高考数学题题型:选择题
高考数学选择题集锦一
高考数学选择题集锦一1. 设函数f(x) = x^2 - 2x + 1,则f(x)的定义域为:A. (-∞, +∞)B. (-∞, 1] ∪ [3, +∞)C. (-∞, 2] ∪ [3, +∞)D. (-∞, 1] ∪ [2, +∞)2. 若a, b, c为等差数列,且a+b+c=0,则a, b, c的和为:A. 0B. 1C. 2D. 33. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 14. 若等差数列{an}的公差为d,前n项和为Sn,则S10-S2的值为:A. 8dB. 18dC. 28dD. 38d5. 设函数f(x) = 2x^3 - 3x^2 + 4x - 1,求f(x)的导数f'(x):A. 6x^2 - 6x + 4B. 6x^2 - 6x - 4C. 6x^2 - 6x + 2D. 6x^2 - 6x - 26. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 17. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 18. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 19. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 110. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 111. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 112. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 113. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 114. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 115. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 116. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 117. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3D. 3x^2 - 6x - 118. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 119. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 120. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 121. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 122. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 123. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 124. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 125. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 126. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 127. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 128. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 129. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 130. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 131. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 132. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 133. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 134. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 135. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 136. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 137. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 138. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 139. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3D. 3x^2 - 6x - 140. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 141. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 142. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 143. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 144. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 145. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 146. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 147. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 148. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 149. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 150. 已知函数f(x) = x^3 - 3x^2 + 3x - 1,求f(x)的导数f'(x):A. 3x^2 - 6x + 3B. 3x^2 - 6x - 3C. 3x^2 - 6x + 1D. 3x^2 - 6x - 1。
高考数学试卷选择题
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列各式中,能表示复数$z$的实部的是:A. $\text{Im}(z)$B. $\text{Re}(z)$C. $\overline{z}$D. $\text{Arg}(z)$2. 已知函数$f(x) = 2x^3 - 3x^2 + 1$,若$f(x)$的图像关于点$(1, 1)$对称,则$f(2)$的值为:A. 5B. 3C. 1D. 03. 在三角形ABC中,角A、B、C的对边分别为a、b、c,且$\sin A =\frac{3}{5}$,$\cos B = \frac{4}{5}$,则$\sin C$的值为:A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{7}{25}$D. $\frac{24}{25}$4. 下列函数中,在区间$(0, +\infty)$上单调递减的是:A. $y = e^x$B. $y = \ln x$C. $y = \frac{1}{x}$D. $y = x^2$5. 若等差数列$\{a_n\}$的首项为$a_1$,公差为$d$,且$a_1 + a_2 + a_3 = 9$,$a_4 + a_5 + a_6 = 27$,则$a_1$的值为:A. 1B. 3C. 5D. 76. 已知双曲线$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$($a > 0, b > 0$)的离心率为$\sqrt{2}$,则其渐近线方程为:A. $y = \pm x$B. $y = \pm \frac{b}{a}x$C. $y = \pm \frac{a}{b}x$D. $y = \pm \frac{\sqrt{2}}{2}x$7. 在平面直角坐标系中,若点P(2, 3)到直线$3x - 4y + 5 = 0$的距离为$d$,则$d$的值为:A. $\frac{1}{5}$B. $\frac{2}{5}$C. $\frac{3}{5}$D. $\frac{4}{5}$8. 若等比数列$\{a_n\}$的首项为$a_1$,公比为$q$,且$a_1 + a_2 + a_3 = 6$,$a_4 + a_5 + a_6 = 24$,则$a_1$的值为:A. 1B. 2C. 3D. 49. 已知函数$f(x) = x^3 - 3x + 1$,则$f'(x)$的零点个数为:A. 1B. 2C. 3D. 410. 在平面直角坐标系中,若点A(1, 2),B(3, 4)的坐标变换为A'(x, y),B'(x', y'),使得A'B'平行于x轴,则变换公式为:A. $x' = x - 1, y' = y + 2$B. $x' = x + 1, y' = y - 2$C. $x' = x - 1, y' = y - 2$D. $x' = x + 1, y' = y + 2$答案:1. B2. B3. D4. C5. C6. A7. D8. B9. B10. C解析:1. 复数的实部用$\text{Re}(z)$表示。
新高考数学题型试卷
新高考数学题型试卷一、选择题(每题5分,共8小题)1. 设集合A = {xx^2-3x + 2 = 0},B={xx^2-ax + a - 1 = 0},若A∩ B = B,则a的值为()- A. 2.- B. 3.- C. 2或3。
- D. 1或2或3。
解析:- 先求解集合A,对于方程x^2-3x + 2 = 0,因式分解得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。
- 对于集合B,方程x^2-ax + a - 1 = 0可化为(x - 1)[x-(a - 1)] = 0,解得x = 1或x=a - 1,所以B={1,a - 1}。
- 因为A∩ B = B,所以B⊆ A。
- 当a-1 = 1时,a = 2;当a - 1=2时,a = 3。
所以a的值为2或3,答案选C。
2. 复数z=(1 + i)/(1 - i)的共轭复数是()- A. i- B. -i- C. 1 - i- D. 1 + i解析:- 先化简z=(1 + i)/(1 - i),分子分母同时乘以1 + i,得到z=frac{(1 + i)^2}{(1 - i)(1 + i)}=frac{1 + 2i+i^2}{2}=(2i)/(2)=i。
- 复数i的共轭复数是-i,所以答案选B。
3. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x的值为()- A. - 2.- B. 2.- C. -(1)/(2)- D. (1)/(2)解析:- 因为→a⊥→b,根据向量垂直的性质→a·→b=0。
- 又→a=(1,2),→b=(x,1),则→a·→b=1× x+2×1 = 0,即x + 2 = 0,解得x=-2,答案选A。
4. 在等差数列{a_n}中,a_3=5,a_7=13,则a_11的值为()- A. 21.- B. 22.- C. 23.- D. 24.解析:- 根据等差数列的性质:若m,n,p,q∈ N^+,且m + n=p + q,则a_m+a_n=a_p+a_q。
高考数学必备选择题100道
高考数学必备选择题100道1. 选择题:若函数f(x) = x^2 - 2x + 1,则f(x)的定义域为()A. x ∈ RB. x ∈ (-∞, ∞)C. x ∈ [0, 1]D. x ∈ [-1, 0]2. 选择题:已知函数f(x) = 2x + 3,若f(a) = f(b),则a + b的值为()A. -1B. 0C. 1D. 23. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 34. 选择题:已知函数f(x) = ax^2 + bx + c,若f(x)的图象过点(1, 2),则c的值为()A. 2B. 1C. 0D. -15. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -26. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 17. 选择题:若a^2 + b^2 = 25,且a - b = 2,则a + b的值为()A. 2B. 4C. 6D. 88. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 49. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -210. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 111. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 312. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 413. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -214. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 115. 选择题:若a^2 + b^2 = 25,且a - b = 2,则a + b的值为()A. 2B. 4C. 6D. 816. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 417. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -218. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 119. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 320. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()B. 2C. 3D. 421. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -222. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 123. 选择题:若a^2 + b^2 = 25,且a - b = 2,则a + b的值为()A. 2B. 4D. 824. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 425. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -226. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 127. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 328. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 429. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -230. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 131. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 332. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 433. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1C. 2D. -234. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 135. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 336. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2D. 437. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -238. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 139. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 340. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 441. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -242. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 143. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 344. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 445. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -246. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 147. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 348. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 449. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -250. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 1。
新高考数学试卷提纲
1. 总分:150分2. 时间:120分钟3. 题型:选择题、填空题、解答题二、题型及分值分布1. 选择题(共20题,每题3分,共60分)- 数与代数(10题)- 几何与代数(5题)- 统计与概率(5题)2. 填空题(共10题,每题5分,共50分)- 数与代数(5题)- 几何与代数(3题)- 统计与概率(2题)3. 解答题(共5题,每题15分,共75分)- 数与代数(2题)- 几何与代数(2题)- 统计与概率(1题)三、试题内容1. 选择题- 数与代数:考查实数、代数式、函数、方程等基础知识。
- 几何与代数:考查平面几何、立体几何、三角函数等基础知识。
- 统计与概率:考查统计方法、概率计算等基础知识。
2. 填空题- 数与代数:考查实数、代数式、函数、方程等基础知识。
- 几何与代数:考查平面几何、立体几何、三角函数等基础知识。
- 统计与概率:考查统计方法、概率计算等基础知识。
3. 解答题- 数与代数:考查一元二次方程、不等式、函数性质等综合应用。
- 几何与代数:考查平面几何、立体几何、三角函数等综合应用。
- 统计与概率:考查统计方法、概率计算、数据分析等综合应用。
四、试题特点1. 知识覆盖全面:试题涉及新高考数学考试大纲中的所有知识点,旨在考查学生的数学素养。
2. 考查能力要求高:试题难度适中,注重考查学生的逻辑思维、分析问题和解决问题的能力。
3. 注重实际应用:试题紧密结合生活实际,培养学生运用数学知识解决实际问题的能力。
4. 考查创新意识:试题鼓励学生发挥创新思维,寻找解题方法,提高学生的创新意识。
五、评分标准1. 选择题:正确答案得3分,错误答案不得分。
2. 填空题:正确答案得5分,错误答案不得分。
3. 解答题:根据解题步骤和答案的准确性进行评分,步骤完整、答案正确得满分。
通过以上提纲,可以为学生提供一份新高考数学试卷的参考,有助于学生进行复习和备考。
2022年全国新高考I卷数学试题(选择题部分答案及解析)
3
3 时,V
81 , 4
所以正四棱锥的体积V 的最小值为 27 , 4
所以该正四棱锥体积的取值范围是
27 4
,64 3
.
故选:C.
二、选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多 项符合题目要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.
(
)
学科网( 北京) 股份有 限公司
A.1
【答案】A 【解析】
B. 3 2
C. 5 2
D. 3
【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.
【详解】由函数的最小正周期 T 满足 2 T ,得 2 2 ,解得 2 3 ,
3
3
又因为函数图象关于点
3 2
学科网( 北京) 股份有 限公司
量约为( 7 2.65 )( )。
A.1.0109 m3 B. 1.2109 m3
C. 1.4109 m3
D. 1.6109 m3
【答案】C
【解析】
【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.
【详解】依题意可知棱台的高为 MN 157.5 148.5 9(m),所以增加的水量即为棱台的体积
学科网( 北京) 股份有 限公司
【详解】将点 A 的代入抛物线方程得1 2 p ,所以抛物线方程为 x2 y ,故准线方程为 y 1 , 4
A 错误;
k AB
1 (1) 1 0
2
,所以直线
AB
的方程为
y
2x
1,
y 2x 1
联立
x2
y
,可得 x2 2x 1 0 ,解得 x 1 ,故 B 正确;
高考数学选择、填空题专项训练(共40套)[附答案]
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
历年高考数学选择题精选
历年高考数学选择题精选1. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0,若f(x)的图象过点(1,3),且在x=1处取得最大值,则下列关于f(x)的描述正确的是()A. 顶点为(1,3)B. 开口向上C. 最小值为3D. 导数为0的点有2个2. 选择题:已知等差数列{an}的前n项和为Sn,若S10 = 50,S15 = 100,则S20等于()A. 150B. 125C. 175D. 1353. 选择题:若复数z满足|z - 1| = 1,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上4. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f(1) + f(-1) + f(0)的值为()A. 1B. 2C. 3D. 45. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(2,-3),且在x=2处取得最小值,则下列关于f(x)的描述正确的是()A. 顶点为(2,-3)B. 开口向上C. 最大值为-3D. 导数为0的点有2个6. 选择题:若等比数列{an}的首项为a,公比为r,则数列{an^2}是()A. 常数数列B. 等差数列C. 等比数列D. 非等比数列7. 选择题:若复数z满足|z - 1| = 2,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上8. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f'(x)在x=1处的值为()A. 2B. 3C. 4D. 59. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(1,3),且在x=1处取得最大值,则下列关于f(x)的描述正确的是()A. 顶点为(1,3)B. 开口向上C. 最小值为3D. 导数为0的点有2个10. 选择题:已知等差数列{an}的前n项和为Sn,若S10 = 50,S15 = 100,则S20等于()A. 150B. 125C. 175D. 13511. 选择题:若复数z满足|z - 1| = 1,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上12. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f(1) + f(-1) + f(0)的值为()A. 1B. 2C. 3D. 413. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(2,-3),且在x=2处取得最小值,则下列关于f(x)的描述正确的是()A. 顶点为(2,-3)B. 开口向上C. 最大值为-3D. 导数为0的点有2个14. 选择题:若等比数列{an}的首项为a,公比为r,则数列{an^2}是()A. 常数数列B. 等差数列C. 等比数列D. 非等比数列15. 选择题:若复数z满足|z - 1| = 2,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上16. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f'(x)在x=1处的值为()A. 2B. 3C. 4D. 517. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(1,3),且在x=1处取得最大值,则下列关于f(x)的描述正确的是()A. 顶点为(1,3)B. 开口向上C. 最小值为3D. 导数为0的点有2个18. 选择题:已知等差数列{an}的前n项和为Sn,若S10 = 50,S15 = 100,则S20等于()A. 150B. 125C. 175D. 13519. 选择题:若复数z满足|z - 1| = 1,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上20. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f(1) + f(-1) + f(0)的值为()A. 1B. 2C. 3D. 421. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(2,-3),且在x=2处取得最小值,则下列关于f(x)的描述正确的是()A. 顶点为(2,-3)B. 开口向上C. 最大值为-3D. 导数为0的点有2个22. 选择题:若等比数列{an}的首项为a,公比为r,则数列{an^2}是()A. 常数数列B. 等差数列C. 等比数列D. 非等比数列23. 选择题:若复数z满足|z - 1| = 2,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上24. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f'(x)在x=1处的值为()A. 2B. 3C. 4D. 525. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(1,3),且在x=1处取得最大值,则下列关于f(x)的描述正确的是()A. 顶点为(1,3)B. 开口向上C. 最小值为3D. 导数为0的点有2个26. 选择题:已知等差数列{an}的前n项和为Sn,若S10 = 50,S15 = 100,则S20等于()A. 150B. 125C. 175D. 13527. 选择题:若复数z满足|z - 1| = 1,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上28. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f(1) + f(-1) + f(0)的值为()A. 1B. 2C. 3D. 429. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(2,-3),且在x=2处取得最小值,则下列关于f(x)的描述正确的是()A. 顶点为(2,-3)B. 开口向上C. 最大值为-3D. 导数为0的点有2个30. 选择题:若等比数列{an}的首项为a,公比为r,则数列{an^2}是()A. 常数数列B. 等差数列C. 等比数列D. 非等比数列31. 选择题:若复数z满足|z - 1| = 2,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上32. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f'(x)在x=1处的值为()A. 2B. 3C. 4D. 533. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(1,3),且在x=1处取得最大值,则下列关于f(x)的描述正确的是()A. 顶点为(1,3)B. 开口向上C. 最小值为3D. 导数为0的点有2个34. 选择题:已知等差数列{an}的前n项和为Sn,若S10 = 50,S15 = 100,则S20等于()A. 150B. 125C. 175D. 13535. 选择题:若复数z满足|z - 1| = 1,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上36. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f(1) + f(-1) + f(0)的值为()A. 1B. 2C. 3D. 437. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(2,-3),且在x=2处取得最小值,则下列关于f(x)的描述正确的是()A. 顶点为(2,-3)B. 开口向上C. 最大值为-3D. 导数为0的点有2个38. 选择题:若等比数列{an}的首项为a,公比为r,则数列{an^2}是()A. 常数数列B. 等差数列C. 等比数列D. 非等比数列39. 选择题:若复数z满足|z - 1| = 2,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上40. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f'(x)在A. 2B. 3C. 4D. 541. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(1,3),且在x=1处取得最大值,则下列关于f(x)的描述正确的是()A. 顶点为(1,3)B. 开口向上C. 最小值为3D. 导数为0的点有2个42. 选择题:已知等差数列{an}的前n项和为Sn,若S10 = 50,S15 = 100,则S20等于()A. 150B. 125C. 175D. 13543. 选择题:若复数z满足|z - 1| = 1,则复数z在复平面上对A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上44. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f(1) + f(-1) + f(0)的值为()A. 1B. 2C. 3D. 445. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(2,-3),且在x=2处取得最小值,则下列关于f(x)的描述正确的是()A. 顶点为(2,-3)B. 开口向上C. 最大值为-3D. 导数为0的点有2个46. 选择题:若等比数列{an}的首项为a,公比为r,则数列{an^2}是()A. 常数数列B. 等差数列C. 等比数列D. 非等比数列47. 选择题:若复数z满足|z - 1| = 2,则复数z在复平面上对应的点位于()A. 单位圆上B. 单位圆内C. 单位圆外D. 直线y=1上48. 选择题:若函数f(x) = 2x^3 - 3x^2 + 4x - 1,则f'(x)在x=1处的值为()A. 2B. 3C. 4D. 549. 选择题:已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,若f(x)的图象过点(1,3),且在x=1处取得最大值,则下列关于f(x)的描述正确的是()A. 顶点为(1,3)B. 开口向上C. 最小值为3D. 导数为0的点有2个50. 选择题:已知等差数列{an}的前n项和为Sn,若S10 = 50,S15 = 100,则S20等于()A. 150B. 125C. 175D. 135。
新高考数学试卷题型
新高考数学试卷题型一、选择题(共8小题)1. 设集合A = {xx^2-3x + 2 = 0},B={x∈ Z - 1≤slant x - 1≤slant2},则A∩ B=()- A. {1,2}- B. {1}- C. {2}- D. varnothing- 解析:- 先求解集合A,对于方程x^2-3x + 2 = 0,分解因式得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。
- 再求解集合B,不等式-1≤slant x - 1≤slant2,移项可得0≤slant x≤slant3,又因为x∈ Z,所以B = {0,1,2,3}。
- 则A∩ B={1,2},答案为A。
2. 已知i为虚数单位,若复数z=(1 + 2i)/(2 - i),z的共轭复数为¯z,则z·¯z=()- A. 1.- B. √(5)- C. 5.- D. (√(5))/(5)- 解析:- 先将复数z=(1 + 2i)/(2 - i)化简,分子分母同时乘以2 + i得:z=((1 + 2i)(2 + i))/((2 - i)(2 + i))=frac{2 + i+4i + 2i^2}{4 - i^2}=(2 + 5i-2)/(4 + 1)=i。
- 共轭复数¯z=-i,则z·¯z=i·(-i)=1,答案为A。
3. 已知向量→a=(1,2),→b=(m, - 1),若→a∥(→a+→b),则m=()- A. (1)/(2)- B. -(1)/(2)- C. 3.- D. -3.- 解析:- 先求→a+→b=(1 + m,1)。
- 因为→a∥(→a+→b),根据两向量平行的坐标表示x_1y_2-x_2y_1=0,这里x_1=1,y_1=2,x_2=1 + m,y_2=1,则1×1-2×(1 + m)=0。
- 即1-2 - 2m=0,解得m=-(1)/(2),答案为B。
高考数学复习题型及答案
高考数学复习题型及答案一、选择题1. 函数f(x)=x^2+2x+1的图像是:A. 一条直线B. 一个开口向上的抛物线C. 一个开口向下的抛物线D. 一个圆答案:B2. 已知等差数列{an}的首项a1=2,公差d=3,则其第10项a10的值为:A. 29B. 32C. 35D. 41答案:A二、填空题3. 若复数z=1+i,则|z|=________。
答案:√24. 已知函数f(x)=x^3-3x^2+2,求f'(x)=________。
答案:3x^2-6x三、解答题5. 求证:对于任意实数x,不等式x^2+x+1>0恒成立。
证明:要证明x^2+x+1>0恒成立,只需证明其判别式Δ<0。
计算判别式Δ=1^2-4×1×1=-3<0,因此原不等式恒成立。
6. 已知数列{an}满足a1=1,an+1=2an+1,求数列{an}的通项公式。
解:由递推关系an+1=2an+1,可得an+1+1=2(an+1),即数列{an+1}是首项为2,公比为2的等比数列。
因此,an+1=2^n,进而得到an=2^(n-1)-1。
四、计算题7. 计算定积分∫₀^₁x^2dx。
解:∫₀^₁x^2dx=(1/3)x^3|₀^₁=1/3。
8. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2≤1所围成的圆盘。
解:∬D(x^2+y^2)dσ=∫₀^π∫₀^1(r^2cos^2θ+r^2sin^2θ)rdrdθ=∫₀^π∫₀^1r^3 dθ dr=(π/2)∫₀^1r^3dr=(π/2)(1/4)=π/8。
以上题型涵盖了高考数学中常见的选择题、填空题、解答题和计算题,通过这些题型的练习,可以有效地复习和巩固数学知识,为高考做好充分的准备。
高考数学考试题型及答案
高考数学考试题型及答案一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为()A. 0B. 1C. 2D. 3答案:B2. 已知a、b、c是三角形的三边长,且a^2+b^2=13,c^2=5,下列哪个选项是正确的?()A. a+b>cB. a+b=cC. a+b<cD. a+b≤c答案:A3. 函数y=2sin(2x+π/4)的最小正周期为()A. πB. 2πC. π/2D. π/4答案:A4. 已知向量a=(3,-2),向量b=(1,2),则向量a与向量b的数量积为()A. -1B. 1C. 3D. -3答案:D5. 已知双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a>0,b>0,若双曲线的渐近线方程为y=±2x,则a与b的关系为()A. a=2bB. a=b/2C. b=2aD. b=a/2答案:B6. 已知等差数列{an}的首项a1=1,公差d=2,求前n项和Sn 的表达式为()A. Sn=n^2B. Sn=n(n+1)C. Sn=n^2+nD. Sn=n(n-1)/2答案:C7. 已知函数f(x)=x^3-3x,求f'(x)的表达式为()A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+3答案:A8. 已知抛物线y=x^2-2x-3与x轴交于两点A和B,求|AB|的长度为()A. 2B. 4C. 6D. 8答案:B二、填空题(本题共4小题,每小题5分,共20分)9. 已知函数f(x)=x^2-6x+8,求f(x)的顶点坐标为()。
答案:(3, -1)10. 已知直线l的方程为y=2x+1,求直线l与y轴的交点坐标为()。
答案:(0, 1)11. 已知等比数列{bn}的首项b1=2,公比q=3,求第n项bn的表达式为()。
答案:2*3^(n-1)12. 已知圆C的方程为(x-1)^2 + (y+2)^2 = 9,求圆C的圆心坐标和半径分别为()。
2024年高考数学试题库与解析
2024年高考数学试题库与解析随着时光的流逝,2024年高考的临近已经让无数学子开始蓄势待发。
作为高考的重要科目之一,数学试题的复习和解析对于学生们来说尤为关键。
为了帮助广大学子更好地备考,本文将针对2024年高考数学试题库进行详细解析。
第一部分:选择题选择题是数学试卷中的常见题型,对于掌握基础知识和思维能力的测试非常具有代表性。
下面我们来看一道2024年高考数学试题的选择题。
【2024年高考数学试题】题目:已知函数 $f(x)=2x^2+3$,则 $f(\frac{1}{2}+x)-f(\frac{1}{2}-x)$ 的值等于_____。
解析:首先,我们将所给条件以及待求的式子进行整理。
根据已知条件,代入函数 $f(x)$ 的表达式可得:$$f(\frac{1}{2}+x)=2(\frac{1}{2}+x)^2+3$$$$f(\frac{1}{2}-x)=2(\frac{1}{2}-x)^2+3$$接着,我们将上述两个式子带入待求的表达式中,并进行计算:$$f(\frac{1}{2}+x)-f(\frac{1}{2}-x)=2(\frac{1}{2}+x)^2+3-[2(\frac{1}{2}-x)^2+3]$$进一步化简,得到:$$f(\frac{1}{2}+x)-f(\frac{1}{2}-x)=2x^2+2x+x^2-x$$$$f(\frac{1}{2}+x)-f(\frac{1}{2}-x)=3x^2+2x$$综上所述,答案为 $3x^2+2x$。
通过上述解析过程,我们可以清楚地了解到这道选择题的解题思路和步骤。
在高考数学中,选择题往往是学生们最容易得分的题型,因此我们在备考时务必熟练掌握各类题目的解题方法。
第二部分:填空题填空题在数学试题中占有一定的比例,它旨在考查学生对知识点的理解和对结果的准确把握。
下面我们来看一个2024年高考数学试题的填空题。
【2024年高考数学试题】题目:已知等差序列 $\{a_n\}$ 的公差$d=3$,且 $a_1=2$。
高考数学题型及占比
高考数学题型及占比
一、选择题
选择题是高考数学中的基础题型,主要考察学生对基础知识的掌握程度和应用能力。
选择题通常由四个选项组成,其中只有一个选项是正确的。
选择题的难度一般较低,但需要考生认真审题,仔细分析每个选项,找出正确的答案。
在高考数学中,选择题的占比通常较高,一般在40%左右。
因此,掌握选择题的解题技巧和方法对于高考数学成绩的提高至关重要。
二、填空题
填空题也是高考数学中的基础题型,主要考察学生对基础知识的理解和应用能力。
填空题通常要求考生填写数字、表达式或简短的文字说明。
与选择题相比,填空题的难度略高,需要考生具备扎实的基础知识和较强的分析能力。
在高考数学中,填空题的占比也较高,一般在30%左右。
考生在备考时需要加强对填空题的练习,提高解题的准确性和速度。
三、解答题
解答题是高考数学中的高级题型,主要考察学生对数学知识的综合运用能力和逻辑思维能力。
解答题通常包含几个小题,难度逐渐加大,需要考生逐步推导和解答。
解答题要求考生具备扎实的基础知识、较强的逻辑推理能力和较好的数学素养。
在高考数学中,解答题的占比最高,一般在50%左右。
因此,考生在备考时需要加强对解答题的练习,提高解题的准确性和速度。
同时,也需要注重数学思想和方法的积累,提高数学素养和逻辑思维能力。
2023年新高考数学选择填空专项练习题(附答案解析)
则该展开式中 x3 的系数是( )
A.-184
B.-84
C.-40
D.320
A
a+x3 [∵ x
x-2 x
6
的展开式中各项系数和为
3,令
x=1,得(1+a)(1-2)6
=3,解得 a=2.
又
2+x3 x
x-2 x
6
=2
x-2 x
6
+x3
x-2 x
6
,
x
x-2 x
6
的展开式中含
x4 的项的系数为
C16(-2)1=-12,常数项为
C36(-2)3
=-160,
2+x3 ∴x
x-2 x
6
的展开式中
x3
项的系数是
2×(-12)+1×(-160)=-184.
故选 A.]
12.(2019·潮州模拟)若 A、B、C、D、E 五位同学站成一排照相,则 A、B
2023 年新高考数学选择填空专项练习题
一、选择题
1.已知集合 A={2,3,4},集合 B={m,m+2},若 A∩B={2},则 m=( )
A.0
B.1
C.2
D.4
A [因为 A∩B={2},所以 m=2 或 m+2=2.当 m=2 时,A∩B={2,4},不
符合题意;当 m+2=2 时,m=0.故选 A.]
M∪∁RN=R.故选 B.]
5.设 a∈R,i 为虚数单位.若复数 z=a-2+(a+1)i 是纯虚数,则复数a-3i 2-i
在复平面上对应的点的坐标为( )
1,-8 A. 5 5
-7,-4 B. 5 5
第1页共6页
-4,7 C. 5 5
7,-4 D. 5 5
高考数学试卷题型分布
高考数学试卷题型分布由于您没有提供具体的高考数学试卷20题内容,我将按照一般全国卷高考数学题型分布给您提供一个大致的框架示例,您可以根据实际题目进行替换补充。
一、选择题(1 - 12题)1. 集合相关(第1题)- 题目:设集合A = {xx^2 - 3x + 2 = 0},B={xx< a},若A∩ B = A,则a的取值范围是()- 选项:A. a≥2 B. a>2 C. a≥1 D. a>1- 解析:- 先求解集合A,由x^2 - 3x + 2 = 0,即(x - 1)(x - 2)=0,得x = 1或x = 2,所以A={1,2}。
- 因为A∩ B = A,这意味着A是B的子集。
- 集合B={xx< a},要使A={1,2}是B的子集,则a要大于2。
所以答案是B。
2. 复数相关(第2题)- 题目:若复数z=(1 + i)(2 - i),则z的共轭复数¯z为()- 选项:A. 3 + i B. 3 - i C. 1 + 3i D. 1 - 3i- 解析:- 先计算z=(1 + i)(2 - i)=2 - i+2i - i^2。
- 因为i^2=-1,所以z = 2 + i + 1=3 + i。
- 共轭复数实部相同,虚部互为相反数,所以¯z=3 - i,答案是B。
3. 函数性质(第3题)- 题目:下列函数中,在区间(0,+∞)上为增函数的是()- 选项:A. y=log_(1)/(2)x B. y = - x + 1 C. y = x^2 - 4x + 5 D. y=√(x)- 解析:- 对于A选项,y=log_(1)/(2)x,底数0<(1)/(2)<1,在(0,+∞)上为减函数。
- 对于B选项,y=-x + 1是一次函数,斜率k=-1<0,在(0,+∞)上为减函数。
- 对于C选项,y = x^2 - 4x + 5=(x - 2)^2+1,对称轴为x = 2,在(0,2)上为减函数,在(2,+∞)上为增函数。
高考数学选择、填空题专项汇编题(共40套)[附答案]
三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。
高考数学题型分布
高考数学题型分布
一个高考数学题型的分布可以如下:
1. 选择题:这是高考数学中最常见的题型,考查学生对基本概念、定理和计算的理解和掌握程度。
选择题分为单项选择和多项选择,题目的难度不断递增。
2. 填空题:这种题型要求学生根据题目给出的条件,计算或推导出一个或多个未知数的值。
填空题往往涉及到代数、几何和函数等多个数学领域。
3. 计算题:此类题目要求学生通过数学运算和计算器等工具计算出结果。
计算题一般涉及到四则运算、方程求解和几何图形等。
4. 证明题:这种题目要求学生根据已知条件和推理、证明方法,如归纳法、反证法等,证明或推导出定理或结论。
证明题的难度相对较高,需要学生具备一定的逻辑思维和证明能力。
5. 应用题:此类题目通常设置在一个实际问题背景下,要求学生运用数学知识和方法解决实际问题。
应用题涵盖的领域广泛,如统计、概率、函数模型等。
6. 分析题:这类题目要求学生对一个给定的数学问题进行分析,例如给出一条直线和一个曲线,要求判断它们是否相交或平行等。
需要注意的是,具体的题型分布可能因各地区高考的具体内容而有所不同。
数学试卷高考新高考题型
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 2x + 1,则f(2)的值为()A. 0B. 1C. 3D. 42. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数为()A. 75°B. 105°C. 135°D. 150°3. 若等差数列{an}的公差为d,且a1=3,a4=11,则d的值为()A. 2B. 3C. 4D. 54. 已知复数z=3+4i,则|z|的值为()A. 5B. 7C. 9D. 115. 若函数f(x) = x^3 - 3x + 2在x=1处的切线斜率为2,则f'(1)的值为()A. 2B. 3C. 4D. 56. 已知等比数列{bn}的公比为q,且b1=2,b3=8,则q的值为()A. 1B. 2C. 3D. 47. 在△ABC中,若a:b:c=3:4:5,则sinA:sinB:sinC的值为()A. 3:4:5B. 4:5:3C. 5:3:4D. 3:5:48. 已知函数f(x) = |x| + 1,则f(x)在x<0时的导数f'(x)为()A. -1B. 0C. 1D. 不存在9. 若等差数列{an}的公差为d,且a1=5,a5=25,则a3的值为()A. 10B. 15C. 20D. 2510. 已知复数z=2-3i,则|z|的值为()A. 5B. 7C. 9D. 11二、填空题(每题5分,共50分)11. 若函数f(x) = ax^2 + bx + c在x=1处的导数为2,则a+b+c=()12. 在△ABC中,若∠A=30°,∠B=45°,则sinA:sinB:sinC=()13. 已知等差数列{an}的公差为d,且a1=3,a4=11,则d=()14. 复数z=3+4i的共轭复数为()15. 函数f(x) = x^3 - 3x + 2在x=1处的切线方程为()16. 在△ABC中,若a:b:c=3:4:5,则cosA:cosB:cosC=()17. 已知函数f(x) = |x| + 1,则f(x)在x>0时的导数f'(x)为()18. 若等差数列{an}的公差为d,且a1=5,a5=25,则a3=()19. 复数z=2-3i的模长为()20. 函数f(x) = ax^2 + bx + c在x=2处的切线斜率为()三、解答题(每题20分,共60分)21. 已知函数f(x) = x^3 - 3x + 2,求f'(x)及f'(1)的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
高考数学题题型:选择题数学在科学发展和现代生活生产中的应用非常广泛,以下是查字典大学网为大家整理的高考数学题题型,希望可以解决您所遇到的相关问题,加油,查字典大学网一直陪伴您。
选择题特点:
(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出
来的就是试题的概念性强。
试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。
在高考的数学选择题中,定量型的试题所占的比重很大。
而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。
绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分
有合,将它辨证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。
尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
最后,希望小编整理的高考数学题题型对您有所帮助,祝同学们学习进步。