直线和圆锥曲线常考题型 (2)
直线与圆锥曲线的位置关系(2)
10kb Q L 与 C 相 交 于 A , B 两 点 ,∴ 5k − 3 ≠ 0,∴ x A + x B = 3 − 5k 2 y=kx+b 2 2 ⇒ (5k 2 − 3)x 2 + 10bkx + 5b 2 = 0 y x − =0 5 3 10kb
可见AB,CD的中点横坐标都相同,从而中点重合. 可见AB,CD的中点横坐标都相同,从而中点重合. AB 的中点横坐标都相同
直线与圆锥曲线的位置关系( 直线与圆锥曲线的位置关系(2)
直线与圆锥曲线相交问题的处理方法; 有关弦中点问题的解题技巧;
一、弦的中点问题的处理方法-----点差法 弦的中点问题的处理方法 点差法
x2 y 2 设A( x1 , y1 ), B( x2 , y2 )是椭圆 2 + 2 = 1上不同的两点, a b 且x1 ≠ x2 , x1 + x2 ≠ 0, M 为弦AB的中点, 则 x12 y12 a 2 + b2 = 1 ① 2 x2 y2 2 + 2 =1 ② 2 a b
解 : 假设存在P(x1 ,y1 ), Q(x 2 ,y 2 )为直线L上的两点, 假设存在P 为直线L上的两点, PQ的中点为 的中点为A 且PQ的中点为A,则有 :
ì ï 2 y12 ïx = 1 ï 1 ï 2 ï Þ í 2 ï ï 2 y2 ï x2 = 1 ï ï 2 î
2(x 1 + x 2 )(x 1 - x 2 ) = (y1 + y 2 )(y 1 - y 2 )
一、对于椭圆、抛物线而言: 对于椭圆、抛物线而言 若点P在其内部,则以P为中点的弦一定存在; 若点 在其内部,则以 为中点的弦一定存在; 在其内部 为中点的弦一定存在 在其外部或曲线上 为中点的弦一定不 若P在其外部或曲线上,则以 为中点的弦一定不 在其外部或曲线上,则以P为中点的弦一定 存在 二、对于双曲线而言 : 当点P落在双曲线与其渐近线所夹区域; 当点 落在双曲线与其渐近线所夹区域;在双曲 落在双曲线与其渐近线所夹区域 线上;在其渐近线(中心除外)上时,以点P为 线上;在其渐近线(中心除外)上时,以点 为 中点的弦不存在。 中点的弦不存在。 当点P落在其它区域时,以点 为中点的弦存在 为中点的弦存在。 当点 落在其它区域时,以点P为中点的弦存在。 落在其它区域时 检验方法:将求出的直线与曲线联立, 检验方法:将求出的直线与曲线联立,看△ >0?
圆锥曲线高考常考题型
圆锥曲线高考常考题型:一、基本概念、基本性质题型二、平面几何知识与圆锥曲线基础知识的结合题型三、直线与圆锥曲线的相交关系题型(一)中点、中点弦公式(二)弦长(三)焦半径与焦点三角形四、面积题型(一)三角形面积(二)四边形面积五、向量题型(一)向量数乘形式(二)向量数量积形式(三)向量加减法运算(四)点分向量(点分线段所成的比)六、切线题型(一)椭圆的切线(二)双曲线的切线(三)抛物线的切线七、最值问题题型(一)利用三角形边的关系(二)利用点到线的距离关系一、基本概念题型:主要涉及到圆锥曲线定义、焦点、焦距、长短轴、实虚轴、准线、渐近线、离心率等基本概念知识的考查。
例1:已知椭圆)0(12222>>=+b a by a x 的焦距为2,准线为4=x ,则该椭圆的离心率为例2:已知双曲线方程)0,(12222>=-b a b y a x 的离心率为25,则渐近线方程为例3:已知双曲线方程为)1(1)1(2222>=+-a a y a x ,则双曲线离心率取值范围为例4:已知抛物线方程为x y 82-=,则焦点坐标为例5:已知椭圆C :13422=+y x 上一点P 到左焦点的距离为23,则点P 到左准线的距离为 ,到右准线的距离为例6:已知双曲线M :13622=-y x 上一点P 到左准线的距离为2,则点P 到右焦点的距离为二、平面几何知识与圆锥曲线基本知识的结合。
该考点主要涉及到平面几何知识中的中位线、中垂线、角平分线定理,射影定理、勾股定理、余弦定理 、相似三角形、三角形四心性质、等腰梯形、直角梯形性质 、圆的性质、长度和坐标的相互转换等当 然还会涉及圆锥曲线基本知识,包括定义、基本概念、基本性质。
例1:①过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10②设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.③已知点P 为椭圆)0(12222>>=+b a by a x 上一点,21F F 、为椭圆的两焦点,若21213,120PF PF PF F =︒=∠且,则椭圆的离心率为例2:已知21F F 、为双曲线192722=-y x 的左右焦点,P 为双曲线上一点,M(2,0),PM 为21PF F ∠的角平分线,则2PF =例3:已知P 为椭圆12922=+y x 上一点,21F F 、为椭圆的交点,M 为线段1PF 的中点,1=OM ,则=1PF例4:①已知21F F 、为椭圆)0(12222>>=+b a by a x 的焦点,点P (b a ,),△21F PF 为等角三角形,则椭圆的离心率为②已知F 1,F 2是双曲线E 22221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin2113MF F ∠=,则E 的离心率为(A (B )32(C (D )2③已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .2 C D 例5:已知椭圆方程为)0(12222>>=+b a b y a x ,点A 为椭圆右准线与x 轴的交点,若椭圆上存在点P ,使得线段AP 的中垂线经过右焦点F ,则椭圆离心率的取值范围为例6:已知1F (-c ,0)、2F (c,0)为椭圆C:)0(12222>>=+b a by a x 的左右焦点,若在直线22a x c=存在一点P 使得线段1PF 的中垂线经过2F ,则椭圆离心率的取值范围为例7:已知斜率为2的直线过抛物线)0(2>=a ax y 的焦点且与y 轴的交点为A ,若△OAF 的面积为4,则抛物线方程为三、直线与圆锥曲线(一)直线与圆锥曲线相交,中点,中点弦公式1、直线与圆锥曲线相交,即有两个交点,一般设两个交点坐标为),(),(2211y x y x 、,联立方程,方程有两个根,以下三点需注意:①联立时,直线一般采用斜截式,将y 用kx+m 替换,得到一个关于x 的一元二次方程,当然也可以将x 用y 的表达式替换,得到关于y 的一元二次方程; ②联立得到的一元二次方程中,暗含了一个不等式,0>∆; ③我们很少需要求解21x x 、,一般通过韦达定理得到2121x x x x 、+的值 或者表达式。
二轮复习Ⅴ3大题考法——直线与圆锥曲线的简单应用及最值范围问题课件(33张)
方法例解 [典例] (2021·全国甲卷)抛物线C的顶点为坐标原点O,焦点在x 轴上,直
线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相切. (1)求C,⊙M的方程; (2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⊙M相切.判断直
2.已知椭圆E:xa22+by22=1(a>b>0)的四个顶点中的三个是边长为2 3的等边三角 形的三个顶点.
(1)求椭圆E的方程;
(2)设直线y=kx+m与圆O:x2+y2=
2b2 3
相切且交椭圆E于M,N两点,求
|MN|的最大值.
解:(1)由题意得,椭圆上、下两顶点与左、右顶点中的一个是边长为2 3 的
所以当―M→Q =3―N→Q ,即y1=3y2时,结合③得a2=2>43,所以椭圆C的方程为x22+y2=1; 当―M→Q =-3―N→Q ,即y1=-3y2时,结合③得a2=12>43,所以椭圆C的方程为1x22+y62=1. 综上,椭圆C的方程为x22+y2=1或1x22 +y62=1.
题型(二) 圆锥曲线中的最值问题
-4(5k2+4)×25=400(k2-1)>0,
故k>1或k<-1.
由根与系数的关系, 得x1+x2=-5-k23+0k4=5k320+k 4,x1x2=5k22+5 4, 进而可得y1+y2=k(x1+x2)-6=-5k22+4 4, y1y2=(kx1-3)(kx2-3)=k2x1x2-3k(x1+x2)+9=356k-2+204k2. 直线AB的方程为y+2=y1x+1 2x,令y=-3, 则x=-y1x+1 2,故点M-y1x+1 2,-3.
直线与圆锥曲线知识点与题型归纳总结
直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。
(整理)圆锥曲线常考题型总结-配有大题及练习
圆锥曲线大综合第一部分圆锥曲线常考题型和热点问题一.常考题型题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值的问题题型八:角度问题题型九:四点共线问题题型十:范围为题(本质是函数问题)题型十一:存在性问题(存在点,存在直线y kx m ,存在实数,三角形(等边、等腰、直角),四边形(矩形,菱形、正方形),圆)二.热点问题1.定义与轨迹方程问题2.交点与中点弦问题3.弦长及面积问题4.对称问题5.范围问题6.存在性问题7.最值问题8.定值,定点,定直线问题第二部分知识储备一.与一元二次方程 ax2bx c 0(a 0) 相关的知识(三个“二次”问题)1. 判别式:b24ac2. 韦达定理:若一元二次方程ax2bx c 0(a 0) 有两个不等的实数根x1, x2,则x1x2b, x1 x2 ca a3. 求根公式:若一元二次方程ax2bx c 0(a 0) 有两个不等的实数根x1, x2,则x1,2b b2 4 ac2a二.与直线相关的知识1.直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式WORD 完美 .格式2.与直线相关的重要内容:①倾斜角与斜率:y tan ,[0, ) ;②点到直线的距离公式: d Ax0By0C(一般式)或 d kx0 y0 b (斜截式)A2 B 212k 23.弦长公式:直线y kxb 上两点 A( x1 , y1), B( x2 , y2 ) 间的距离:AB 1 k 2 x x2 (1k2 )[( x x )24x x ]( 或 AB 1 1y y2)1 12 1 2k 21 4.两直线 l1 : y1k1x1b1 ,l2 : y2k2 x2b2 的位置关系:① l1 l2k1 k2 1 ② l1 / /l2k1 k2且b1b25.中点坐标公式:已知两点A( x1 , y1 ), B( x2 ,y2),若点 M x, y 线段AB 的中点,则x x1x1 , y y1y22 2三.圆锥曲线的重要知识考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。
高中数学圆锥曲线常考题型(含解析)
(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。
圆锥曲线常考问题(经典整理)
圆锥曲线一.弦长问题弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:2121AB k x x =+-221212(1)[()4]k x x x x =++- 或12211AB y y k =+- 例:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值.练习:(2015·湖南)已知抛物线C 1 :x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b2=1(a >b >0)的一个焦点.C 1 与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向. (1)求C 2的方程;(2)若|AC |=|BD |,求直线l 的斜率.二.中点弦问题公式法:若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 例:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 练习:已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-例:设抛物线过定点A (-1,0),且以直线x =1为准线. (1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN的垂直平分线的方程为y =kx +m ,试求m 的取值范围.三.范围问题解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.例:(2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433. (1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.练习:已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C的方程;(2)若直线:y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点M,N,且线段MN的垂直平分线过点A(0,-1),求实数m的取值范围.四.最值问题处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.命题点1利用三角函数有界性求最值例2过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|·|BF|的最小值是()A.2 B. 2 C.4 D.2 2命题点2数形结合利用几何性质求最值例3(2015·江苏)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为_____________.命题点3转化为函数利用基本不等式或二次函数求最值例4(2014·湖南)如图,O为坐标原点,椭圆C1:x2a2+y2b2=1(a>b>0)的左,右焦点分别为F1,F2,离心率为e1;双曲线C2:x2a2-y2b2=1的左,右焦点分别为F3,F4,离心率为e2.已知e1e2=32,且|F2F4|=3-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.练习:(1)已知焦点为F的抛物线y2=4x的弦AB的中点的横坐标为2,则|AB|的最大值为________.(2)(2014·北京)已知椭圆C:x2+2y2=4.①求椭圆C的离心率;②设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.。
(常考题)人教版高中数学选修一第三单元《圆锥曲线的方程》测试(答案解析)(2)
一、填空题1.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心的圆与双曲线C 的某一条渐近线交于P ,Q 两点.若60PAQ ∠=︒,且3PO OQ =(其中O 为原点),则双曲线C 的离心率为_________.2.已知椭圆()2222:10x y C a b a b +=>>的离心率e A B =、分别是椭圆的左、右顶点,点P 是椭圆上的一点,直线PA PB 、的倾斜角分别为αβ、,满足tan tan 1αβ+=,则直线PA 的斜率为__________.3.设1F 、2F 分别是椭圆2214xy +=的左、右焦点,若椭圆上存在一点P ,使2()OP OF +⋅20PF =(O 为坐标原点),则△12F PF 的面积是___________4.设F 为椭圆2222:1x y C a b+=的左焦点,P 为C 上第一象限的一点.若6FPO π∠=,PF =,则椭圆C 的离心率为___________5.椭圆2212516x y +=的左、右焦点为F 1、F 2,点P 在椭圆上,若F 1PF 2为直角三角形,则点P 到x 轴的距离为_____.6.已知F 为双曲线22221x y a b-=()0,0a b >>的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若3AB FA =,则此双曲线的离心率为________.7.已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.8.设12,F F 分别是椭圆22=1169x y +的两个焦点,点P 在椭圆上,若线段1PF 的中点在y轴上,则12||||PF PF =______. 9.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若椭圆上存在一点P使12PF e PF =,则该椭圆的离心率e 的取值范围是______.10.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是______.11.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的过焦点且垂直于对称轴的弦的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1) 能使抛物线方程为y 2=10x 的条件是_____.12.已知抛物线方程为24y x =-,直线l 的方程为240x y +-=,在抛物线上有一动点A ,点A 到y 轴的距离为m ,点A 到直线l 的距离为n ,则m n +的最小值为______.13.已知点P 是椭圆221259x y +=上任意一点,则当点P 到直线45400x y -+=的距离达到最小值时,此时P 点的坐标为______.参考答案二、解答题14.已知抛物线2:2C y px =过点()1,2A . (1)求抛物线C 的方程;(2)求过点()3,2P -的直线与抛物线C 交于M 、N 两个不同的点(均与点A 不重合).设直线AM 、AN 的斜率分别为1k 、2k ,求证:12k k ⋅为定值.15.已知()()()22:3400,q :112x y p m a m a a m m--<>+=--.(1)若q 表示双曲线,求实数m 的取值范围;(2)若q 表示焦点在y 轴上的椭圆,且q ⌝是p ⌝中的充分不必要条件,求实数a 的取值范围.16.已知椭圆()222210x y C a b a b ∴+=>>的离心率e =,左焦点为1F ,右焦点为2F ,且椭圆上一动点M 到2F 的最远距离为1,过2F 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)直线l 的斜率存在且不为0时,试问x 轴上是否存在一点P 使得OPA OPB ∠=∠,若存在,求出点P 坐标;若不存在,请说明理由.17.已知12,F F 分别是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,点P 是双曲线上一点,满足12PF PF ⊥且128,6PF PF ==. (1)求双曲线C 的标准方程;(2)若直线l 交双曲线于A ,B 两点,若AB 的中点恰为点(2,6)M ,求直线l 的方程.18.(1)已知双曲线的渐近线方程为230x y ±=,且双曲线经过点()6,2P .求双曲线方程.(2)若直线2x y -=与抛物线24y x =交于A ,B 两点,求线段AB 的中点坐标;19.已知椭圆()2222:10x y C a b a b +=>>过点231,E ⎛⎫ ⎪ ⎪⎝⎭,1A ,2A 为椭圆的左右顶点,且直线1A E ,2A E 的斜率的乘积为23-.(1)求椭圆C 的方程;(2)过右焦点F 的直线l 与椭圆C 交于M ,N 两点,线段MN 的垂直平分线交直线l 于点P ,交直线2x =-于点Q ,求PQMN的最小值. 20.已知椭圆()222210y x a b a b +=>>的离心率22e =,且过点(0,2.(1)求椭圆方程;(2)已知1F 、2F 为椭圆的上、下两个焦点,AB 是过焦点1F 的一条动弦,求2ABF 面积的最大值.21.如图,椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F 上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且1F 恰是2QF 的中点,若过A ,Q ,2F 三点的圆与直线:330l x y --=相切.(1)求椭圆C 的方程;(2)设M ,N 为椭圆C 的长轴两端点,直线m 过点()4,0P 交C 于不同两点G ,H ,证明:四边形MNHG 的对角线交点在定直线上,并求出定直线方程.22.已知椭圆E :()222210x y a b a b +=>>6,且过点31,22⎛⎫ ⎪⎝⎭.(1)求椭圆E 的标准方程;(2)若不过点()0,1A 的动直线l 与椭圆C 交于P ,Q 两点,且0AP AQ ⋅=,求证:直线l 过定点,并求该定点的坐标.23.已知椭圆()222210x y a b a b +=>>的离心率为22,短轴长为22(1)求椭圆的标准方程.(2)已知椭圆的左顶点为A ,点M 在圆2289x y +=上,直线AM 与椭圆交于另一点B ,且AOB 的面积是AOM 的面积的2倍,求直线AB 的方程.24.已知椭圆22221x y a b+=(0a b >>)长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线l 过点(,0)A a -,且与椭圆相交于另一点B .(1)求椭圆的方程; (2)若线段AB 长为25,求直线l 的倾斜角. 25.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴重直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为6,求1C 与2C 的标准方程.26.已知椭圆C :()222210x y a b a b+=>>的左焦点为()1,0F -,且经过点(3.(1)求椭圆C 的标准方程;(2)过点F 的直线l 与椭圆C 交于A ,B 两点,若154AB =,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】设由已知得由双曲线的渐近线的斜率可求得ab 的关系从而求得双曲线的离心率【详解】取PQ 的中点为B 因为所以为正三角形设则所以故答案为:【点睛】方法点睛:(1)求双曲线的离心率时将提供的双曲线的几解析:13【分析】设OQ m =,由已知得2,2BQ m PQ m ==,23,AB m OB m ==,由双曲线的渐近线的斜率可求得a ,b 的关系,从而求得双曲线的离心率. 【详解】取PQ 的中点为B ,因为060PAQ ∠=,3PO OQ =,所以PAQ △为正三角形,设OQ m =,则2,2BQ m PQ m ==,23,AB m OB m ==,所以23231313PQ m bk c a e a===⇒=⇒=. 故答案为:13.【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量,,a b c 的方程或不等式,利用222b c a =-和ce a=转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量.2.或【分析】设出点坐标求得的表达式求得代入直线的斜率公式可得答案【详解】依题意设则即化简得由于是椭圆的左右顶点所以所以所以所以或所以当时当时所以直线的斜率为或故答案为:或【点睛】本小题主要考查椭圆的几【分析】设出P 点坐标,求得tan +tan αβ的表达式,求得00x y ,,代入直线的斜率公式可得答案. 【详解】依题意1,22c b a b a a ====.设()()000,0P x y x ≠,则2200221x y a b +=,即22002214x y a a +=,化简得222004y x a -=-. 由于,A B 是椭圆的左右顶点,所以()(),0,,0A a B a -,所以tan +tan αβ0000+y y x a x a =+-0000022200022142x y x y xx ay y ===-=--,所以002x y =-,所以004x y a ⎧=⎪⎪⎨⎪=⎪⎩或004x y a ⎧=⎪⎪⎨⎪=-⎪⎩,所以当0024x y a ⎧=-⎪⎪⎨⎪=⎪⎩时,tanα002y x a ===+,当0024x a y a ⎧=⎪⎪⎨⎪=-⎪⎩时,00122y x a -===+,所以直线PA或12,故答案为:2或12. 【点睛】本小题主要考查椭圆的几何性质,直线的斜率公式,关键在于求得点P 的坐标,属于中档题.3.1【分析】记的中点为根据向量数量积为得到与的位置关系再结合三角形中位线以及直角三角形中的勾股定理求解出的值则面积可求【详解】如图所示:记的中点为因为所以所以因为为的中点所以所以所以所以所以故答案为:解析:1 【分析】记2PF 的中点为M ,根据向量数量积为0得到OM 与2PF 的位置关系,再结合三角形中位线以及直角三角形中的勾股定理求解出12PF PF ⋅的值,则12F PF △面积可求. 【详解】 如图所示:记2PF 的中点为M ,因为22()0OP OF PF +⋅=,所以220OM PF ⋅=,所以2OM PF ⊥,因为,O M 为122,F F PF 的中点,所以1//OM PF ,所以12PF PF ⊥,所以2221212121224PF PF F F PF PF a ⎧+==⎪⎨+==⎪⎩,所以()()22212121222PFPF PF PF PF PF +-+⋅==,所以121212F PF PF PF S==, 故答案为:1. 【点睛】关键点点睛:圆锥曲线中的向量平行或垂直问题,一方面可以转化为线段或直线的位置关系,另一方面还可以通过坐标形式表示出对应的位置关系.4.【分析】连接由余弦定理结合平面几何的知识得再由椭圆的定义及离心率公式即可得解【详解】设椭圆的右焦点连接如图因为所以所以所以所以为等边三角形所以所以离心率故答案为:【点睛】解决本题的关键是利用余弦定理 31【分析】连接1PF ,由余弦定理结合平面几何的知识得11PF OF =,再由椭圆的定义及离心率公【详解】设(),0F c -,椭圆的右焦点()1,0F c ,连接1PF ,如图,因为6FPO π∠=,3PF =,所以2222223cos 2223PF OP OFOP OFFPO PF OPOP OF+-+∠===⋅⋅, 所以OP OF =,所以1OP OF =,13POF π∠=,所以1POF 为等边三角形,11PF OF =, 所以)113312PF PF OF OF c a +=+==,所以离心率31312ce a===+. 31. 【点睛】解决本题的关键是利用余弦定理及平面几何的知识转化条件为11PF OF =,再由椭圆的定义、离心率公式即可得解.5.【分析】设点P(xy)表示出点P 到x 轴的距离为由哪一个角是直角来分类讨论在第一类中直接令x=士3得结果在第二类中要列出方程组【详解】设点则到轴的距离为由于(1)若或令得即到轴的距离为(2)若则由可得 解析:165【分析】设点P (x ,y ),表示出点P 到x 轴的距离为||y ,由哪一个角是直角来分类讨论,在第一类中直接令x =士3得结果,在第二类中要列出方程组.设点(,)P x y ,则到x 轴的距离为||y 由于5a =,4b =,3c ∴=,(1)若1290PF F ∠=︒或2190PF F ∠=︒,令3x =±得2y =291616(1)2525-=,16||5y ∴=,即P 到x 轴的距离为165. (2)若1290F PF ∠=︒,则122221210||6PF PF PF PF ⎧+=⎪⎨+=⎪⎩, 22121||||(106)322PF PF ∴=-=,由1210PF PF +=可得此情况不存在. 综上,P 到x 轴的距离为165. 故答案为:165. 【点睛】解决本题的关键是要注意分类讨论的思想,题目中的直角三角形,要分清楚那个角是直角,是解决问题的先决条件.6.【分析】首先根据题意得到直线的方程为与双曲线的渐近线联立得到再根据得到从而得到【详解】由得直线的方程为根据题意知直线与渐近线相交联立得消去得由得所以即整理得则故答案为:【点睛】本题主要考查双曲线的离解析:43【分析】首先根据题意得到直线AF 的方程为by x b c=+,与双曲线的渐近线联立得到=-B ac x c a ,再根据3AB FA =得到34c a =,从而得到43e =. 【详解】 由(),0F c -,()0,A b ,得直线AF 的方程为by x b c=+ 根据题意知,直线AF 与渐近线by x a=相交, 联立得b y x b cb y x a ⎧=+⎪⎪⎨⎪=⎪⎩消去y 得,=-B ac x c a .由3AB FA =,得()(),3,-=B B x y b c b , 所以3=B x c ,即3=-acc c a,整理得34c a =, 则43c e a ==. 故答案为:43【点睛】本题主要考查双曲线的离心率,同时考查学生的计算能力,属于中档题.7.【分析】根据题意作出图示求解出的长度然后根据椭圆的定义得到之间的关系即可求解出离心率【详解】如图因为为正三角形所以所以是直角三角形因为所以所以所以因为所以即所以故答案为:【点睛】本题考查根据几何关系 解析:31-【分析】根据题意作出图示,求解出12,PF PF 的长度,然后根据椭圆的定义得到,a c 之间的关系即可求解出离心率. 【详解】如图,因为2POF 为正三角形,所以12||||||OF OP OF ==,所以12F PF ∆是直角三角形. 因为2160PF F ∠=,21||2F F c =,所以2||PF c =,所以22212122122cos60PF PF F F PF F F =+-⋅⋅︒,所以13PF c =, 因为21||||2PF PF a +=,所以32c c a +=, 即3131ca ,所以31e =-.故答案为:31-.【点睛】本题考查根据几何关系以及椭圆的定义求解椭圆的离心率,难度一般.求解离心率的问题,如果涉及到特殊几何图形,一定要注意借助图形本身的性质去求解问题.8.【分析】先设P 点中点再求焦点再根据线段的中点在轴上求出P 点坐标再利用焦半径公式即可得的长则可解【详解】设中点由题意得由线段的中点在轴上则有代入中得P 点坐标为或根据焦半径公式可得∴故答案为:【点睛】考 解析:239【分析】先设P 点,中点,再求焦点12,F F ,再根据线段1PF 的中点在y 轴上,求出P 点坐标,再利用焦半径公式即可得12||,||PF PF 的长,则12||||PF PF 可解. 【详解】设(,)p p P x y ,中点(0,)m n .由题意得12(F F ,4a =,e =由线段1PF 的中点在y 轴上,则有02p x +=,p x =22=1169x y +中得P 点坐标为9()4或9()4-根据焦半径公式可得,12239||,||44PF PF ==, ∴12||23||9PF PF =. 故答案为:239. 【点睛】考查椭圆的焦半径公式, 解题关键要求出P 点坐标.9.【分析】由椭圆的定义可得解得由椭圆的性质可得解不等式求得离心率的取值范围【详解】设点的横坐标为则由椭圆的定义可得由题意可得则该椭圆的离心率的取值范围是故答案为:【点睛】本题考查椭圆的定义以及简单性质解析:)1,1【分析】由椭圆的定义可得22()()a a e x e e x c c +=⨯-,解得(1)c a x e e -=+,由椭圆的性质可得(1)c aaa e e --+,解不等式求得离心率e 的取值范围.【详解】设点P 的横坐标为x ,12PF e PF =,则由椭圆的定义可得22()()a a e x e e x c c+=⨯-,(1)c a x e e -∴=+,由题意可得(1)c aaa e e --+, 111(1)e e e -∴-+,∴2211e e e e e e ⎧--⎨-+⎩,∴211e -<, 则该椭圆的离心率e 的取值范围是[21-,1), 故答案为:[21-,1). 【点睛】本题考查椭圆的定义,以及简单性质的应用,由椭圆的定义可得22()()a a e x e e x c c+=⨯-,是解题的关键.10.【分析】由双曲线方程求得渐近线方程当过焦点的两条直线与两条渐近线平行时这两条直线与双曲线右支分别只有一个交点利用数形结合可求出符合条件直线的斜率取值范围【详解】双曲线的渐近线方程当过焦点的直线与两条解析:33,⎡⎤-⎢⎥⎣⎦【分析】由双曲线方程求得渐近线方程33y x =±,当过焦点的两条直线与两条渐近线平行时,这两条直线与双曲线右支分别只有一个交点,利用数形结合,可求出符合条件直线的斜率取值范围. 【详解】双曲线221124x y -=的渐近线方程33y x =±,当过焦点的直线与两条渐近线平行时, 直线与双曲线右支分别只有一个交点(因为双曲线正在与渐近线无限接近中),由图可知,斜率不在33⎡⎢⎣⎦的所有直线与双曲线右支有两点交点(如图中直线2l ),斜率在⎡⎢⎣⎦的所有直线都与双曲线右支只有一个交点(如图中直线m ).所以此直线的斜率的取值范围.⎡⎢⎣⎦故答案为.⎡⎢⎣⎦【点睛】本题主要考查双曲线的几何性质以及直线与双曲线的位置关系,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.11.②⑤【分析】设抛物线方程为根据抛物线的定义焦半径公式直线相互垂直与斜率之间的关系即可判断出结论【详解】设抛物线方程为②③抛物线上横坐标为1的点到焦点的距离等于6可得解得抛物线方程为舍去;②④抛物线的解析:②⑤ 【分析】设抛物线方程为22y px =.根据抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系即可判断出结论. 【详解】设抛物线方程为22y px =.②③抛物线上横坐标为1的点到焦点的距离等于6,可得162p+=,解得10p =,抛物线方程为220y x =,舍去;②④抛物线的过焦点且垂直于对称轴的弦的长为5,可得25()222pp =⨯,解得52p =,可得抛物线方程为25y x =.②⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1),可得:111222p ⨯=--,解得5p =,可得抛物线方程为210y x =,因此正确.能使抛物线方程为210y x =的条件是②⑤. 故答案为:②⑤. 【点睛】本题考查了抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.12.【分析】过点作直线的垂线垂足为过点作准线的垂线垂足为交轴于点根据抛物线的定义可知所以过点作直线的垂线垂足为当点在与抛物线的交点时最小从而可求出答案【详解】如图焦点为抛物线的准线方程为过点作直线的垂线1 【分析】过点A 作直线l 的垂线,垂足为H ,过点A 作准线的垂线,垂足为C ,交y 轴于点B ,根据抛物线的定义可知,1AF AC m ==+,所以1m n AF AH +=+-,过点F 作直线l 的垂线,垂足为1H ,当点A 在1FH 与抛物线的交点时,AF AH +最小,从而可求出答案. 【详解】如图,焦点为()1,0F -,抛物线的准线方程为1x =, 过点A 作直线l 的垂线,垂足为H ,则AH n =,过点A 作准线的垂线,垂足为C ,交y 轴于点B ,则AB m =,1AC m =+, 根据抛物线的定义可知,1AF AC m ==+, 所以1m n AF AH +=+-,过点F 作直线l 的垂线,垂足为1H ,则1FH ==,当点A 在1FH 与抛物线的交点时,AF AH +最小,为15FH =,此时,m n +取得最小值15-.1.【点睛】本题考查抛物线的性质,考查点到直线距离公式的应用,考查学生的计算求解能力,属于中档题.13.【分析】首先求出与椭圆相切的直线的方程根据直线方程与椭圆方程联立求出点坐标即可【详解】设直线:当直线与椭圆相切时其中一个切点到直线的距离最小故联立整理得相切时易知当时点到直线的距离最小代入中解得代入解析:94,5⎛⎫- ⎪⎝⎭ 【分析】首先求出与椭圆相切的直线的方程,根据直线方程与椭圆方程联立求出P 点坐标即可. 【详解】设直线1l :()450x y m m R -+=∈, 当直线1l 与椭圆相切时,其中一个切点到直线45400x y -+=的距离最小,故联立224501259x y m x y -+=⎧⎪⎨+=⎪⎩,整理得222582250x mx m ++-=, 相切时24025b ac m ∆=-=⇒=±,易知当25m =时点到直线45400x y -+=的距离最小,25m =代入222582250x mx m ++-=中,解得4x =-,4x =-代入45250x y -+=中,解得95y =, 故P 点坐标为94,5⎛⎫- ⎪⎝⎭.故答案为:94,5⎛⎫- ⎪⎝⎭. 【点睛】本题主要考查了直线与椭圆的位置关系,属于一般题.二、解答题14.(1)24y x =;(2)证明见解析. 【分析】(1)本题可将()1,2A 代入抛物线方程中求出p 的值,即可得出结果; (2)本题首先可设()11,M x y 、()22,N x y 以及直线MN 的方程23xt y ,然后通过联立直线MN 的方程与抛物线方程即可得出124y y t +=、12812y y t =--,最后通过1212122211y y k k x x 并化简即可得出结果.【详解】(1)因为抛物线2:2C y px =过点()1,2A , 所以42p =,2p =,抛物线方程为24y x =.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为23xt y ,联立()2234x t y y x⎧=++⎨=⎩,整理得248120y ty t ---=,21632480t t ∆=++>,124y y t +=,12812y y t =--,则1212122212122222111144y y y y k k y y x x 1212161622481284y y y y t t ,故12k k ⋅为定值2-. 【点睛】关键点点睛:本题考查抛物线方程的求法以及抛物线与直线相交的相关问题的求解,通过联立直线的方程与抛物线方程以及韦达定理得出12y y +、12y y 的值是解决本题的关键,考查计算能力,考查化归与转化思想,是中档题.15.(1)()()–,12,∞+∞;(2)13,38⎡⎤⎢⎥⎣⎦.【分析】(1)根据曲线方程,列式()()120m m --<,求m 的取值范围;(2)分别求两个命题为真命题时,m 的取值范围,根据命题的等价性转化为p 是q 的充分不必要条件,转化为真子集关系,求实数a 的取值范围. 【详解】(1)由()()120m m --<,得1m <或2m >,即()()–,12,m ∈∞⋃+∞(2)命题p ∶由()()()3400m a m a a --<>,得34a m a <<.命题q ∶22112x y m m+=--表示焦点在y 轴上的椭圆, 则102021m m m m ->⎧⎪->⎨⎪->-⎩,解得312m <<,因为q ⌝是p ⌝的充分不必要条件,所以p 是q 的充分不必要条件,则31342a a ≥⎧⎪⎨≤⎪⎩,解得1338a ≤≤,故实数a 的取值范围为:13,38⎡⎤⎢⎥⎣⎦.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.16.(1)2212x y +=;(2)存在,()2,0P .【分析】(1)由已知条件列出关于,,a b c 的方程组,解得,,a b c 即得椭圆方程;(2)假设存在,设(),0P m ,()11,A x y ,()22,B x y ,设直线方程为(1)y k x =-,代入椭圆方程应用韦达定理得1212,x x x x +,然后计算由0AP BP k k +=是关于k 的恒等式可求得m 即得.【详解】(1)22221c e a a c a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,11a cb ⎧=⎪∴=⎨⎪=⎩,2212x y ∴+=.(2)假设存在(),0P m 满足题意,设()11,A x y ,()22,B x y ,():1AB l y k x =-,()22122y k x x y ⎧=-⎨+=⎩,()2222124220k x k x k ∴+-+-=, 2122412k x x k ∴+=+,21222212k x x k -=+,11APy k x m =-,22BP y k x m =-, ()()()()1221120AP BP y x m y x m k k x m x m -+-+==--,()1221120y x y x m y y ∴+-+=,211212(1)(1)(2)0kx x kx x km x x -+--+-=,()()1212220kx x k mk x x km ∴-+++=,代入1212,x x x x +整理得24,2km k m ==,()2,0P ∴. 【点睛】方法点睛:本题考查求椭圆标准方程,求直线与椭圆相交中的定点问题.求椭圆方程的关键是列出关于,,a b c 的方程组,解之即得,直线与椭圆相交问题采用“设而不求”的思想方法,即设交点为1122(,),(,)x y x y ,设直线方程(1)y k x =-,同时假设定点在在.设坐标为(,0)m ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,并代入定点满足的条件0AP BP k k +=,由此求出参数m ,得定点坐标.17.(1)22124y x -=;(2)810y x .【分析】(1)由双曲线定义求a ,结合12PF PF ⊥求2b ,写出双曲线C 的标准方程;(2)设()()1122,,,A x y B x y ,结合双曲线方程得1212121224y y y y x x x x -+⋅=-+,根据中点M 、直线斜率的坐标表示得324AB k ⋅=,即可写出直线方程. 【详解】(1)1222a PF PF =-=,得1a =,在△12PF F 中2221212100F F PF PF =+=,∴24100c =,22225c a b ==+,则224b =,故双曲线的标准方程为:22124y x -=(2)设()()1122,,,A x y B x y ,有221221221212222212424124y x y y x x y x ⎧-=⎪-⎪⇒-=⎨⎪-=⎪⎩,所以221212122112122224y y y y y y x x x x x x --+=⋅=--+,又1212AB y y k x x -=-,1212632y y x x +==+, ∴324AB k ⋅=,得8AB k =, ∴直线AB 方程为:810y x ,满足0∆>,符合题意 .【点睛】 关键点点睛:由双曲线定义:曲线上的点到两焦点距离差为定值m ,有2a m =,结合勾股定理求c .()()1122,,,A x y B x y ,利用中点1212(,)22x x y y ++、直线斜率1212y y k x x -=-,结合所得方程1212121224y y y y x x x x -+⋅=-+,求斜率并写出直线方程. 18.(1)2231143y x -=;(2)()4,2. 【分析】(1)由渐近线方程设双曲线方程为()22094x y λλ-=≠,代入点P 的坐标可得双曲线方程;(2)设()11,A x y ,()22,B x y ,直线方程代入双曲线方程,应用韦达定理和中点坐标公式可得. 【详解】(1)由双曲线的渐近线方程23y x =±,可设双曲线方程为()22094x y λλ-=≠.∵双曲线过点)P,∴6494λ-=,13λ=-,故所求双曲线方程为2231143y x -=.(2)由224x y y x-=⎧⎨=⎩得2840x x -+=,设()11,A x y ,()22,B x y ,则128x x +=,121244y y x x +=+-=, 故线段AB 的中点坐标为()4,2. 【点睛】方法点睛:本题考查求双曲线方程,考查弦中点坐标.已知双曲线的渐近线方程为0mx ny ±=,则双曲线方程可设为2222m x n y λ-=,代入其他条件求得λ即可得,这种方法不需要考虑双曲线的焦点所在轴.19.(1)22132x y +=;(2【分析】(1)由题可得221413a b+=,233113a a ⋅=-+-,解得,ab ,即可得椭圆C 的方程;(2)由题可设直线l :1x my =+,代入椭圆方程,利用韦达定理,弦长公式计算出点P ,MN,计算得2PQMN =,令t =,采用换元法求解最小值. 【详解】 (1)依题意有,221413a b+=,233113a a ⋅=-+-, 解得23a =,22b =,椭圆的方程为22132x y +=;(2)由题意知直线l 的斜率不为0,设其方程为1x my =+, 设点()11,M x y ,()22,N x y ,联立方程()2222123440321x y m y my x my ⎧+=⎪⇒++-=⎨⎪=+⎩, 得到122423m y y m -+=+,122423y y m -=+ 由弦长公式MN =整理得22123m MN m +=+,又1222223P y y m y m +-==+,2323Px m =+,2P PQ x =-=212PQMN =, 令t =,1t ≥,上式24554t t t t +⎫==+≥⎪⎝⎭,当254t =,即12m =±时,PQ MN【点睛】方法点睛:求解弦长问题通常应用弦长公式: 直线与圆锥曲线交于点()()1122,,,A x y B x y,则弦长1212AB x y =-=-(k 为直线的斜率). 20.(1)2212y x +=;(2【分析】(1)根据离心率的值,可列出a c ,的关系式,再根据经过()0,-2点,可得出a 的值和c 的值,最后再结合222a b c =+,可算出b 的值,直接写出椭圆方程即可.(2)根据题意设出直线的方程和椭圆方程联立方程组,由根和系数的关系,再结合三角形面积公式,可把三角形面积表示成含有参数的关系式,最后根据不等式,可求得面积的最大值. 【详解】 (1)由题意,a =2c e a ==得1c =,所以1b =,所以椭圆方程是2212y x +=.(2)由于直线AB 经过上焦点()0,1,设直线AB 方程为1y kx =+,联立方程组22112y kx y x =+⎧⎪⎨+=⎪⎩将1y kx =+代入椭圆方程2212y x +=,得()222210k x kx ++-=,则222A B k x x k +=-+,212A Bx x k ⋅=-+, ∴A Bx x -==21212ABF A B S F F x x =⋅-△,可知122F F=则21112ABF S ===≤△.=,即0k =时,2ABF S.【点睛】椭圆与直线相交时,三角形面积问题的关键点为:设直线方程、联立方程组、韦达定理、列出三角形面积的关系式,最后根据函数或不等式,可求出三角形面积的范围.21.(1)22143x y +=;(2)证明见解析, 1x =.【分析】(1)设椭圆C 的半焦距为()0c c >,由圆的定义可求得圆的半径,再由直线与圆的相切的条件可求得c , 2a ,2b ,可求得椭圆方程.(2)设其方程为4x my =+,设()11,H x y ,()22,G x y ,直线与椭圆的方程联立整理得()223424360my my +++=,得出根与系数的关系,表示直线MH 的方程和直线GN 的方程。
高中数学直线和圆锥曲线常考题型汇总及例题解析
高中数学直线和圆锥曲线常考题型汇总及例题解析题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题题型九:四点共线问题题型十:范围问题(本质是函数问题)题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)【题型一】数形结合确定直线和圆锥曲线的位置关系【题型二】弦的垂直平分线问题【题型三】动弦过定点的问题【题型四】过已知曲线上定点的弦的问题【题型五】共线向量问题【题型六】面积问题【题型七】弦或弦长为定值问题【题型八】角度问题【题型九】四点共线问题【题型十】范围问题(本质是函数问题)【题型十一】存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)例题&解析集合例1:例2:例3:例4:例5:例6:刷有所得:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.例7:答案:解析:刷有所得:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.例8:解析:定点问题例9:解析:例10:例11:解析:例12:例13:答案:例14:例15:解析:离心率问题例16:答案:D解析:刷有所得:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 例17:答案:C 解析:例18:答案:C解析:刷有所得:求离心率的值或范围就是找的值或关系。
圆锥曲线的七种常考题型详解【高考必备】
圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。
在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。
适用条件需要注意。
例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。
例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。
对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。
例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。
PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。
例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。
例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。
题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。
在解题时需要注重数形结合思想和不等式解法。
例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。
题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。
例1:求椭圆x^2/4+y^2/9=1的参数方程。
例2:求双曲线x^2/9-y^2/4=1的参数方程。
题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。
直线与圆锥曲线的位置关系专题复习
联系了中点和直线的斜率,借用中点P公A式R即T 可1求得斜率. 2.根与系数的关系:
即联立直线与圆锥曲线的方程得到方程组,化为一元二次 方程后由根与系数的关系求解.
01
添加标题
遇到弦中点,两式减一减; 若要求弦长,韦达来帮忙.
线 段 的 中 点 , 求 直 线 L 的 方 程 .
探究三 圆锥曲线中弦的中点问题
变 式 : 求 直 线 L:x+2y-8=0被 椭 圆 x2y21所 截 得 的 36 9
线 段 的 中 点 P的 坐 标 .
处理中点弦问题常用的求解方法
1.点差法: 即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相
y=kx+2, 联立方程组x92+y2=1, 解得 x2+9(kx+2)2=9, 即(1+9k2)x2+36kx+27=0.
∵直线 m 与椭圆交于 A、B 两点,
∴Δ=(36k)2-4×27(1+9k2)>0,即
9k2-3>0,∴k>
33或
k<-
3 3 .(*)
设 A、B 两点的坐标是 A(x1,y1),B(x2,y2), 则 x1+x2=-1+369k2,x1·x2=1+279k2. 由于以 AB 为直径的圆过原点,∴x1x2+y1y2=0, 即 x1x2+(kx1+2)(kx2+2)=0.
y(12=)若2p直x线: 与对称轴平行或重合,则相交且只有一个交点.
(2)若直线与对称轴相交,
由
y=kx+ my2=2p
得:
故①△>0 相交 ②△=0 x 相切 A③x△2+<B0x+C相=离0
yy
高考数学必考直线和圆锥曲线经典题型_含详解
1、中点坐标公式:1212,y 22x x y yx ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。
2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB ====或者AB ==== 3、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =- 两条直线垂直,则直线所在的向量120v v =4、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。
)常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1l y kx =+与椭圆22:14x y C m +=始终有交点,求m 的取值范围思路点拨:直线方程的特点是过定点(0,1),椭圆的特点是过定点(-2,0)和(2,0),和动点04m ±≠(,且。
解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22:14x y C m +=过动点04m ±≠(,且,如果直线:1l y kx =+和椭圆22:14x y C m+=14m ≥≠,且,即14m m ≤≠且。
规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+⇒过定点(,) :(1)1l y k x =+⇒-过定点(,0) :2(1)1l y k x -=+⇒-过定点(,2)证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。
、一、过一定点P 和抛物线只有一个公共点的直线的条数情况:(1)若定点P 在抛物线外,则过点P 和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线; (2)若定点P 在抛物线上,则过点P 和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P 在抛物线内,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。
2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)
直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。
圆锥曲线中定点定值定直线问题(解析版)--2024高考数学常考题型精华版
圆锥曲线中定点定值定直线问题【考点分析】考点一:直线过定点问题①设直线为m kx y +=,根据题目给出的条件找出m 与k 之间的关系即可②求出两点的坐标(一般含参数),再求出直线的斜率,利用点斜式写出直线的方程,再化为()()n m x k f y +-=的形式,即可求出定点。
考点二:定值问题探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.③求斜率,面积等定值问题,把斜率之和,之积,面积化为坐标之间的关系,再用韦达定理带入化简一般即可得到定值考点三:定直线问题①一般设出点的坐标,写出两条直线的方程,两直线的交点及两个直线中的y x ,相同,然后再用韦达定理带入化简即可得y x ,的关系即为定直线【题型目录】题型一:直线圆过定点问题题型二:斜率面积等定值问题题型三:定直线问题【典型例题】题型一:直线过定点问题【例1】已知点()1,1P 在椭圆()2222:10x y C a b a b+=>>上,椭圆C 的左右焦点分别为1F ,2F ,12PF F △的面(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线PA ,PB 均与圆()222:01O x y r r +=<<相切,记直线PA ,PB 的斜率分别为1k ,2k .(i )证明:121k k =;(ii )证明:直线AB 过定点.,即可求椭圆若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点P ,舍去.若330m k ++=,则直线():3333AB ykx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【例2】已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.【例3】已知椭圆22:1(0)C a b a b+=>>的上顶点为P ,右顶点为Q ,其中POQ △的面积为1(O 为原点),椭圆C(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=,求证:直线l 过定点.【例4】已知椭圆C :221(0)x y a b a b+=>>过点()2,0A -.右焦点为F ,纵坐标为2的点M 在C 上,且AF ⊥MF .(1)求C 的方程;(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.的坐标代入椭圆【点睛】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.【例5】已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【题型专练】1.已知椭圆()2222:10x y C a b a b+=>>的短轴长为A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.2.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.的方程3.已知椭圆22:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的两个端点恰好为正方形的四个顶点,点2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.4.焦距为2c 的椭圆2222:1x y a bΓ+=(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆2222:1x y a b Γ+=(a >b >0)是“等差椭圆”,求b a的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.题型二:斜率面积等定值问题【例1】动点M 与定点(1,0)A 的距离和M 到定直线4x =的距离之比是常数12.(1)求动点M 的轨迹G 的方程;(2)经过定点(2,1)M -的直线l 交曲线G 于A ,B 两点,设(2,0)P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +恒为定值.【例2】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点()0,1Q x 在椭圆上且位于第一象限,12QF F 121QFQF ⋅=-.(1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于点Q 的两动点,记QM ,QN 的倾斜角分别为α,β,当αβπ+=时,试问直线MN 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】已知点()2,1P -在椭圆2222:1(0)x yC a b a b +=>>上,C 的长轴长为2:l y kx m =+与C 交于,A B 两点,直线,PA PB 的斜率之积为14.(1)求证:k 为定值;(2)若直线l 与x 轴交于点Q ,求22||QA QB +的值.【例4】已知椭圆()22:10x y C a b a b+=>>的离心率23e =,且椭圆C 的右顶点与抛物线212y x =的焦点重合.(1)求椭圆C 的方程.(2)若椭圆C 的左、右顶点分别为12,A A ,直线():1l y k x =-与椭圆C 交于E ,D 两点,且点E 的纵坐标大于0,直线12,A E A D 与y 轴分别交于()()0,,0,P Q P y Q y 两点,问:P Qy y 的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例5】已知椭圆()22:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.【例6】已知P 为圆22:4M x y +=上一动点,过点P 作x 轴的垂线段,PD D 为垂足,若点Q 满足DQ =.(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点()1,0N -作曲线C 的两条互相垂直的弦,两条弦的中点分别为E F 、,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,请说明理由.-.【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.【例7】已知椭圆C :()222210x y a b a b+=>>的右焦点为,F P 在椭圆C 上,PF 的最大值与最小值分别是6和2.(1)求椭圆C 的标准方程.(2)若椭圆C 的左顶点为A ,过点F 的直线l 与椭圆C 交于,B D (异于点A )两点,直线,AB AD 分别与直线8x =交于,M N 两点,试问MFN ∠是否为定值?若是,求出该定值;若不是,请说明理由.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.【点睛】方法点睛:探究性问题求解的思路及策略:(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.2.已知椭圆C :()222210x y a b a b+=>>过点()2,1D ,且该椭圆长轴长是短轴长的二倍.(1)求椭圆C 的方程;(2)设点D 关于原点对称的点为A ,过点()4,0B -且斜率存在的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q ,求证PBBQ为定值.3.如下图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于11(,)A x y ,22(,)B x y .(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12+y y y 的值,并证明直线AB 的斜率是非零常数.由抛物线定义可知抛物线上一点到焦点距离等于到准线距离,即可求出结果4.如图,椭圆214x y +=的左右焦点分别为1F ,2F ,点()00,P x y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点()10,A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011(2)试问:x轴上是否存在不同于点B的定点M,满足当直线MP,MQ的斜率存在时,两斜率之积为定值?若存在定点M,求出点M的坐标及该定值;若不存在,请说明理由.Q5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.6.已知椭圆22Γ:1a b+=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.7.已知平面上一动点P 到()2,0F 的距离与到直线6x =的距离之比为3.(1)求动点P 的轨迹方程C ;(2)曲线C 上的两点()11,A x y ,()22,B x y ,平面上点()2,0E -,连结PE ,PF 并延长,分别交曲线C 于点A ,B ,若1PE EA λ= ,2PF FB λ=,问,12λλ+是否为定值,若是,请求出该定值,若不是,请说明理由.8.已知椭圆2:14x C y +=,过点0,2M ⎛⎫- ⎪⎝⎭直线1l ,2l 的斜率为1k ,2k ,1l 与椭圆交于()11,A x y ,()22,B x y 两点,2l 与椭圆交于()33,C x y ,()44,D x y 两点,且A ,B ,C ,D 任意两点的连线都不与坐标轴平行,直线12y =-交直线AC ,BD 于P ,Q .(1)求证:1122341234k x x k x x x x x x =++;(2)PM QM的值是否是定值,若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析k9.已知椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F 且离心率为12,椭圆C 的长轴长为4.(1)求椭圆C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,过点B 作x 轴的垂线1l ,D 为1l 上异于点B 的一点,以线段BD 为直径作圆E ,若过点2F 的直线2l (异于x 轴)与圆E 相切于点H ,且2l 与直线AD 相交于点,P 试判断1PF PH +是否为定值,并说明理由.))可知()()()222,0,2,0,1,0A B F F H -=,112212PF PH PF PF F H PF PF +=+-=+()()2,0,E m m ≠则()2,2,D m 圆E 的半径为则直线AD 直线方程为(2)2my x =+,的方程为1,x ty =+10.已知椭圆()22:10x y C a b a b+=>>的左顶点和上顶点分别为A 、B ,直线AB 与圆22:3O x y +=相切,切点为M ,且2AM MB =.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于E 、F 两点,试判断:PE PF ⋅是否为定值?若是,求出该值,并证明;若不是,请说明理由.11.已知椭圆22:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.题型三:定直线问题【例1】已知如图,长为宽为12的矩形ABCD,以为,A B焦点的椭圆2222:1x yMa b+=恰好过,C D两点,(1)求椭圆M的标准方程;(2)根据(1)所得椭圆M的标准方程,若AB是椭圆M的左右顶点,过点(1,0)的动直线l交椭圆M与CD两点,试探究直线AC与BD的交点是否在一定直线上,若在,请求出该直线方程,若不在,请说明理由.【例2】已知椭圆:C22221x ya b+=(0a b>>)的离心率为23,且⎭为C上一点.(1)求C的标准方程;(2)点A,B分别为C的左、右顶点,M,N为C上异于A,B的两点,直线MN不与坐标轴平行且不过坐标原点O,点M关于原点O的对称点为M',若直线AM'与直线BN相交于点P,直线OP与直线MN相交于点Q,证明:点Q位于定直线上.【例3】已知1F 为椭圆2222:1(0)x y C a b a b+=>>的左焦点,直线y =与C 交于A ,B 两点,且1ABF 的周长为4+ 2.(1)求C 的标准方程;(2)若(2,1)P 关于原点的对称点为Q ,不经过点P 且斜率为12的直线l 与C 交于点D ,E ,直线PD 与QE 交于点M ,证明:点M 在定直线上.【题型专练】1.已知椭圆C :()222210x y a b a b +=>>2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①1k k 为定值;②点M 在定直线上.C2.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.3.已知椭圆C :()222210x y a b a b +=>>的离心率为2,左顶点为1A ,左焦点为1F ,上顶点为1B ,下顶点为2B ,M 为C 上一动点,11M AF △1.(1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q ,证明:点Q 在一条平行于x 轴的直线上.。
2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。
2012数学二轮复习课件直线与圆锥曲线(2)
又因为直线 y = kx + t为圆心在原点的圆的一条切 线, t 所以圆的半径为 r = ,r = 2 1+ k2 1+ k 4 (1 + k 2 ) 4 5 = = , 2 1+ k 5 4 2 2 所求的圆为 x + y = . 5
2
t
2 5 当切线的斜率不存在时,切线为 x = ± , 5
8kt x1 + x2 = − 1 + 4k 2 且 , 2 x x = 4t − 4 1 2 1 + 4k 2 y1 y2 = (kx1 + t )(kx2 + t ) = k 2 x1 x2 + kt ( x1 + x2 ) + t 2 k 2 (4t 2 − 4) 8k 2t 2 t 2 − 4k 2 = − + t2 = , 2 2 2 1 + 4k 1 + 4k 1 + 4k uuu uuu r r 要使OA ⊥ OB,需使x1 x2 + y1 y2 = 0, 4t 2 − 4 t 2 − 4k 2 5t 2 − 4k 2 − 4 + = = 0, 即 2 2 2 1 + 4k 1 + 4k 1 + 4k 所以5t 2 − 4k 2 − 4 = 0,即5t 2 = 4k 2 + 4且t 2 < 4k 2 + 1, 即4k 2 + 4 < 20k 2 + 5恒成立.
1 x2 ( 2 )当m = 时,轨迹E的方程为 + y 2 = 1,设圆 4 4 心在原点的圆的一条切线为y = kx + t,解方程组 y = kx + t 2 得,x 2 + 4(kx + t ) 2 = 4,即(1 + 4k 2 ) x 2 x + y2 = 1 4 +8ktx + 4t 2 − 4 = 0, 设切线与轨迹E恒有两个交点A( x1,y1 ),B( x2, y2 ),则∆ = 64k 2t 2 − 16(1 + 4k 2 )(t 2 − 1) = 16(4k 2 − t 2 + 1) > 0,即4k 2 − t 2 + 1 > 0,即t 2 < 4k 2 + 1,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线和圆锥曲线常考题型运用的知识: 1、中点坐标公式:1212,y 22x x y yx ++==,其中(,x y )是点1122(,)(,)A x y B x y ,的中点坐标。
2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB ====或者AB ==== 3、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-两条直线垂直,则直线所在的向量120v v =r rg4、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。
常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1l y kx =+与椭圆22:14x y C m+=始终有交点,求m 的取值范围解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22:14x y C m +=过动点04m ±≠(,且,如果直线:1l y kx =+和椭圆22:14x y C m+=14m ≥≠,且,即14m m ≤≠且。
规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+⇒过定点(,) :(1)1l y k x =+⇒-过定点(,0) :2(1)1l y k x -=+⇒-过定点(,2)题型二:弦的垂直平分线问题例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x =+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ①由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+>即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆Q 为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB =Q=2d k=222k k=解得k=满足②式 此时053x =。
题型三:动弦过定点的问题例题3、已知椭圆C :22221(0)x y a b a b+=>>x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程; (II )若直线:(2)l xt t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN是否通过椭圆的焦点?并证明你的结论 解:(I )由已知椭圆C 的离心率32c ea ==,2a =,则得3,1c b ==。
从而椭圆的方程为2214x y += (II )设11(,)M x y ,22(,)N x y ,直线1A M的斜率为1k ,则直线1A M的方程为1(2)y k x =+,由122(2)44y k x x y =+⎧⎨+=⎩消y 整理得222121(14)161640k x k x k +++-=12x -Q 和是方程的两个根,21121164214k x k -∴-=+ 则211212814k x k -=+,1121414k y k =+,即点M 的坐标为2112211284(,)1414k k k k -++,同理,设直线A 2N 的斜率为k 2,则得点N 的坐标为2222222824(,)1414k k k k --++ 12(2),(2)p p y k t y k t =+=-Q12122k k k k t-∴=-+,Q 直线MN 的方程为:121121y y y y x x x x --=--,∴令y=0,得211212x y x y x y y -=-,将点M 、N 的坐标代入,化简后得:4x t=又2t>Q ,∴402t<< Q 椭圆的焦点为(3,0)43t∴=,即433t =故当43t =时,MN 过椭圆的焦点。
题型四:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =u u u r u u u r g ,2BC AC =u u u r u u u r,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x=对称,求直线PQ 的斜率。
解:(I) 2BC AC =u u u r u u u rQ ,且BC 过椭圆的中心OOC AC∴=u u u r u u u r0AC BC =u u u r u u u r Q g2ACO π∴∠=又 A (23,0)Q∴点C 的坐标为3,3)。
Q A (23,0)是椭圆的右顶点,3a ∴=222112x y b+= 将点C 3,3)代入方程,得24b =,∴椭圆E 的方程为221124x y +=(II)Q 直线PC 与直线QC 关于直线3x=∴设直线PC 的斜率为k ,则直线QC 的斜率为k -,从而直线PC 的方程为:(y k x =-,即)y kx k =+-,由22)3120y kx k x y ⎧=+-⎪⎨+-=⎪⎩消y ,整理得:222(13)(1)91830k x k x k k ++-+--=x =Q22918313P k k x k--∴=+即2P x =同理可得:2Q x =))P Q P Q y y kx k kx k -=-++Q=()P Q k x x +-=22P Q x x -==13P Q PQ P Qy y k x x -∴==- 则直线PQ 的斜率为定值13。
题型五:共线向量问题例题5、设过点D(0,3)的直线交曲线M :22194x y +=于P 、Q 两点,且DP DQ l =uuu r uuu r ,求实数l 的取值范围。
解:设P(x 1,y 1),Q(x 2,y 2),Q DP DQ l =uuu r uuu r\(x 1,y 1-3)=l (x 2,y 2-3)即12123(3)x x y y l l ì=ïïíï=+-ïïî 方法一:方程组消元法又Q P 、Q 是椭圆29x +24y =1上的点\22222222194()(33)194x y x y l l l ìïï+=ïïïíï+-ï+=ïïïî消去x 2,可得222222(33)14y y l l l l +--=- 即y 2=1356l l - 又Q -2£y 2£2,\-2£1356l l-£2 解之得:155λ≤≤ 则实数l 的取值范围是1,55⎡⎤⎢⎥⎣⎦。
方法二:判别式法、韦达定理法、配凑法 设直线PQ 的方程为:3,0y kx k =+≠,由2234936y kx x y =+⎧⎨+=⎩消y 整理后,得 22(49)54450k x kx +++= Q P 、Q 是曲线M 上的两点22(54)445(49)k k ∴∆=-⨯+=2144800k -≥即295k≥ ①由韦达定理得:1212225445,4949k x x x x k k +=-=++212121221()2x x x x x x x x +=++Q222254(1)45(49)k k λλ+∴=+即22223694415(1)99k k k λλ+==++ ②由①得211095k <≤,代入②,整理得 236915(1)5λλ<≤+, 解之得155λ<<当直线PQ 的斜率不存在,即0x =时,易知5λ=或15λ=。
总之实数l 的取值范围是1,55⎡⎤⎢⎥⎣⎦。
题型六:面积问题例题6、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。
(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值。
解:(Ⅰ)设椭圆的半焦距为c,依题意c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=。
(Ⅱ)设11()A x y ,,22()B x y ,。
(1)当AB x ⊥轴时,AB =。
(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+。
由已知2=,得223(1)4m k =+。
把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+。
22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++2422212121233(0)34196123696kkk k kk=+=+≠+=++⨯+++≤。
当且仅当2219kk=,即33k=±时等号成立。
当0k=时,3AB=,综上所述max2AB=。
∴当AB最大时,AOB△面积取最大值max133222S AB=⨯⨯=。
题型七:弦或弦长为定值问题例题7、在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。
(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。