机器人学基础 机器人动力学
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Equation):
Fi
d dt
L qi
L qi
,i
1,2,
n
(4.2)
where qi is the generalized coordinates, qi represent corresponding velocity, Fi stand for corresponding torque or force on the ith coordinate.
Forward Dynamics: given a torque vector, Τ, calculate the resulting motion of the manipulator, , &, and && . This is useful for simulating the manipulator.
F
x0
F
d dt
K x1
K x1
D x1
P x1
W x1
M1
x1
k
c
① ②③ ④⑤
M0
① Kinetic Energy due to (angular) velocity ② Kinetic Energy due to position (or angle) ③ Dissipation Energy due to (angular) velocity ④ Potential Energy due to position ⑤ External Force or Torque
Inverse Dynamics: given a trajectory point, , &, and &&,
find the required vector of joint torques, Τ. This formulation of dynamics is useful for the problem of controlling the manipulator.
1
Ch.4 Manipulator Dynamics
Introduction
Manipulator Dynamics considers the forces required to cause desired motion. Considering the equations of motion arises from torques applied by the actuators, or from external forces applied to the manipulator.
4.1 Dynamics of a Rigid Body
6
4.1 Dynamics of a Rigid Body
4.1.1 Kinetic and Potential Energy of a Rigid Body
K
1 2
M1 x&12
1 2
M0 x&02
P
1 2
k( x1
x0 )2
M1 gx1
M
Ch.4 Manipulator Dynamics
4
Contents
Introduction to Dynamics Rigid Body Dynamics Lagrangian Formulation Newton-Euler Formulation Articulated Multi-Body Dynamics
Lagrangian dynamic formulation
Lagrangian formulation is an "energy-based" approach to dynamics.
Ch.4 Manipulator Dynamics
3
Ch.4 Manipulator Dynamics
There are two problems related to the dynamics of a manipulator that we wish to solve.
4.1 Dynamics of a Rigid Body
8
4.1.1 Kinetic and Potential Energy of a Rigid Body
x0 and x1 are both generalized coordinates
0 gx0
D
1 2
c(
x&1
x&0 )2
W Fx1 Fx0
F
x0
F
M1
x1
k来自百度文库
c
M0
图4.1 一般物体的动能与位能
4.1 Dynamics of a Rigid Body
7
4.1.1 Kinetic and Potential Energy of a Rigid Body
x0 0, x1 is a generalized coordinate
Ch.4 Manipulator Dynamics
2
Ch.4 Manipulator Dynamics
Two methods for formulating dynamics model:
Newton-Euler dynamic formulation
Newton's equation along with its rotational analog, Euler's equation, describe how forces, inertias, and accelerations relate for rigid bodies, is a "force balance" approach to dynamics.
Contents
Introduction to Dynamics Rigid Body Dynamics Lagrangian Formulation Newton-Euler Formulation Articulated Multi-Body Dynamics
Ch.4 Manipulator Dynamics
Ch.4 Manipulator Dynamics
5
4.1 Dynamics of a Rigid Body 刚体动力学
Langrangian Function L is defined as:
LKP
(4.1)
Kinetic Energy
Potential Energy
Dynamic Equation of the system (Langrangian