2014届北师大版九年级数学下第三章 圆 复习课件

合集下载

北师大版九年级数学下册3.1圆 课件(共32张PPT)

北师大版九年级数学下册3.1圆 课件(共32张PPT)

根据圆的定义,“圆”指 的是“ 圆周 ”,而不 是“圆面”。
O
A
确定一个圆的要素:
一是圆心, 二是半径, 圆心确定其位置, 半径确定其大小.
O
A
如图,连接圆上任意两点的线段 叫做弦,如AB; 经过圆心弦叫做直径, 如直径CD. 我们知道,圆上任意 两点的部分叫做圆弧, 简称弧. 圆的任意一条直径的两个 端点分圆成两条弧,每一 弧都叫做半圆. 弧包括优弧和劣弧,大于半圆的弧叫做优弧,小于 半圆的弧叫做劣弧. 如图中,以A,D为端点的弧有两条:优弧ACD(记 作ACD),劣弧ABD(记作AD或ABD).
B
C
已知圆P的半径为3,点Q在圆P外,点R在圆P上,点 H在圆P内,则PQ___3 = < > ,PR____3,PH_____3. 如图, △ ABC中,∠C=90°,BC=3,AC=6, CD
3 5 为中线,以C为圆心,以 2 为半径作圆,则点A、
B 、 D 与圆 C 的关系如何? 点A在圆外,点B在圆内, 点D在圆上.
解(1)过点A作AD⊥BC,垂足为D, 在Rt△ABC中,∠ABC=30°,AB=220, ∴AD=110(km),110÷20=5.5,12-5.5=6.5>4, ∴A城市受这次台风影响; A (2)在BD及BD的延长线上分别取E,F D 两点,使AE=AF=160千米.由于当A点距 台风中心不超过160千米时,将会受到 台风的影响.所以当台风中心从E点移到 B F点时,该城市都会到这次台风的影响. 在Rt△ADE中,由勾股定理,得DE= 30 15 所以EF=2DE=60 15 (3)当台风中心位于D处时,A市所受这次台风的 风力最大,其最大风马牛不相及力为12110/20=6.5级
(1)分别以点A、点B为圆心,以2cm的长为半径 画圆,两圆的交点即为所求。 P

北师大版九年级数学下册《圆》PPT课件

北师大版九年级数学下册《圆》PPT课件

2. 圆心为 O 的两个同心圆,半径分别为 1 和 2,
若OP= 3 ,则点 P 在( D )
A.大圆内
B.小圆内
o
C.小圆外
D.大圆内,小圆外
要点归纳
P d O
r
Od P
r
P
dO r
P O
Rr
点 P 在⊙O 内 d<r 点 P 在⊙O上 d=r
点 P 在 ⊙O 外 d>r 点 P 在圆环内 r<d<R
劣弧:AF, AD,AC,AE.
F
O
E
(
( (( ((
(
((
优弧:AFE, AFC,AED,AEF. (2) 请写出以点 A 为端点的弦及直径. A
C
弦 AF,AB,AC.其中弦 AB 又是直径. (3) 请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦 AF,它所对的弧是 AF.
知识要点
1. 根据圆的定义,“圆”指的是“圆周”,而不是“圆面”.
r rO· r
A
有点组成的图形.定点就是圆心,定长就是 C r r E
半径,以点 O 为圆心的圆记作 ⊙O,读作
“圆 O ”.
有关概念
固定的端点 O 叫做圆心,线段 OA 叫做半径,一
般用 r 表示.
确定一个圆的要素 一是圆心,确定其位置;二是半径,确定其大小.
同心圆 圆心相同,半径不同
等圆
能够重合 的两个圆 叫做等圆.
系?
P
d O
r
Od
r
P
Pd O r
点 P 在 ⊙O 内 点 P 在⊙O上
d< r d =r
点 P 在⊙O 外
d >r
练一练:

北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)

北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)

判断:
1、经过三点一定可以作圆。(× )
2、三角形的外心就是这个三角形两边垂直平分 线的交点。(√ )
3、三角形的外心到三边的距离相等。(× )
4、等腰三角形的外心一定在这个三角形内。 (×)
1、某一个城市在一块空地新建了三个 居民小区,它们分别为A、B、C,且三个 小区不在同一直线上,要想规划一所中学,
书P125 练习
小结:
课后日记: 今天学了什么:___________ 今天的收获是:______________ 有不明白的地方吗?_______ 它是:_________________
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●

B
C
(图二)
A O ●
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
巩固新知 应用新知
2、如图,
一 根 5m 长 的 绳
于直角三角形斜边中点,钝角三角形的外心位于三角形外.
老师期望:
作三角形的外接圆是必备基本技能,定要熟练掌握.

北师大版九年级数学下册第三章《第三章 第1节 圆》优质课件

北师大版九年级数学下册第三章《第三章 第1节 圆》优质课件

当OA=1cm时,点A在 ⊙O内 ; 点在圆上,点在圆 内.
当OB=4cm时,点B在 ⊙O外 .
例2.已知:如图,矩形ABCD的对角 线相交于点O, 试猜想:矩形的四个顶点能在同一 个圆上吗?
AA
DD
OO
BB
CC
答:在矩形ABCD中,有OA=OB=OC=OD,四个顶点 在同一个圆上,故矩形四个顶点能在同一个圆上.
2.(新疆建设兵团·中考)如图,王大爷家屋后有一块
长12m,宽8m的矩形空地,他在以BC为直径的半圆内种
菜,他家养的一只羊平时拴在A处,为了不让羊吃到菜,
拴羊的绳子可以选用( )
A.3m
B.5m
C.7m
D.9m
答案:A
3.(泉州·中考) 已知三角形的三边长分别为3,4,5, 则它的边与半径为1的圆的公共点个数所有可能的情况是 ________.(写出符合的一种情况即可) 【解析】∵圆心的位置不确定,∴交点个数共有5种情况即 0、1、2、3、4.故答案为0或1或2或3、4. 答案:2(符合答案即可)
善性是难能可贵的,也是高尚和值得称赞 的。
——亚里士多德
You made my day!
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
我们,还在路上……
【规律方法】1.判断点与圆的位置关系的方法:
设⊙O的半径为r,则点P与⊙O的位置关系有
(1)点P在⊙O上
OP=r
(2)点P在⊙O内
OP<r
(3)点P在⊙O外
OP>r
2.要证明几个点在同一个圆上,只要证明这几个点到同一
个定点的距离相等.
通过本课时的学习,需要我们掌握:
1.从运动和集合的观点理解圆的定义. 2.点与圆的位置关系. 3.证明几个点在同一个圆上的方法.

北师大版九年级下册数学《车轮为什么做成圆形》圆复习说课教学课件

北师大版九年级下册数学《车轮为什么做成圆形》圆复习说课教学课件

情境导入
你会比较两个梯子哪个更陡吗?你有哪些办法?
知识讲解
实例1:如图①②,梯子AB和EF哪个更陡?你是怎样 判断的?你有几种判断方法?
图①
图②
实例2:如图③④,梯子AB和EF哪个更陡?你是怎样判断的?
梯子的铅直高度与其水平距离 的比相同时,梯子就一样陡.
你能设法验证这个结论吗?
比值大的梯子陡.
(1)
(2)
).
(6).如图 (2)
). tan A 0.7,
( ).
). tan A 0.7或 tan A 0.7
知识点 2 正切的应用
议一议 如图,梯子AB的倾斜程度与
B
C 1.当梯子与地面所成的角为锐角A时,
梯子的竖直高度 水平宽度 ,
因此可用梯子的倾斜角的正切值来描述梯子的倾斜程度. 2.当倾斜角确定时,其对边与邻边之比随之确定,这一比值 只与倾斜角的大小有关,而与物体的长度无关.
A.都没有变化
BA.都扩大为原来的2倍
C.都缩小为原来的一半 D.不能确定是否发生变化
5、如图,在网格中,小正方形的边长均为1,点A,B,C都在格
点上,则∠ABC的正切值是( D )
A.2 B. 2 5 C. 5 D. 1
5
5
2
课堂小结
1、理解了正切与坡度的概念. 2、 3、数形结合的方法;构造直角三角形的意识. 4、“一般 → 特殊 → 一般” 数学思想方法.
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得
BC 15 . AC 8
2、如图,在R 3
4
根据题意得∠BCD=∠CAB,
所以
BC 6 3 .
AC 8 4

圆周角和圆心角的关系课件第1课时北师大版九年级下册数学

圆周角和圆心角的关系课件第1课时北师大版九年级下册数学

A.40°
B.50°
C.60°
D.70°
合作探究
如图,已知圆心角∠AOB=100°,求圆周角∠ACB、
∠ADB的度数.
合作探究
解:设优弧ADB所对的圆心角为∠1,∵∠AOB=100°,

∴∠D= ∠AOB=50°,∠1=360°-∠AOB=260°,


∴∠ACB= ∠1=130°,

因此∠ACB、∠ADB的度数分别为130°、50°.
预习导学
1.如图,四个边长为1的小正方形拼成一个大正方形,A、B、
O是小正方形顶点,☉O的半径为1,P是☉O上的点,且位于右
上方的小正方形内,则∠APB等于( B )
A.30°
B.45°
C.60°
D.90°
预习导学
2.如图,AB、CD是☉O的两条弦,连接AD、BC.若∠BAD
=70°,则∠BCD的度数为( D )
合作探究
如图,点A、B、C都在圆O上,OC⊥OB,点A在劣弧
BC上,且OA=AB,求∠ABC的度数.
合作探究
解:∵OA=OB,OA=AB,
∴OA=OB=AB,
即△OAB是等边三角形,
∴∠AOB=60°.
∵OC⊥OB,
∴∠COB=90°,
∴∠COA=90°-60°=30°,
∴∠ABC=15°.
合作探究
圆内的部分是圆的两条弦
.
;(2)
两边在
预习导学
圆周角定理及其推论
1.同弧所对的圆周角等于它所对的圆心角的一半.
2.在
等.
同圆或等圆 中,同弧或等弧所对的 圆周角 相
预习导学
·导学建议·
在知识点二圆周角定理的得出和证明中,先把学生所画出

北师大版数学九年级下册第三章圆专题四模型拓展——圆中经典模型(隐圆问题)课件

北师大版数学九年级下册第三章圆专题四模型拓展——圆中经典模型(隐圆问题)课件
如图XD3-4-9,若动角∠A+动角∠C=180°,则A,B,C,D 四点共圆.
原理:如图XD3-4-10,四边形ABCD是⊙O的内接四边形,则 ∠1+∠2=180°,∠3+∠4=180°.
针对训练
4.如图XD3-4-11,在等边△ABC中,AB=6,P为AB上一动点, PD⊥BC,PE⊥AC,求DE的最小值.
针对训练
1.(202X·广东改编)在△ABC中,∠ABC=90°,AB=2,BC=3 .D为平面上一个动点,∠ADB=45°,求线段CD长度的最小值. 解:如答图XD3-4-1,作△ABD的外接圆O(因求CD最小值,故圆心 O在AB的右侧),连接OC, 则当O,D,C三点共线时,CD的值最小. ∵∠ADB=45°,∴∠AOB=90°. ∴△AOB为等腰直角三角形.
模型解读
【模型二】 如图XD3-4-12,若固定线段AB所对同侧动角∠P=∠C,则A,B,C ,P四点共圆.
原理:如图XD3-4-13,在⊙O中,四边形ABCD是⊙O的内接四边 形,则∠1=∠2,∠3=∠4.
针对训练
5.如图XD3-4-14,PA,PB切⊙O于A,B两点,过点P作割线交⊙O 于点C,D,过点B作BE∥CD,连接AE交PD于点M.求证:M为DC的 中点.
谢谢
解:如答图XD3-4-4,连接PC,取CP的中点O,连接OE,OD,过 点O作OH⊥DE于点H. ∵△ABC是等边三角形, ∴∠ACB=∠B=60°,BC=AC=AB=6. ∵PD⊥BC,PE⊥AC, ∴∠PDC=∠PEC=90°. ∴∠PDC+∠PEC=180°. ∴C,D,P,E四点共圆. ∴∠EOD=2∠ACB=120°. ∴当OE的值最小时,DE的值最小. ∴当CP⊥AB时,OE的值最小,即DE的值最小.

北师大版九年级数学下册第三章圆复习课件(共39张PPT)

北师大版九年级数学下册第三章圆复习课件(共39张PPT)
A.点P B.点Q C.点R D.点M
[解析] B 该是点Q.
圆心既在AB的中垂线上又在 BC的中垂线上,由图可以看出圆心应
方法技巧 过不在同一条直线上的三个点作圆时,只需由两条线段的垂 直平分线确定圆心即可,没有必要作出第三条线段的垂直平分 线.事实上,三条垂直平分线交于同一点.

考点二
垂径定理及其推论
第三章 圆 圆的复习
1.确定圆的要素
圆心确定其位置,半径确定其大小.只有圆心没有半径, 虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没 有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确 定;只有圆心和半径都固定,圆才被唯一确定.
2.点与圆的位置关系
(1)点与圆的位置关系有三种:点在圆外、点在圆上、点在 圆内.
由三角形的外角求得∠C=40°,所以∠B=∠C=40°.
[解析] 由同弧所对的圆心角等于它所对的圆周角的2倍,得∠O=2∠B=44°, 又因为AB∥CO,所以∠A=∠O=44°.
方法技巧 圆周角定理建立了圆心角与圆周角之间的关系,因此,最终实 现了圆中的角(圆心角和圆周角)的转化,从而为研究圆的性质提供 了有力的工具和方法.当图形中含有直径时,构造直径所对的圆周 角是解决问题的重要思路.在证明有关问题中注意 90° 的圆周角的 构造.
和三角形三边都相切的圆可以作出一个,并
且只能作出一个,这个圆叫做三角形的内切圆,
内切圆的圆心是三角形角平分线的交点,叫做
三角形的
内心
.
[注意] 对一个确定的三角形来说,其内切圆 有且只有一个,其内心也有且只有一个:内心 就是内切圆的圆心.
[注意] (1)两圆内含时,若 d 为 0,则两圆为同心圆. (2)由两圆构成的图形都是轴对称图形, 其对称轴是两圆的圆 心所在的直线. 12.弧长及扇形的面积公式 (1)弧长公式

北师大版初中九年级下册数学课件 《圆》

北师大版初中九年级下册数学课件 《圆》

知1-练
4 下列图形中,四个顶点一定在同一个圆上的是( B ) A.菱形、平行四边形 B.矩形、正方形 C.正方形、菱形 D.矩形、平行四边形
知识点 2 与圆有关的概念
知2-讲
弦:连接圆上任意两点的线段(如图中的AC)叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
注意: 1.弦和直径都是线段. 2.直径是弦,是经过圆心的特殊弦,是
(1)圆的两种定义中确定圆的条件是相同的,即圆心和 半径.两者缺一不可; (2)“点在圆上”和“圆过点”表示的意义都是:这个点在 圆周上. 特别提醒:圆是“圆周”,而非“圆面”.
知1-练
1 体育老师想利用一根3m长的绳子在操场上画一个 半径为3m的圆,你能帮他想想办法吗?
解:将绳子的一端A固定,然后拉紧绳子的另一端B,并绕
知2-练
2 【中考·杭州】如图,已知AC是⊙O的直径,点B在圆 周上(不与点A,C重合),点D在AC的延长线上,连 接BD交⊙O于点E,若∠AOB=3∠ADB,则(D ) A.DE=EB B. DE2=EB C. DE3=DO D.DE=OB
知2-练
3 【中考·潍坊】点A,C为半径是3的圆周上两点,点B ︵
A
B.F,G,H
C.G,H,E
D.H,E,F
知3-练
3 【中考·贵港】如图,已知P是⊙O外一点,Q是⊙O上的动点,
线段PQ的中点为M,连接OP,OM. 若⊙O的半径为2,OP=4,
则线段OM的最小值是( )
A.0
B
B.1
C.2
D.3
知3-练
4 如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在
归纳
知1-导
1. 圆心为O、半径为r的圆可以看成是所有到定 2. 点O的距离等于定长r的点的集合. 3. 确定一个圆的两个要素:圆心、半径.圆心确 4. 定圆的位置,半径确定圆的大小.

北师大版九年级数学下册圆课件

北师大版九年级数学下册圆课件

条劣弧.
A.0
B.1 C.2
D.3
这个地方的设计意图是想通过跟踪练习及时了 解学生对新学知识的掌握和运用情况,及时发 现学生在学习新知识的过程中出现的新问题, 及时解决,防止错误累积和加深。
探究二
放寒假了,爱好运动的小明和小颖相邀搞一次掷飞镖比赛。 他们把靶子钉在一面土墙上,规则是谁掷出落点离中心越近, 谁就胜.如图①中就是他们两人掷镖的落点.我们不妨取其中的 一个圆和飞镖的落点来研究,如图② :
所有点组成的图形.
这个题目的设计意图是考察学生对集合的理解和掌握程 度,这是本节课的难点,这个地方允许有不会的学生, 学生刚学用集合的观点去理解,还是得有一个过程。但 是那些数学素养比较好的学生要会做这个题目。这是给 那些课堂吃不饱的学生准备的。
布置作业:
A类:习题3.1;
这个B地类:方习的题设3.1,计新意课图堂本是课让时学. 生巩固所学知识, 分层布置的目的是让不同学生都有成绩感。既 照料到吃不饱,又照料到吃不了。
这个地方的设计意图是想让学生通过总结,梳理本节课的 知识体系,形成清楚的知识网,以便于前后知识的衔接, 形成整个大的知识体系。
达标检测
1. 下列说法错误的是( B )
A.直径是弦 B.长度相等的弧是等弧
C.半径相等的圆是等圆 D.圆上两点之间的
部分为弧
2.在矩形ABCD中,AB=3cm,AD=4cm,以C为
挑战自我:
3. 设AB=3厘米,作图说明满足下
列要求的图形:
(1)到点A和点B的距离都等于2厘
米的所有点组成的图形.
A
B
这个地方的设计意图是检测学生对集合的理解和认识。 这个地方属于拔高题。
挑战自我:
(2)和点A、B的距离都小于2厘

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件

九年级数学北师大版初三下册--第三单元3.2《圆的对称性》课件
在同圆或等圆中,如果两条弦相等,你能得出什么 结论?
归纳
知2-导
1.在同圆或等圆中,相等的圆心角所对的弧相等,所对 的弦相等.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦 中有一组量相等,那么它们所对应的其余各组量都分 别相等.
(来自教材)
知2-讲
例2 下列命题中,正确的是( C ) ①顶点在圆心的角是圆心角;
形、圆、等腰三角形,这些图形中只是轴对称图
形的有( A )
A.1个
B.2个
C.3个
D.4个
知1-练
4 【2017·黄石】下列图形中既是轴对称图形,又是 中心对称图形的是( D )
知2-导
知识点 2 圆心角与所对的弧、弦之间的关系
在同圆或等圆中,如果两个圆心角所对的弧相等,那 么它们所对的弦相等 吗?这两个圆心角相等吗?你是怎 么想的?
②相等的圆心角所对的弧也相等;
③在等圆中,圆心角不等,所对的弦也不等.
A.①和②
B.②和③
C.①和③
D.①②③
知2-讲
导引:①根据圆心角的定义知,顶点在圆心的角是圆心角, 故正确;②缺少条件,必须是在同圆或等圆中,相等 的圆心角所对的弧才相等,故错误;③根据弧、弦、 圆心角之间的关系定理,可知在等圆中,若圆心角相 等,则所对的弦相等,若圆心角不等,则所对的弦也 不等,故正确.
总结
知2-讲
本题考查了对弧、弦、圆心角之间的关系的理解,对于 圆中的一些易混易错结论应结合图形来解答.特别要注 意:看是否有“在同圆或等圆中”这个前提条件.
知2-练
1 下面四个图形中的角,是圆心角的是( D )
知2-练
2 如图,AB为⊙O的弦,∠A=40°,则A︵B所对的 圆心角等于( C ) A.40° B.80° C.100° D.120°

北师大版九年级下册数学《圆周角和圆心角的关系》圆PPT课件教学课件(第2课时)

北师大版九年级下册数学《圆周角和圆心角的关系》圆PPT课件教学课件(第2课时)

北京师范大学出版社 九年级 | 下册
北京师范大学出版社 九年级 | 下册
课时小结:
1.本节课我们探索了圆的对称性. 2.利用圆的轴对称性研究了垂径定理及其逆定理. 3.垂径定理和勾股定理相结合,构造直角三角形,可解决弦长、半径、 弦心距等计算问题.
北京师范大学出版社 九年级 | 下册
课后作业:
(一)课本习题3.2,1、2.试一试1. (二) 预习课本:P94~97内容
新课讲解
知识点2 直角所对的弦是直径
在如图中,圆周角∠A=90°,弦BC是直径吗?为什么?
新课讲解
90°的圆周角所对的弦是直径.
新课讲解
典例分析
例 如图,已知经过原点的⊙P与x轴、y轴分别交于A,B 两点,点C是劣弧OB上一点,则∠ACB等于( B ) A.80° B.90° C.100° D.无法确定
拓展与延伸
已知在半径为4的⊙O中,弦AB=4 3 ,点P在圆上,则 ∠APB=_6_0_°__或__1_2_0_°_.
第3单元 · 圆
圆的对称性
北京师范大学出版社 九年级 | 下册
问题: 前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?
我们是用什么方法研究轴对称图形的?
北京师范大学出版社 九年级 | 下册
交点,即垂足. 4.将纸打开,新的折痕与圆交于另一点B,如图.
问题:(1)右图是轴对称图形吗? 如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系? 说一说你的理由。
北京师范大学出版社 九年级 | 下册
总结得出垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的 弧。 推理格式:如图所示 ∵CD⊥AB,CD为⊙O的直径 ∴AM=BM,AD BD, AC BC .

3.3垂径定理(课件)九年级数学下册(北师大版)

3.3垂径定理(课件)九年级数学下册(北师大版)
C
➢特别说明:圆的两条直径是互相平分的.
A
·O
B
D
二、自主合作,探究新知
典型例题
C
例2:如图,一条公路的转弯处是一段圆弧(即图中弧CD,
点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,
且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.
E

解:连接OC. 设这段弯路的半径为Rm,则OF=(R-90)m.
股定理计算或建立方程.
五、当堂达标检测
1.已知☉O的半径为13cm,弦AB的长为10cm,则圆心到
弦AB的距离为( D )
A.8cm
B.5cm
·O
C.9cm
D.12cm
2.坐标网格中一段圆弧经过点A,B,C,其中点B
的坐标为(4,3),点C坐标为(6,1),则该圆
弧所在圆的圆心坐标为( B )A.(0,0) B.

六、布置作业
教材习题3.3;
圆心的 直线 .对称中心为 圆心 。
2.在 同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦也相等.
3.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相
等,那么它们所对应的其余各组量都分别
相等 .
一、创设情境,引入新知
问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)
O
F
D
三、即学即练,应用知识
1.如图,CD是☉O的直径,弦AB⊥CD于点E,连接OA,
OB,下列结论中不一定正确的是( C )
⌒ ⌒
A.AE=BE
B.AD=BD
C.OE=DE
D.∠AOD=∠BOD
2.如图,在☉O中,弦AB的长为8cm,圆心O到AB

专题 圆内接正多边形-九年级数学下册教学课件(北师大版)

专题  圆内接正多边形-九年级数学下册教学课件(北师大版)

(2)
在(1)的基础上,连接BO并延长与DE相交,连
接AG交BO延长线于N,连接CN,如图2所示;
课堂小结
正多边形和
圆 的 关 系
正n边形各顶点等分其外
接圆.
中心
圆内接正
多边形
正多边形的
有 关 概 念
半径
边心距
中心角
正多边形的
有关计算
添加辅助线的方法:
连半径,作边心距
过边心距、边长的一半和内接圆半径构造直角三角
形,通过解直角三角形求解即可.
【详解】解:如图所示,
此正六边形中AB=4,则∠AOB=60° .
∵OA=OB,
∴△OAB是等边三角形,
∵ OG⊥AB,
∴∠AOG=30°,
∴ OG=4×
故选:D.


= .
2.如图,正六边形ABCDEF内接于○O,半径为6,
北师大版九年级下册
第三章 圆
3.8 圆内接正多边形
新课导入
讲授新课
当堂检测
课堂小结
学习目标
1、掌握正多边形与圆的相互关系,理解正多边形与圆的相关
概念;
2、理解并掌握正多边形半径、中心角、边心距、边长的概念
及其相互之间的关系;
3、学会运用正多边形与圆的关系解决与圆相关的几何问题,
注意正多边形与圆的相互联系;
落在阴影区域的概率为 _____.

【答案】

【分析】如图,将阴影部分分割成图形中的小三角
形,令小三角形的面积为a,分别表示出阴影部分的
面积和正六边形的面积,根据概率公式求解即可.
【详解】解:如图,
根据题意得:图中每个小三角形的面积都相等,

北师大版九年级数学下册《圆——圆周角和圆心角的关系》教学PPT课件(6篇)

北师大版九年级数学下册《圆——圆周角和圆心角的关系》教学PPT课件(6篇)

D
O2
O1
E
B
F
新知探究
【跟踪训练】
1.圆内接四边形ABCD中,∠A, ∠B, ∠C的度数之比是
135°
1:2:3,则这个四边形最大角的度数是_________.
D
A
2.四边形ABCD内接于圆,AD∥BC,AB+CD=AD+BC ,
25
若AD=4,BC=6,则四边形ABCD的面积为_______.
A
A
O
O
BB
C
C
课堂小测
3. 如图,点B,C在⊙O上,且BO=BC,则圆周角∠BAC等于( D )
A
A.60°
B.50°
C.40°
D.30°
O
B
C
课堂小测
4 . 如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E.若
∠AOD=60°,则∠DBC的度数为( A)
A.30°
B.40°
C.50°
B
D.60°
D
C
OC垂直平分AD
(1)OC与AD的位置关系是__________________;
A
平行
(2)OC与BD的位置关系是___________;
4
(3)若OC=2cm,则BD=______cm.
O1
O
B
新知探究
4.如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°,求⊙O的直径.
解:连接AO并延长交⊙O于点E,
3 . 当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆
心角∠AOC的大小关系会怎样?
提示:能否也转化为1的情况?
A
C
过点B作直径BD.由1可得:

北师大版九年级数学下册课件第三章圆

北师大版九年级数学下册课件第三章圆
车轮做成三角形、正方形可以吗?
骑车运动
看了此画,你有何想法?
观察:注意观察演示过程 ,
说说你的想法
车轮做成正方形的可以吗?
.B A.
.C
B. A.
.C
圆形车轮为什么平稳?
B. A.
.C
.B
A . .o
.o
.o
.o
.C
转椭圆 .o 转 圆
圆形车轮为什么平稳?
(1)如图,A、B表示车轮边缘 上的两点,O表示车轮的轴心,A A、O之间的距离与B、O之间 的距离有什么关系?
想一想,他们可能得到这些分数吗? 如果可能,请把投中的靶区在靶纸 上表示出来(用不同颜色的彩笔画 出来);如果不可能,请说明理由。
1:在以AB=5cm为直径的圆上到直线AB的距离为 2.5cm的点有 ( C ) A.无数个 B.1个 C.2个 D.4个 2:圆的半径是5cm,圆心的坐标是(0,0),点P 的坐标为(4,2),点P与⊙O的位置关系是(A )
当OP= 6cm时, 点A在⊙O内部; 当OP=10cm时, 点A在⊙O上 ; 当OP=14cm时,点A在⊙O外部 。
2015.01
3、正方形ABCD的边长为3cm,以A为
A
D
圆心,3cm长为半径作⊙A,则点A
在⊙A 内部,点B在⊙A 上 ,点 C在
⊙A 外部 ,点D在⊙A 上 。
B
C
2015.01
(如直径AC).
A
直径将圆分成两部分,
每一部分都叫半圆(如A⌒BC).
●O
F
C
D
能够重合的两个圆叫做等圆。 在同圆或等圆中,能够互相重合的弧叫做等弧。
圆的相关概念 两张图片中的圆各有什么特征
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章复习2┃ 知识归类
[注意] (1)两圆内含时,若 d 为 0,则两圆为同心圆. (2)由两圆构成的图形都是轴对称图形, 其对称轴是两圆的圆 心所在的直线. 12.弧长及扇形的面积公式 (1)弧长公式
nπR 半径为 R 的圆中,n° 的圆心角所对的弧长 l= 180
(2)扇形的面积公式 n 半径为 R,圆心角是 n° 的扇形面积是 S 扇形= πR2; 360
d<r⇒点P在圆内;
d=r⇒点P在圆上;
数学·新课标(BS)
第3章复习2┃ 知识归类 d>r⇒点P在圆外. [点拨] 点与圆的位置关系可以转化为点到圆心的距离与半 径之间的关系;反过来,也可以通过这种数量关系判断点与圆 的位置关系.
3.垂径定理
(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所 对的 弧 . [注意] ①条件中的“弦”可以是直径;②结论中的“平分 弧”指平分弦所对的劣弧、优弧.
数学·新课标(BS)
第3章复习2┃ 知识归类 和三角形三边都相切的圆可以作出一个,并且只能作出一 个,这个圆叫做三角形的内切圆,内切圆的圆心是三角形角平 分线的交点,叫做三角形的 内心 . [注意] 对一个确定的三角形来说,其内切圆有且只有一个, 其内心也有且只有一个:内心就是内切圆的圆心.
11.圆与圆的位置关系
.
数学·新课标(BS)
第3章复习2┃ 知识归类
1 lR 2 半径为 R,弧长 l 的扇形面积是 S 扇形=
.
13.圆锥的侧面积 (1)圆锥的侧面展开图是一个 扇形 .
(2) 如果圆锥母线长为 l ,底面圆的半径为 r,那么这个扇形 的半径为 l ,扇形的弧长为 2πr .
(3)圆锥侧面积为 πrl .
图 形
公共 点个数 数量 关系
0
d>r
1
d =r
2
d<r
数学·新课标(BS)
第3章复习2┃ 知识归类 [易错点] 将圆心到直线上某一点的距离看成是圆心到直线 的距离. 9.圆的切线的性质及判定 性质:圆的切线垂直于经过切点的半径. 判定:经过直径的一端,并且垂直于这条直径的直线是圆 的切线. 10.三角形的内切圆
A.点P B.点Q C.点R D.点M
数学·新课标(BS)
第3章复习2┃ 考点攻略
[解析] B 圆心既在AB的中垂线上又在BC的中垂线上,由 图可以看出圆心应该是点Q.
数学·新课标(BS)
第3章复习2┃ 考点攻略
方法技巧 过不在同一条直线上的三个点作圆时,只需由两条线段的垂 直平分线确定圆心即可,没有必要作出第三条线段的垂直平分 线.事实上,三条垂直平分线交于同一点.
在同一平面内两圆作相对运动,可以得到下面五种位置关
系,其中R和r为两圆半径(R≥r),d为圆心距.
数学·新课标(BS)
第3章复习2┃ 知识归类
位置关系 外离 外切 相交 内切 内含
公共点个数 0 1
d与R和r的关系
d>R+r
d =R +r
2
1 0
d<R+r
d =R -r 0≤d<R-r
数学·新课标(BS)
(1)点与圆的位置关系有三种:点在圆外、点在圆上、点在 圆内.
数学·新课标(BS)
第3章复习2┃ 知识归类 点在圆外,即这个点到圆心的距离 大于 半径; 点在圆上,即这个点到圆心的距离 等于 半径; 点在圆内,即这个点到圆心的距离 小于 半径. 判断点与圆的位置关系可由点到圆心的距离 d与圆的半径r 来比较得到. (2)设⊙O的半径是r,点P到圆心的距离为d,则有
数学·新课标(BS)
第3章复习2┃ 知识归类
5.圆周角与圆心角的关系
(1)圆周角的定义:顶点在圆上,且角的两边还与圆相交的角 叫做圆周角. [注意] 圆周角有两个特征:角的顶点在圆上,两边在圆内的 部分是圆的两条弦.
(2)圆周角与圆心角的关系:一条弧所对的圆周角等于它所对 的圆心角的 一半 .
(3)圆周角的性质 性质:在同圆或等圆中,同弧或等弧所对的圆周角 相等 .
[点拨] 圆锥的侧面展开图的形状是扇形,它的半径等于圆 锥的母线长,它的弧长是圆锥底面圆的周长.
数学·新课标(BS)
第3章复习2┃ 考点攻略
┃考点攻略┃
► 考点一
例1
确定圆的条件
[2010·河北 ] 如图 X3 - 4 ,在 5×5 正方形网格中,一
条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( B )
数学·新课标(BS)
第3章复习2┃ 考点攻略 ► 考点二 垂径定理及其推论
例 2 如图X3 - 5, AB是⊙ O的弦,半径 OC⊥AB于 D点, 且AB=6 cm,OD=4 cm,则DC的长为( D )
A.5 cm
B.2.5 cm C.2 cm D.1 cm
数学·新课标(BS)
第3章复习2┃ 知识归类
(2)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且 平分弦所对的弧. 4.圆的旋转不变性 (1)中心对称性:圆是中心对称图形,对称中心为 圆心 . (2)探究圆中角的一些性质 定理 1:在同圆或等圆中,如果圆心角相等,那么它们所对的 弧相等,所对的弦相等. 定理2:在同圆或等圆中,如果两个圆心角、两条弧、 两条弦 中有一组量相等,那么它们所对第3章复习2┃ 知识归类 直径所对的圆周角是 是 直径 . 直角 ; 90°的圆周角所对的弦
[注意] “同弧”指“在一个圆中的同一段弧”;“等弧” 指“在同圆或等圆中相等的弧”;“同弧或等弧”不能改为
“同弦或等弦”.
6.确定圆的条件 不在同一直线上的三个点确定一个圆. 7.三角形的外接圆
数学·新课标(BS)
第3章复习2┃ 知识归类 三角形的三个顶点确定一个圆,这个圆叫做三角形的外接 圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角 形的 外心 . 8.直线与圆的位置关系 设r为圆的半径,d为圆心到直线的距离
数学·新课标(BS)
第3章复习2┃ 知识归类
位置 关系
相离
相切
相交
数学·新课标(BS)
第3章复习2┃ 知识归类
┃知识归纳┃
1.确定圆的要素 圆心确定其位置,半径确定其大小.只有圆心没有半径, 虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没
有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确 定;只有圆心和半径都固定,圆才被唯一确定.
2.点与圆的位置关系
相关文档
最新文档