试剂盒中的试剂和操作步骤没有问题)在大多数生长中的哺乳动物细胞中,核酸聚合酶II富集在GAPDH基因启动子上,为启动转录做准备,因此启动子可以与核酸聚合酶II进行免疫沉淀反应,但不能与正常的小鼠IgG进行免疫沉淀反应。
在该染色质免疫沉淀反应中,细胞与甲醛偶联以提取其中的染色质染色质被适当破坏,然后加入微孔中,与吸附在微孔表面的抗体反应特异性结合在微孔上的DNA从抗体-捕获蛋白-DNA复合物中释放出来,通过我们公司专门设计的高速离心柱进行翻转和纯化。
CHIP(染色质免疫共沉淀)

一、超声剪切染色质1.用37℃预温的1%PFA固定10-20min,使DNA与蛋白质交联2.终止交联,加入终浓度为0.125M的甘氨酸3.用预冷的PBS洗2次4.用PBS将细胞刮下(5mlPBS+1mMPMSF+1mg/ml抑肽酶)5.4500rpm5min(此阶段细胞沉淀可储存于-80℃)6.弃上清,按200ul/106个细胞加入SDS lysis buffer(现加PMSF&coktail),冰上10min(4℃rotation 30min)7.27G针头注射器吹打3遍,若有气泡离心8.超声:不可有气泡,超两次后放到冰上9.离心:4℃,12000rpm,20min,上清转移到15ml离心管二、Ab沉淀目的染色质1.用dilution buffer稀释至1ml2.取50ul Input(也可取少量做lgG阴性对照,RNaseⅡ阴性对照)备注:取450ul做lgGcontrol,剩余500ul3.剩下的加一抗(5ul/ml),4℃rotate过夜4.向样品中加入50ul ProteinA+Gbeads,4℃rotate2h,之后可在冰上沉淀一会5.离心,1000rpm1min,留上清6.洗珠子,1ml/5min/次,在4℃rotate,再在冰上静置5min,1000rpm1min。
洗涤顺序为:低盐溶液→高盐溶液→LicL(之前在4℃)→TE→TE(室温)三、去除蛋白质1.Elution buffer(1%SDS、0.1MNaHCO3;0.5gSDS,0.42gNaHCO3 in 50ml ddH20)+250uL RT15min rotate →离心1000rpm1min→上清(收集)→+250ulRT 10min →金属65℃5min→上清(收集)2.上清+20ul5M NaClInput+450ul elution buffer+20ul 5M NaCl65℃6-7h或过夜3.10ul0.5MEDTA,20ul1MTris-HCl +2ul 10mg/ml 蛋白酶K(50℃1h)?四、提纯DNA1.加等体积(500ul)Tris-饱和酚,剧烈混匀,14500rpm10min,取上清,加入500ulCHCl3混匀后14500rpm10min,取上清后再加入tRNA60ug (200ug/ml,3ul),加异丙醇500ul,离心14500rpm20min 弃上清2.加70%酒精洗一遍,14500rpm5min,(要去掉上清,先倒掉,倒掉之后离心一下再扔掉液体)将管子倒扣空气晾干。
染色质免疫共沉淀技术原理

染色质免疫共沉淀技术原理一、前言染色质免疫共沉淀技术(ChIP)是生物学研究中常用的一种方法,它通过利用抗体特异性识别染色质上的特定蛋白质,进而从复杂的细胞核提取物中富集这些蛋白质,并对其进行鉴定和分析。
本文将详细介绍染色质免疫共沉淀技术的原理。
二、实验步骤1. 交联首先,需要对活细胞进行交联处理,以稳定染色质和蛋白质之间的相互作用。
常用的交联剂有甲醛和二氧化硅等。
2. 染色质片段化接下来,需要将交联后的细胞进行裂解,并将DNA片段化。
这可以通过超声波或者限制性内切酶等方法实现。
3. 免疫共沉淀然后,在裂解液中加入与目标蛋白特异性结合的抗体,并进行免疫共沉淀。
在共沉淀过程中,目标蛋白和与其结合的DNA片段会被富集到抗体上。
4. 分离DNA片段接下来,需要将DNA片段从抗体上分离出来。
这可以通过加入盐或者进行热处理等方法实现。
5. 鉴定和分析最后,对富集的DNA片段进行鉴定和分析。
这可以通过PCR扩增、测序或者芯片技术等方法实现,以确定目标蛋白在染色质中的作用位置和作用方式。
三、原理解析1. 抗体选择ChIP技术的核心是抗体的选择。
抗体需要特异性识别目标蛋白,并保持其活性。
通常情况下,使用多个不同来源的抗体可以提高富集效率和准确性。
2. 交联原理交联是通过甲醛或二氧化硅等化学物质与细胞核内的DNA、蛋白质发生共价结合而实现的。
交联后的染色质会更加稳定,避免了在裂解过程中DNA和蛋白质之间失去相互作用。
3. 片段化原理染色质片段化是为了将长链DNA切成适当大小的小片段,以便于后续步骤中与抗体结合并富集目标蛋白。
超声波法利用高频声波震荡使DNA分子破碎,而限制性内切酶法则利用特定的酶切割位点切割DNA分子。
4. 免疫共沉淀原理免疫共沉淀是利用抗体与目标蛋白之间的特异性结合,将目标蛋白及其相关DNA片段从裂解液中富集到抗体上。
这一步骤需要注意选择合适的抗体和免疫共沉淀条件,以提高富集效率和准确性。
5. DNA片段分离原理将DNA片段从抗体上分离出来是为了进一步进行后续鉴定和分析。
植物染色质免疫沉淀分析(CHIP)试剂盒

植物染色质免疫沉淀分析(CHIP)试剂盒产品说明书主要用途植物染色质免疫沉淀分析(CHIP)试剂是一种旨在通过甲醛交联、物理或化学处理细胞核以及染色质,从而运用特异抗体结合免疫沉淀,然后萃取DNA,扩增分析,来确定结合蛋白的目标DNA序列的权威而经典的技术方法。
该技术由大师级科学家精心研制、成功实验证明的。
其适用于DNA复制、重组、修复、转录、病毒组装中的DNA和蛋白质(包括转录因子、聚合酶、组蛋白等)的相互作用的研究。
广泛应用于定性检测各种植物组织(花瓣、叶片、种子等)DNA蛋白结合序列和定量检测序列特异性DNA结合蛋白(例如转录因子)及其突变形成等。
产品即到即用,性能稳定,操作便捷,反应敏感,结合显著,重复性好。
技术背景DNA和蛋白质的相互作用是调控细胞反应过程的要素之一。
染色质免疫沉淀分析方法(chromatin immunoprecipitation;CHIP)是研究活体内(in vivo)DNA和蛋白质的相互作用的最新最有力的工具:用于分析染色质结构动力学、转录因子调节、以及表观遗传学变异等。
CHIP技术通过三大步骤实现:第一,甲醛固定后染色质分离和断片;第二,运用特异蛋白之抗体,免疫共沉淀结合蛋白(包括转录因子、聚合酶、组蛋白等)的染色质片断;第三,分析目标DNA和蛋白的修饰。
其中转录因子作为调节蛋白,通过结合核DNA,以达到控制基因表达。
产品内容清理液(Reagent A)毫升固着液(Reagent B)毫升终止液(Reagent C)毫升裂解液A(Reagent D)毫升裂解液B(Reagent E)毫升裂解液C(Reagent F)毫升核溶液(Reagent G)毫升稀释液(Reagent H)毫升结合液(Reagent I)毫升低盐液(Reagent J)毫升高盐液(Reagent K)毫升平衡液(Reagent L)毫升缓冲液(Reagent M)毫升洗脱液(Reagent N)毫升解联液(Reagent O)毫升酶解液(Reagent P)微升萃取液(Reagent Q)毫升浓缩液(Reagent R)毫升沉淀液(Reagent S)毫升净化液(Reagent T)毫升扩增液(Reagent U)微升补充液(Reagent V)毫升说明书1份保存方式保存裂解液A(Reagent D)、裂解液B(Reagent E)、裂解液C(Reagent F)、核溶液(Reagent G)、稀释液(Reagent H)、结合液(Reagent I)、解联液(Reagent O)、酶解液(Reagent P)、萃取液(Reagent Q)、浓缩液(Reagent R)和扩增液(Reagent U)在-20℃冰箱里,其余的保存在4℃冰箱里;有效保证6月用户自备特异抗体:用于目标蛋白的结合特异引物:用于目标DNA的扩增或测序1.5毫升离心管:用于样品反应操作和保存的容器2毫升离心管:用于样品反应操作和保存的容器15毫升锥形离心管:用于样品处理的容器50毫升锥形离心管:用于植物组织处理的容器恒温水槽:用于孵育反应物震荡器:用于混匀反应物4℃微型台式离心机:用于沉淀样品4℃台式离心机:用于沉淀样品平式摇荡仪或摇床:用于孵育和混匀反应DOUNCE匀浆器:用于裂解植物组织细胞超声仪:用于裂解植物组织细胞核PCR仪:用于扩增反应电泳仪:用于检测扩增产物实验步骤实验开始前,准备好待测植物的预处理:药物处理等。
染色质免疫沉淀(ChIP)实验指南

染色质免疫沉淀(ChIP)实验指南ChIP是一项比较流行的研究转录因子(transcription factor, TF)与启动子(promoter)相互结合的实验技术。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA 或RNA)之间会产生共价键。
细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
在PCR分析这一块,比较传统的做法是半定量-PCR。
但是现在随着荧光定量PCR的普及,大家也越来越倾向于Q-PCR了。
此外还有一些由ChIP衍生出来的方法。
例如RIP (其实就是用ChIP的方法研究细胞内蛋白与RNA的相互结合,具体方法和ChIP差不多,只是实验过程中要注意防止RNase,最后分析的时候需要先将RNA逆转录成为cDNA);还有ChIP-chip(其实就是ChIP富集得到的DNA-片段,拿去做芯片分析,做法在ChIP的基础上有所改变,不同的公司有不同的做法,要根据公司的要求来准备样品)。
第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。
(培养基共有9ml)2、37摄氏度孵育10min。
3、终止交联:加甘氨酸至终浓度为0.125M。
染色质免疫沉淀技术

染色质免疫沉淀技术介绍染色质免疫沉淀技术(Chromatin Immunoprecipitation,ChIP)是一种用于研究染色质上特定蛋白质与DNA的相互作用的实验方法。
通过该技术,我们可以确定某个蛋白质在染色质上的结合位点,进而探究基因表达调控、表观遗传学和疾病发生等重要生物学问题。
ChIP的原理ChIP技术的基本原理是利用特异性抗体与目标蛋白质结合,然后通过免疫沉淀的方式将蛋白质及其结合的DNA分离出来。
具体步骤如下:1. 交联首先,将细胞或组织进行交联,使得染色质上的蛋白质与DNA形成稳定的结合。
常用的交联剂包括甲醛和二氧化硅。
2. 细胞裂解将交联后的细胞或组织进行裂解,释放出染色质。
3. DNA切割使用限制性核酸内切酶或超声波等方法将染色质切割成小片段。
切割后的DNA片段长度通常在200-1000碱基对之间。
4. 免疫沉淀将特异性抗体与目标蛋白质结合,形成抗原-抗体复合物。
然后将抗原-抗体复合物与染色质中的目标蛋白质结合的DNA片段一起免疫沉淀。
5. 分离DNA通过洗涤等步骤将非特异性结合的DNA片段去除,保留与目标蛋白质结合的DNA片段。
6. 解交联去除染色质与蛋白质的交联,使得DNA片段恢复单链状态。
7. DNA纯化将解交联后的DNA片段进行纯化,去除杂质。
8. DNA分析通过PCR、测序等方法对免疫沉淀得到的DNA片段进行分析,确定目标蛋白质结合的DNA序列。
应用ChIP技术在生命科学研究中得到了广泛应用,尤其是在以下领域:1. 基因表达调控通过ChIP技术,可以确定转录因子与染色质上的结合位点,进而揭示基因的调控机制。
研究人员可以通过ChIP-Seq等方法,高通量地鉴定转录因子结合位点,从而识别出与特定基因调控相关的转录因子。
2. 表观遗传学ChIP技术可以用于研究染色质修饰与基因表达调控之间的关系。
例如,通过ChIP-Seq可以鉴定出与DNA甲基化和组蛋白修饰相关的位点,进一步探究这些修饰与表观遗传学调控的机制。
染色质免疫沉淀技术及其应用

染色质免疫沉淀技术及其应用细胞核中包含着细胞的遗传物质DNA,以及DNA紧密结合的蛋白质,构成了染色质。
染色质免疫沉淀技术(Chromatin Immunoprecipitation,ChIP)是一种用于研究染色质蛋白质相互作用及其在基因调控中的作用的重要实验技术。
通过该技术可以识别染色质上与特定蛋白质结合的DNA序列,从而了解这些蛋白质在基因表达调控过程中的作用。
ChIP技术已经成为生物医学研究领域中不可或缺的实验手段,被广泛应用于基因转录调控、染色质结构与功能、疾病发生机制等领域,为我们深入了解基因表达调控机制、疾病发生发展提供了重要帮助。
ChIP技术的基本原理是利用抗体来特异识别并结合到染色质上的特定蛋白,然后通过交联、切割、免疫沉淀和逆交联等步骤来提取特定的DNA片段。
接着通过DNA序列分析技术,例如PCR、测序等,可以识别出与某个特定蛋白质结合的DNA序列。
ChIP技术主要包括以下几个步骤:细胞交联、细胞破碎、抗体免疫沉淀、DNA纯化和DNA序列分析。
这些步骤需要严格控制实验条件,确保实验结果的可靠性和准确性。
ChIP技术的应用非常广泛,特别是在以下几个方面:1. 基因转录调控研究ChIP技术可以帮助研究人员确定染色质上与特定转录因子结合的DNA序列,从而识别这些转录因子在基因调控过程中的作用。
研究人员可以利用ChIP技术来分析不同细胞状态下转录因子的结合模式,以及其对调控特定基因的影响,从而深入了解基因的表达调控网络。
2. 染色质结构与功能研究ChIP技术也被广泛应用于研究染色质的结构与功能。
通过识别与某个特定蛋白质结合的DNA序列,可以揭示该蛋白质在染色质组装、染色质结构维护、染色质重复序列稳定性维护等方面的作用,为深入理解染色质结构与功能提供了重要手段。
3. 疾病发生机制研究ChIP技术在研究疾病发生机制方面也具有重要的应用价值。
研究人员可以利用ChIP 技术来分析肿瘤细胞中染色质上与肿瘤相关蛋白质结合的DNA序列,从而揭示肿瘤相关基因的表达调控网络,为肿瘤的发生发展机制提供重要线索。
浅析染色质免疫沉淀(ChIP)技术在DNA与蛋白质相互作用研究中的重要性

浅析染色质免疫沉淀(ChIP)技术在DNA与蛋白质相互作用研究中的重要性染色质免疫沉淀(ChIP)是研究蛋白质-DNA相互作用的一项强大技术,广泛用于多个领域的染色质相关蛋白的研究(如组蛋白及其异构体,转录因子等),特别适用于已知启动子序列或整个基因位点的组蛋白修饰分析研究。
这项技术采用特定抗体来富集存在组蛋白修饰或者转录调控的DNA片段,通过多种下游检测技术(定量PCR,芯片,测序等)来检测此富集片段的DNA序列。
ChIP技术自诞生之后,已成功的应用于人或动物细胞和组织[1] 、植物组织[2]、酵母[3] 以及细菌、质粒[4] 。
由于在信号转导和表观遗传研究中的突出作用,ChIP 在肿瘤[5-7]、神经科学[8-10]、植物发育[11-13] 等领域中应用非常广泛,同时有关细胞凋亡[14]、雌激素信号转导[15] 、胰岛素抵抗[16] 、组织发育[1]的文献中也用到ChIP。
目前,最常见的有以下两种ChIP实验技术:1. nChIP:用来研究DNA及高结合力蛋白,采用微球菌核酸酶(micrococcal nuclease)消化染色质,然后进行片段富集及后续分析,适用于组蛋白及其异构体,例如[17-19] ;2. xChIP:用来研究DNA及低结合力蛋白,采用甲醛或紫外线进行DNA和蛋白交联,超声波片段化染色质,然后进行片段富集及后续分析,适用于多数非组蛋白的蛋白,例如[9, 15, 20]。
X-ChIP试验的一般过程以上两种方法在分离DNA-蛋白质复合物之后,对DNA进行PCR扩增,验证目标序列的存在。
除验证实验外,ChIP DNA也可以进行测序分析,这种方法被称为ChIP-seq[22];也可做芯片分析,这种方法被称为ChIP on CHIP或ChIP-CHIP[23] 。
这两种方法都可用于分析感兴趣蛋白结合的未知序列,而不需要知道目标序列的详细信息,因此可以进行探索性的研究。
当需要对DNA结合的蛋白复合物(两个或两个以上蛋白共同结合在DNA上)进行研究时,可以采用reChIP技术对DNA蛋白复合物进行再次富集,从而分析两种蛋白同时结合的DNA片段,例如转录调控因子及其受体复合物[24]。
CHIP染色质免疫共沉淀实验 Protocol

CHIP染色质免疫共沉淀实验是一种在全基因组水平上研究蛋白质与DNA相互作用的技术方法。
其实验原理是基于抗原抗体反应的特异性,从而实现对DNA结合蛋白及其DNA靶标的富集。
实验所需试剂和耗材包括:细胞培养及提取试剂、生物素标记试剂盒、抗体、蛋白质A琼脂糖珠、Triton X-100、ECL显影液等。
实验仪器包括:二氧化碳培养箱、倒置显微镜、离心机、染色质免疫沉淀仪等。
实验准备工作的要点包括:首先,要确认所用试剂和耗材的型号和保质期;其次,要确保细胞株和抗体的选择合适;最后,准备好实验所需的仪器设备并调试至最佳状态。
实验方法主要包括以下步骤:1.将细胞进行培养并提取染色质。
2.在染色质中加入对应于一个特定组蛋白标记的生物抗体,并用Triton X-100将抗原抗体混合物进行稀释。
3.在混合物中加入蛋白质A琼脂糖珠,以便吸附多余的抗体和未结合的蛋白质。
4.用洗涤液洗涤沉淀物,去除未结合的蛋白质和抗体,最后用变性液洗脱DNA。
5.用电泳法和显影法检测提取出的DNA片段。
注意事项包括:要保持细胞生长状态良好,并确保抗原抗体反应的时间和温度准确适宜;在加入蛋白质A琼脂糖珠后,要充分混匀以避免影响实验结果;最后,要注意控制好电泳参数和显影条件以保证结果的准确性和可靠性。
常见问题及解决方法包括:如果抗原抗体反应不充分,可以尝试增加抗体浓度或延长反应时间;如果未结合的蛋白质不能被有效清除,可以尝试增加洗涤次数或更换洗涤液;如果电泳条带不清晰或出现异常,可以尝试调整电泳参数或更换电泳液。
总之,CHIP染色质免疫共沉淀实验是一种研究蛋白质与DNA相互作用的有效方法,需要注意保持细胞生长状态良好、准确控制抗原抗体反应条件、充分洗涤未结合的蛋白质等关键点。
同时,针对实验中可能遇到的问题,要积极采取相应的解决方法,以保证实验结果的准确性和可靠性。
ChIP 原理及实验方法

染色质免疫沉淀技术(ChIP)实验方法实验原理染色质免疫沉淀技术(ChIP)通过与染色质片段共沉淀和PCR技术,在体内检测与特异蛋白质结合的DNA片段。
ChIP技术最大的优点就是在活体细胞状态下研究了蛋白质和目的基因结合状况,减少了体外实验的误差。
在活体细胞中,先对与调节蛋白结合的染色质进行分离,然后通过一定的方法(例如:超声波)随机剪切染色质,用调节蛋白的抗体沉淀目的染色质,再通过一定手段把目的染色质上的蛋白质去除掉,最后用PCR等方法检测鉴定共沉淀的DNA片段的特性。
仪器和试剂真空设备、涡旋器、液氮、冷冻离心管、离心机、超声波粉碎仪、miracloth 37%甲醛,2M甘氨酸,ddHO,剪切的鲑精DNA/protein A琼脂糖珠(Sant cruz),2蛋白酶K(14mg/ml),RNaseA,酚:氯仿:异戊醇(25:24:1),氯仿,无水乙醇,提取缓冲液1(EB1):0.4M蔗糖;10mM Tris-HCl,pH8.0;5mM β-ME;0.1mM PMSF;蛋白酶抑制剂混合物(aprotinin、pepstain A、Leupeptin、Antipain、TPCK、Benzamidine)•提取缓冲液2(EB2):0.25M 蔗糖;10mM Tris-HCl,pH8.0;10mM MgCl2;1%Triton X-100(聚乙二醇辛基苯基醚);5mM β-ME;0.1mM PMSF;蛋白酶抑制剂混合物(同上)提取缓冲液3(EB3):1.7M蔗糖;10mM Tris-HCl,pH8.0;0.15%Triton X-100;2mM MgCl;5mMβ-ME;0.1mM PMSF;蛋白酶抑制剂混合物(同上)2核裂解缓冲液(NLB):50mM Tris-HCl,pH8.0;10mM EDTA;1%SDS;PMSF和蛋白酶抑制剂混合物(同上)ChIP稀释缓冲液(ChIP DB):1.1%Triton X-100;1.2mM EDTA;16.7 mMTris-HCl,pH8.0;167mM NaCl;PMSF和蛋白酶抑制剂混合物(同上)洗脱缓冲液(EB):1%SDS;0.1M NaHCO3(现配)低盐洗脱液:150mM NaCl;0.1%SDS;1%Triton X-100;2mM EDTA;20mM Tris-HCl,pH8.0高盐洗脱液:500mM NaCl;0.1%SDS;1%Triton X-100;2mM EDTA;20mM Tris-HCl,pH8.0LiCl洗脱液:0.25M LiCl;1%NP-40;1%脱氧胆酸钠;2mM EDTA;20mM Tris-HCl,pH8.0TE缓冲液:1mM EDTA;10mM Tris-HCl,pH8.0实验方法植物材料的准备(以拟南芥为例)1.在覆盖有保鲜膜的土里播上拟南芥的种子。
染色质免疫共沉淀(ChIP)实验 DNA实验技术方法汇总

染色质免疫共沉淀(ChIP)染色质免疫共沉淀可以:(1)组蛋白修饰酶的抗体作为“生物标记”;(2)转录调控分析;(3)药物开发研究;(4)DNA损失与凋亡分析。
1实验方法原理:在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。
IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。
目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。
2实验材料、试剂、仪器耗材:细胞样品甲醛、甘氨酸、PBS、SDS、Lysis Buffer、洗脱液、RNaseA、蛋白酶K、omega胶回收试剂盒等离心管、超声仪、电泳仪、离心机等3实验步骤:一、细胞的甲醛交联与超声破碎(第一天)1. 取出1平皿细胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的终浓度为1%(培养基共有9 ml)。
2. 37℃孵育10 min。
3. 终止交联:加甘氨酸至终浓度为0.125 M。
450 ul 2.5 M甘氨酸于平皿中。
混匀后,在室温下放置5 min即可。
4. 吸尽培养基,用冰冷的PBS清洗细胞2次。
5. 细胞刮刀收集细胞于15 ml离心管中(PBS依次为5 ml,3 ml和3 ml)。
预冷后2 000 rpm 5 min收集细胞。
6. 倒去上清。
按照细胞量,加入SDS Lysis Buffer。
使得细胞终浓度为每200ul含2×106个细胞。
这样每100 ul溶液含1×106个细胞。
再加入蛋白酶抑制剂复合物。
假设MCF7长满板为5×106个细胞。
本次细胞长得约为80%。
即为4×106个细胞。
因此每管加入400 ul SDS Lysis Buffer。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染色质免疫沉淀分析——植物ChIP解决方案
染色质免疫沉淀分析(ChIP) 是目前确定与特定蛋白结合的基因组区域或确定与特定基因组区域结合的蛋白质的比较好的一种方法。
so,我们今天来聊聊染色质免疫沉淀分析方法。
染色质免疫沉淀法(Chromatin immunoprecipitation,ChIP)是研究体内DNA与蛋白质相互作用的重要工具。
它可以灵敏地检测目标蛋白与特异DNA片段的结合情况,还可以用来研究组蛋白与基因表达的关系。
CHIP技术通过三大步骤实现:第一,甲醛固定后染色质分离和断片;第二,运用特异蛋白质抗体(CHIP级别),免疫共沉淀结合蛋白的染色质片段;第三,分析目标DNA。
这里我们就要说到CHIP技术工具之——植物染色质免疫沉淀试剂盒了。
它的原理是什么呢?不妨以P-2014植物染色质免疫沉淀试剂盒来举个栗子~~
P-2014植物染色质免疫沉淀试剂盒旨在通过甲醛交联、物理或化学处理细胞核以及染色质,从而运用特异抗体结合蛋白进行免疫沉淀,然后萃取DNA,扩增分析,用以确定结合蛋白的目标DNA。
接下来再说说它的特征,P-2014植物染色质免疫沉淀试剂盒涵盖全套试剂,允许试验者有效地在体内研究蛋白-DNA相互关系。
整个过程可以在6小时内完成(哇哦,厉害了~)
当然了,还有相当重要的一点:P-2014植物染色质免疫沉淀试剂盒适用于将特异性免疫沉淀与定性和定量PCR、MS-PCR、ChIP-Seq、ChIP-on-chip结合使用。
欧迈噶!P-2014植物染色质免疫沉淀试剂盒包括一个ChIP级二甲基组蛋白H3-K9抗体--阳性对照,以及一个正常小鼠IgG——阴性对照。
从染色质从样本中释放出来后,经剪切、断片,添加到包被了抗体的微孔中,蛋白质-DNA复合物经特异性抗体捕获,解交联后DNA被释放,通过离心柱,纯化并洗脱目的DNA。
洗脱下来的DNA可用于各种下游应用。
接着看看样本,起始材料可包括各种植物组织(花、叶、幼苗)。
在一般情况下,每个反应的样本量应该是20~50毫克的植物组织。
最后总结一下,植物染色质免疫沉淀分析,首先一定要选对方法,然后就是工具,比如说刚刚分析的植物染色质免疫沉淀试剂盒,它需要满足哪些条件?
1.快速简单:实验能在6小时内完成;
2.实验灵活:可手动或高通量;
3.包括DNA纯化柱:省时省力;
4.与所有的DNA扩增方法兼容;
5.能达到简单、可靠和一致的检测条件
好,今天就先简单的介绍到这里,有想法的小伙伴可一起参与讨论,期待下期更精彩哦~。