函数的单调性与奇偶性PPT课件
函数的奇偶性和单调性1-课件
利用单调性研究函数的增 减性
解释如何使用函数的单调性来研 究函数的增减性,以更好地理解 函数的变化趋势和特性。
练习与答案
示例题目及解答
给出一些示例题目,并提供详细的解答和分析,以帮助学生实践和巩固所学的奇偶性和单调 性知识。
讨论函数的极大值点 和极小值点的特性, 以便更好地理解函数 的单调性。
函数单调性的 判定方法
介绍判断函数单调性 的方法和技巧,来帮 助分析和确定函数的 单调性。
奇偶性和单调性的应用
利用奇偶性证明函数对称性
示范如何使用函数的奇偶性来证 明函数是否具有对称性,例如图 像关于y轴的对称性。
利用单调性求函数的极值 点和最值
函数的奇偶性和单调性1PPT课件
通过本课件,我们将深入讨论函数的奇偶性和单调性,并介绍其在数学中的 重要性和应用。准备好迎接数学的奇妙世界吧!
奇偶性
定义奇偶性
介绍什么是奇函数和偶函数,以及如何判断函数的奇偶性。
奇函数和偶函数的图像特征
讲解奇函数和偶函数在坐标平面上的图像特点,以帮助理解和直观理解奇偶性。
告导数和微分的内容,激
忆。
学生能够更好地应用和运
发学生的兴趣和好奇心。
用所学的知识。
练习题目及详细解答
提供一系列练习题目,并附有详细的解答,供学生自我练习并检验自己的掌握程度。
总结
1 本章内容回顾
复习本章所学的奇偶性和
2 解决问题的思路和方
法总结
3 下一章节预告:导数
和微分
单调性的核心概念和要点,
总结解决奇偶性和单调性
引入下一章节的主题,预
高数数学必修一《3.2.2.1奇偶性的概念》教学课件
(2)对于上述两个函数, f(1) 与 f(-1) , f(2) 与 f(-2),f(a) 与 f(-a) 有什么关系?由此可得到什么一般性的结论?
提示:(1)都关于y轴对称. (2)f(1)=f(-1),f(2)=f(-2),f(a)=f(-a).一般地,若函数y=f(x)的图象关于y轴对称,当自变量任取定 义域中的一对相反数时,对应的函数值相等.即f(-x)=f(x),满足这种性质的函数叫作偶函数.
(2) 已 知 f(x) = ax2 + bx 是 定 义 在 [a - 1 , 2a] 上 的 偶 函 数 , 则 a + b =
() A.1 C.-1
B.13 D.3
答案:B
解析:因为f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,则a-1+2a=0,解得a=13, 且有-2ba=0,可得b=0,因此,a+b=13.故选B.
2.下列函数既是偶函数,又在(0,+∞)上单调递增的是( )
A.y=x
B.y=-x2
C.y=|x|
D.y=1x
答案:C
解析:对于A,y=x为奇函数,所以A不符合题意;
对于B,y=-x2为偶函数,在(0,+∞)上单调递减,所以B不符合题意;
对于C,y=|x|既是偶函数,又在(0,+∞)上单调递增,所以C符合题意; 对于D,y=1x为奇函数,所以D不符合题意.故选C.
第1课时 奇偶性的概念
预学案
共学案
预学案
函数的奇偶性❶
奇偶性
定义
偶函数
如果对于函数f(x)的定义域内任意一个x, 都有_f(-__x)_=_f(_x)___,那么函数f(x)是偶函数
奇函数
如果对于函数f(x)的定义域内任意一个x, 都有_f(_-_x_)=_-__f(x_)___,那么函数f(x)是奇函数
函数的奇偶性和单调性-课件
性质
偶函数的图像关于y轴对称 。
例子
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,所以 $f(x)=x^2$是偶函数。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
函数的单调性
单调增函数
定义
对于函数$f(x)$,如果在区间$I$上, 对于任意$x_1 < x_2$,都有$f(x_1) < f(x_2)$,则称$f(x)$在区间$I$上单 调增。
举例
应用
在经济学、生物学等领域中,单调增 函数常用于描述随着自变量增加,因 变量也增加的情况。
$f(x) = x^2$在区间$(0, +infty)$上 单调增。
单调减函数
定义
对于函数$f(x)$,如果在区间$I$ 上,对于任意$x_1 < x_2$,都有 $f(x_1) > f(x_2)$,则称$f(x)$在
通过已知的函数性质和函数关系,可以求 解未知的函数解析式。
利用奇偶性和单调性研究函数图 像
通过奇偶性和单调性,我们可以研究函数 的图像性质,如对称轴、单调区间等。
奇偶性与单调性的实际应用举例
经济领域应用
在经济学中,奇偶性和单调 性可以用于研究经济数据的 趋势和周期性变化,如GDP 、就业率等。
自然科学应用
如果对于函数$f(x)$的定 义域内任意$x$,都有$f(x)=-f(x)$,则称$f(x)$为 奇函数。
性质
奇函数的图像关于原点对 称。
例子
$f(x)=x^3$,$f(-x)=x^3=-f(x)$,所以 $f(x)=x^3$是奇函数。
偶函数
定义
函数的单调性与奇偶性
函数的单调性考点解析及例题讲解1.课件展示下列函数图象2增函数:在给定的区间上自变量增大(减少)时,函数值也随着增大(减少). 减函数:在给定的区间上自变量增大(减少)时,函数值也随着减少(增大).3.例1给出函数 y =f (x )的图象,如图所示,根据图象指出这个函数在哪个区间上是增函数?在哪个区间上是减函数?解 函数 y =f (x )在区间[-1,0],[2,3]上是减函数;在区间[0,1],[3,4]上是增函数.4.练习1(1) 观察教材P64 例1的函数图象,说出函数在(-∞,+∞)上是增函数还是减函数;(2) 观察教材P65 例2的函数图象,分别说出函数在(-∞,0)和(0,+∞)上是增函数还是减函数.5.设 y =f (x ),在给定的区间上,它的图象如图.x 1,y 1),B (x 2,y 2),记∆x =x 2-x 1,∆y =y 2-y 1.6.例2 证明函数 f (x )=3 x +2在区间(-∞,+∞)上是增函数. 证明 设x 1,x 2是任意两个不相等的实数,则∆ x =x 2-x 1∆ y =f (x 2)-f (x 1)=(3 x 2+2)-(3 x 1+2)=3(x 2-x 1),∆y ∆x =3(x 2-x 1)x 2-x 1>0. 因此,函数 f (x )=3 x +2在区间(-∞,+∞)上是增函数.7.总结由函数的解析式判定函数单调性的步骤:S1 计算 ∆x 和 ∆y ;S2 计算 k =∆y ∆x. 当 k >0时,函数在这个区间上是增函数;当 k <0时,函数在这个区间上是减函数.8.例3 证明函数 f (x )=1x 在区间(0,+∞)上是减函数.证明:设x 1,x 2是任意两个不相等的正实数.因为 ∆x =x 2-x 1,∆y =f (x 2)-f (x 1)=1x 2 -1x 1=2121x x x x - =-2112x x x x -=-21x x x ∆. 又因为 x 1 x 2>0,所以 ∆y ∆x =-211x x <0. 因此,函数 f (x )=x 1在区间(0,+∞)上是减函数.基础训练1.下列函数是偶函数的是( )(A)[]1,0,2∈=x x y (B)x y =(C)322-=x y (D)21-=x y2.已知函数()24x xx f -=则它( )(A)既是奇函数又是偶函数 (B)是奇函数(C)是非奇非偶函数 (D)是偶函数3.函数()6,,48a x x x y ∈+=是偶函数,则a 的取值范围是( )(A) a=0 (B) a<-6 (C) a>-6 (D) a=-64. 已知函数y= f(x)是定义在[m-1,2m]上的奇函数,则m=5.f(a)为奇函数,且f(-3)=2,则f(3)=6.f(x)为R 上的偶函数,且f(a)=25, 则f(-a)H7.若函数f(x)=ax'+bx,且f(a)=25,则f(-a)=8.若函数f(x)=ax 3+bx-7,且f(13)=25,则f(-13)=9.用定义证明函数f(x)=3x+1在区间(-∞,+∞) 上是增函数.10.用定义证明函数f(x)=x2号在区间(0, +∞)上是减函数.函数的奇偶性考点解析及例题讲解一、奇函数1. 定义.如果对于函数 y =f (x )的定义域A 内的任意一个x 都有f (-x )=-f (x ),则这个函数叫做奇函数.2. 图象特征.课件展示函数f (x )=2 x 和 g (x )=14 x 3的图象,动画展示对称性.奇函数的图象都是以坐标原点为对称中心的中心对称图形.一个函数是奇函数的充要条件是,它的图象是以坐标原点为对称中心的中心对称图形.例1 判断下列函数是不是奇函数:(1) f (x )=1x ; (2) f (x )=-x 3;(3) f (x )=x +1;(4) f (x )=x +x 3+x 5+x 7.解 (1) 函数 f (x )=1x 的定义域A ={x | x ≠ 0},所以当 x ∈ A 时,-x ∈ A .因为 f (-x )=1-x=-1x =-f (x ),所以函数 f (x )=1x 是奇函数. (2) 函数 f (x )=-x 3 的定义域为 R ,所以当 x ∈ R 时,-x ∈ R .因为 f (-x )=-(-x )3=x 3=-f (x ), 所以函数 f (x )=-x 3 是奇函数.(3) 函数 f (x )=x +1的定义域为R ,所以当x ∈ R 时,-x ∈ R .因为 f (-x )=-x +1-f (x )=-(x +1)=-x -1,所以 f (-x )≠-f (x ).所以函数 f (x )=x +1不是奇函数.(x )) (-x ,f(4) 函数 f (x )=x +x 3+x 5+x 7的定义域为R ,所以当x ∈ R 时,-x ∈ R . 因为 f (-x )=-x -x 3-x 5-x 7=-(x +x 3+x 5+x 7) =-f (x ).所以函数f (x )=x +x 3+x 5+x 7是奇函数.练习1 教材 P 73,练习A 组 第1题.二、偶函数1. 定义.如果对于函数 y =f (x )的定义域A 内的任意一个x 都有f (-x )=f (x ),则这个函数叫做偶函数.2. 图象特征.偶函数的图象都是以y 轴为对称轴的轴对称图形.一个函数是偶函数的充要条件是,它的图象是以y 轴为对称轴的轴对称图形. 例2 判断下列函数是不是偶函数:(1) f (x )=x 2+x 4;(2) f (x )=x 2+1;(3) f (x )=x 2+x 3;(4) f (x )=x 2+1,x ∈[-1,3].解(2) 函数 f (x )=x 2+1的定义域为R ,所以当 x ∈ R 时,-x ∈ R . 因为 f (-x )=(-x )2+1=x 2+1=f (x ),所以函数 f (x )=x 2+1是偶函数.(4) 因为2∈[-1,3],-2∉[-1,3],所以函数 f (x )=x 2+1,x ∈[-1,3]不是偶函数.3. 对定义域的要求一个函数为奇函数或者偶函数的前提条件是这个函数的定义域关于原点对称.综合训练1.下列命题中,正确的是( )(A)偶函数的图象一定与y 轴相交(B)奇函数的图象一定经过原点(C)偶函数的图象关于y 轴对称 (x )) (-x。
《函数单调性的概念》课件
如果函数f(x)在区间[a, b]上连续,且f'(x) > 0,那么函数f(x)在区间[a, b]上单 调递增。
证明
设x1, x2是区间[a, b]上的任意两点,且x1 < x2,考虑差值f(x2) - f(x1)。由于 f'(x) > 0,差值可以表示为f'(c)(x2 - x1) > 0,其中c位于x1和x2之间。因此, f(x2) > f(x1),说明函数在区间[a, b]上单调递增。
通过观察函数的图像来判断函数的增减性。如果图像在某区间内从左到
右上升,则函数在该区间内单调递增;如果图像在某区间内从左到右下
降,则函数在该区间内单调递减。
导数在判定单调性中的应用
导数大于0的区间内 ,函数单调递增。
导数等于0的点可能 是函数的极值点或拐 点。
导数小于0的区间内 ,函数单调递减。
单调性判定定理的证明
周期性
单调函数可能是周期函数,但并非所 有单调函数都具有周期性。
单调函数的极限和积分性质
极限性质
单调函数的极限值存在且唯一,且极限 值等于函数值。
VS
积分性质
单调函数的积分值与被积函数值成正比, 即对于任意区间[a, b],有 ∫baf(x)dx=k∫baf(x)dxf(x)dx int_a^b f(x) dx = k int_a^b f(x) dxf(x)dx∫abf(x)dx=k∫abf(x)dxdx,其 中k为常数。
《函数单调性的概念 》ppt课件
REPORTING
• 函数单调性的定义 • 函数单调性的判定 • 函数单调性的应用 • 函数单调性的性质 • 函数单调性的扩展知识
目录
PART 01
《函数的奇偶性》函数 PPT教学课件
解:(1)∵由
课堂篇
探究学习
探究一
探究二
探究三
(4)设 f(x)=(x-2)
∵由
+2
-2
≥ 0,
思维辨析
当堂检测
+2
.
-2
得 x≤-2 或 x>2,
-2 ≠ 0,
∴函数的定义域为(-∞,-2]∪(2,+∞),
不关于原点对称.
∴f(x)=(x-2)
+2
既不是奇函数也不是偶函数.
课前篇
自主预习
一
二
3.做一做
(1)下列函数是偶函,2]
B.y=x3-x2
C.y=x3
D.y=x2,x∈[-1,0)∪(0,1]
答案:D
(2)下列函数中,既是奇函数又是减函数的为(
A.y=x-1
B.y=3x2
1
C.y=2
答案:D
D.y=-x|x|
)
课前篇
探究三
思维辨析
当堂检测
4.已知函数f(x)是定义在R上的偶函数,当x∈(-∞,0)时,f(x)=x-x4;当
x∈(0,+∞)时,f(x)=
.
解析:方法一:由于是填空题,故可采用直接代换法,将x用-x代替,
D.f(x)=x2+x4
答案:AD
当堂检测
)
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
当堂检测
2.有下列说法:
①偶函数的图像一定与y轴相交;
②若y=f(x)是奇函数,则由f(-x)=-f(x)可知f(0)=0;
③既是奇函数也是偶函数的函数一定是f(x)=0,x∈R;
函数的基本性质ppt课件
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.
函数奇偶性及单调性的综合应用课件
对于函数$f(x)$,如果对于任意$x_1 < x_2$,都有$f(x_1) < f(x_2)$,则 称$f(x)$为增函数。
性质
增函数的图像是上升的,即随着$x$的 增大,$y$的值也增大。
单调减函数的定义与性质
定义
对于函数$f(x)$,如果对于任意$x_1 < x_2$,都有$f(x_1) > f(x_2)$,则称 $f(x)$为减函数。
奇偶性与单调性在数学问题中的应用实例
函数图像分析
通过分析函数的奇偶性和 单调性,可以更好地理解 函数的图像和性质,进而 解决相关的数学问题。
数值计算优化
在数值计算中,利用函数 的奇偶性和单调性,可以 更高效地求解数学问题和 优化算法。
数学建模应用
在数学建模中,结合奇偶 性和单调性,可以建立更 精确的数学模型,解决实 际问题。
THANKS
感谢观看
性质
减函数的图像是下降的,即随着$x$的增大,$y$的值减小。
单调性在函数图像中的应用
1 2 3
判断函数图像的单调性
通过观察函数图像的走势,可以判断函数的单调 性。
利用单调性判断函数值大小
在单调增函数中,如果$x_1 < x_2$,则有 $f(x_1) < f(x_2)$;在单调减函数中,如果$x_1 < x_2$,则有$f(x_1) > f(x_2)$。
对于函数$f(x) = x^{2}$,其在区间 $(-infty, 0)$上单调递减,在区间$(0, +infty)$上单调递增。对于函数$f(x) = frac{1}{x}$,其在区间$(-infty, 0)$ 和$(0, +infty)$上均为单调递减。
函数的基本性质ppt课件
1
即函数f(x)=x+ 为奇函数.
函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+
;
解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).
1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),
《函数单调性的性质》课件
单调性在求解不等式问题中的应用
总结词
详细描述
实例
利用单调性求解不等式问题
通过分析函数的单调性,可以将不等 式问题转化为函数值的大小比较问题 ,从而简化求解过程。例如,对于形 如$f(x) > g(x)$的不等式,可以通过 分析$f(x)$和$g(x)$的单调性,找到 满足不等式的$x$的取值范围。
判定函数单调性的导数方法
01
02
03
导数大于零
若函数在某区间内的导数 大于零,则函数在此区间 内单调递增。
导数小于零
若函数在某区间内的导数 小于零,则函数在此区间 内单调递减。
ห้องสมุดไป่ตู้
导数等于零
若函数在某区间内的导数 等于零,则需要进一步分 析函数在该点的左右极限 来判断函数的单调性。
判定函数单调性的其他方法
控制工程系统的稳定性
在工程控制领域,单调性的分析可以帮助工程师了解系统的稳定性,从而更好地进行系 统设计和控制。
提高生产效率
在生产过程中,通过对生产数据的单调性进行分析,可以帮助企业优化生产流程,提高 生产效率。
THANKS
感谢观看
实例
对于函数$f(x) = x^2$,其在区间$[0, +infty)$上是单调递增的,因此在该区间内函数的最小值为0,最 大值为正无穷大。
04 函数单调性与函 数其他性质的关 系
单调性与函数奇偶性的关系
总结词
单调性与奇偶性相互影响,奇函数在区间内单调递增或递减,偶函数在区间内单调递减或递增。
详细描述
复合函数单调性判定
利用同增异减原则,即内外函数的单调性相同,则复合函 数单调递增;内外函数的单调性不同,则复合函数单调递 减。
3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习
即练即清
1.判断正误(对的打“√”,错的打“✕”)
(1)函数y= 1 的单调递减区间是(-∞,0)∪(0,+∞). ( × )
x
(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数. ( × )
(3)偶函数图象不一定过原点,奇函数的图象一定过原点. ( × )
1
2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是 3 .
因此f(1)≠f(-1), f(-1)≠-f(1),
故f(x)为非奇非偶函数.
(3)由1 x2 0, 得函数的定义域为(-1,0)∪(0,1),关于原点对称,
| x 2 | 2,
∴x-2<0,∴|x-2|-2=-x,∴f(x)= lg(1 x2) .
x
又∵f(-x)= lg[1 (x)2]=- lg(1 x2) =-f(x),
1 0
1
+b=ln +b=0,
2 (1 0)
2
∴b=-ln 1 =ln 2,此时f(x)=ln 1 1 +ln 2=ln 1 x ,满足题意.
2
2 1 x
1 x
综上可知,a=-1 ,b=ln 2.
2
答案 -1 ;ln 2
2
即练即清
3.判断下列函数的奇偶性:
(1)f(x)=
1
3x x2
;(2)f(x)=|x|+x;
2.(2024届江苏淮安期中,7)若函数f(x)=(3aax, x1)x1 4a, x 1,是定义在R上的减函数,则a的 取值范围为 ( A )
A. 18
,
1 3
函数的奇偶性和单调性-课件
本课件将介绍函数的性质、特点以及例子。包括奇函数和偶函数,单调递增 和单调递减函数。帮助你更好的理解函数的特性和应用。
函数的性质
定义
函数是一种映射方式,将自变 量映射到因变量。函数图像为 曲线或线段。
奇偶性
奇函数满足f(-x)=-f(x),图像关 于坐标原点对称,如y=x^3。 偶函数满足f(-x)=f(x),图像关 于y轴对称,如y=x^2。
单调性
单调递增函数满足f(x1)<f(x2), 若x1 < x2,图像从左往右逐渐 升高;单调递减函数满足 f(x1)>f(x2),若x1 < x2,图像 从左往右逐渐降低。
奇函数和偶函数
奇函数特点
1. 奇函数关于原点对称;2. 若f(x)存在,则 f(0)=0。
奇函数例子
y=x^3, sin(x), tan(x)
1.导数小于0;2.f'(x)单调递减;3.图
单调递减函数例子
4
像从左往右逐渐降低。
y=-x, 1/x, e^(-x)
总结
通过理解函数的奇偶性和单调性,可以更好地推导和证明一些数学公式的性质。同时,这也是理解和应 用微积分、线性代数等高级数学知识的基础。
举例说明
例一:cos函数
cos函数是一种偶函数,其图 像在[0,π]区间上单调递减,在 [π,2π]区间上单调递增。
函数的最大值和最小值计算可以应用在寻 找最优解的问题中,如代价函数的最小值。
3 质点运动规律4 信源自处理函数可以描述质点的运动规律,如位移、 速度、加速度等。
函数可用于处理信号,如声音、图像、视 频等的编码、解码和压缩等。
例二:指数函数
例三:sin函数
3.2.1 函数的奇偶性 课件(共26张PPT)(2024年)
f(x)
g(x) f(x)+g(x) f(x)-g(x)
偶函数 偶函数 偶函数
f(x)g(x
)
f[g(x)]
注
意:f[g(x)]
偶函数 偶函数 偶函数 中,g(x)的
偶函数 奇函数 不能确定 不能确定 奇函数 偶函数 值域是f(x)
奇函数 偶函数 不能确定 不能确定 奇函数 偶函数 的定义域
奇函数 奇函数 奇函数
活动二:新知探究
偶函数的定义:
一般地,设函数 f(x)的定义域为 I ,如果∀x∈I,都
有-x∈I,且f(-x)=f(x), 那么函数 f(x)就叫做偶函数.
活动二:新知探究
偶函数的几点说明:
(1)偶函数的定义域必关于原点对称,即若 x 是定义域内的
一个值,则 –x 也一定在定义域内.
(2)“函数 f(x)为偶函数”是“函数 f(x)图象关于y轴对
奇函数 偶函数 奇函数 的子集.
活动二:新知探究
类比函数单调性,你能用符号语言精确地描述“函数图象
关于y轴对称”这一特征吗?
不妨取自变量的一些特殊值,观察相应函数值的情况
x
···
-3
-2
-1
0
1
2
3
···
f(x)=x²
···
9
4
1
0
1
4
9
···
g(x)=2-|x|
···
-1
0
1
2
1
0
-1
···
可以发现,当自变量取一对相反数时,相应的两个函数值相等.
称”的充要条件.
活动二:新知探究
1
探究:观察函数 f(x)=x和g(x)= 的图象,你能发现这两个函数
奇偶性-课件ppt
[模板建构] 用定义法判断或证明函数f(x)在给定的区间D上的增减性 的步骤: 第一步:取值,即设x1、x2是该区间内任意两个值且x1<x2; 第二步:作差,即作差f(x1)-f(x2)=a(2x1-2x2)+b(3x1- 3x2); 第三步:判号,即判断f(x1)-f(x2)的正负,由于a,b符号不 确定,需要进行分类讨论; 第四步:下结论,即判断f(x)在该区间是增函数还是减函数.
(4)导数法:利用导数取值的正负确定函数的单调区间.
[精析考题]
ax
x>1
[例 3] (2012·长春模拟)f(x)=4-a2x+2 x≤1
是 R 上的单调递增函数,则实数 a 的取值范围为( )
A.(1,+∞) C.(4,8)
B.[4,8) D.(1,8)
[自主解答] 因为f(x)是R上的单调递增函数,
a>1, 所以可得4-a2>0,
a≥4-a2+2.
解得4≤a<8.
[答案] B
[巧练模拟]—————(课堂突破保分题,分分必保!)
5.(2012·舟山调研)函数 f(x)=x-1 1在[2,3]上的最小值为________, 最大值为________.
解析:∵f′(x)=-x-1 12<0,∴f(x)在[2,3]上为减函数, ∴f(x)min=f(3)=3-1 1=12,f(x)max=2-1 1=1. 答案:12 1
5.已知函数f(x)为R上的减函数,则满足f|1x|<f(1)的实数x的 取值范围是________. 解析:由题意知|1x|>1,∴|x|<1,且x≠0. ∴-1<x<1且x≠0.
答案: (-1,0)∪(0,1)
1.函数的单调性是局部性质 函数的单调性,从定义上看,是指函数在定义域的某 个子区间上的单调性,是局部的特征.在某个区间上 单调,在整个定义域上不一定单调.
高考数学一轮复习函数的单调性、奇偶性、周期性-教学课件
质疑探究 2:当一个函数的增区间(或减区间) 有多个时,能否用“∪”将函数的单调增区间 (减区间)连接起来? 提示:不能直接用“∪”将它们连接起来,例如: 函数 y=x3-3x 的单调增区间有两个:(-∞,-1) 和(1,+∞),不能写成(-∞,-1)∪(1,+∞).
义 当 x1<x2 时,都有 f(x1)<f(x2),那么就说函数 当 x1<x2 时,都有 f(x1)>f(x2),
f(x)在区间 D 上是增函数
那么就说函数 f(x)在区间 D 上是减函数
图
象
描
述
自左向右看图象是上升的
自左向右看图象是下降的
(2)增减函数定义的等价形式:设 x1,x2∈D,x1≠x2,
解析:(1)f(-1)=-f(1)=-[g(1)-4]=-(2-4)=2. (2)函数 f(x)的定义域是 R, 且 f(-x)=e-x-ex=-f(x), 因此 f(x)为奇函数,故选 A. 答案:(1)2 (2)A
考点四 函数的周期性及应用
【例 4】 已知函数 f(x)对任意的实数满足:f(x+3)=
y=
1 2
x
,定义域为 R,在(0,+∞)上递减,y=x+
1 x
,定义域为(-∞,0)∪
(0,+∞),在(0,1)上递减,在(1,+∞)上递增.故选 A.
3.若函数 f(x)=ax+1 在 R 上递减,则函数 g(x)=a(x2-4x+3)的增区间是( B ) (A)(2,+∞) (B)(-∞,2) (C)(-2,+∞) (D)(-∞,-2) 解析:由 f(x)在 R 上递减知 a<0,所以 g(x)在 (-∞,2)上递增,在(2,+∞)上递减.故选 B.
单调性与奇偶性的综合应用课件
不等式.另外,要特别注意函数的定义域.
由于偶函数在关于原点对称的两个区间上的单调性相反,所以我
们要利用偶函数的性质f(x)=f(|x|)=f(-|x|)将f(g(x))中的g(x)全部化到
同一个单调区间内,再利用单调性去掉符号f,使不等式得解.
2.填空
(1)若函数f(x)是奇函数,且f(x)在区间[a,b]上是单调函数,则f(x)在
其对称区间[-b,-a]上也是单调的,且单调性相同.
(2)若函数f(x)是偶函数,且f(x)在区间[a,b]上是单调函数,则f(x)在
其对称区间 −,− 上也是单调的,且单调性相反.
3.做一做
(1)若奇函数f(x)在[-6,-2]上是减函数,且最小值是1,则它在[2,6]上
∴-f(x1)>-f(x2),∴f(x1)<f(x2).
∴函数y=f(x)在(0,+∞)上是增函数.
(3)已知函数y=f(x)在R上是偶函数,且在(0,+∞)是减函数,y=f(x)在
它的对称区间(-∞,0)上是增函数还是减函数?
提示:偶函数的图象关于y轴对称,所以在两个对称的区间上单调
性相反.即y=f(x)在它的对称区间(-∞,0)上单调递增.
再由偶函数的性质得f(3)<f(-2)<f(1).
答案:f(3)<f(-2)<f(1)
探究一
探究二
思维辨析
随堂演练
4.定义在R上的偶函数f(x),当x≥0时,f(x)是减函数,若f(1-m)<f(m),则
实数m的取值范围是
.
解析:∵f(x)是偶函数,当x≥0时,f(x)是减函数,
函数的单调性公开课课件
在函数值比较中的应用
1 2
利用单调性比较函数值大小
对于同一区间内的两个函数值,如果函数在该区 间内单调,则可以直接比较它们的大小。
确定函数值的范围
通过判断函数的单调性,可以确定函数在某个区 间内的取值范围。
3
举例
比较sin(π/4)和sin(π/6)的大小。由于正弦函数 在[0, π/2]区间内单调递增,因此sin(π/4) > sin(π/6)。
06
复合函数的单调性
复合函数的定义和性质
复合函数的定义
设函数$y=f(u)$的定义域为$D_f$, 函数$u=g(x)$的定义域为$D_g$, 且$g(D_g) subseteq D_f$,则称函 数$y=f[g(x)]$为$x$的复合函数。
复合函数的性质
复合函数保持原函数的定义域、值域 、周期性、奇偶性等基本性质。
以直观地判断函数在各个 区间内的单调性。
判断单调区间
根据图像的形状和走势, 确定函数在各个区间内的 单调性。
图像的绘制
通过描点法、图像变换法 等方法,绘制出函数的图 像。
04
常见函数的单调性
一次函数
一次函数单调性
一次函数$f(x) = ax + b$($a neq 0$)在其定 义域内单调增加或减少,取决于系数$a$的正负。
总结与展望
课程总结
函数的单调性定义
详细解释了函数单调性的定义,包括增函数、减函数以及常数函 数的特性。
判断函数单调性的方法
介绍了如何通过导数、二阶导数以及函数的图像来判断函数的单调 性。
函数单调性的应用
举例说明了函数单调性在解决实际问题中的应用,如优化问题、经 济学中的边际分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、性质:奇函数的图象关于原点对称。
偶函数的图象关于y轴对称。 如果一个函数的图象关于原点对称,那么这个函 数是奇函数。 如果一个函数的图象关于y轴对称, 那么这个函
数是偶函数。
作业:
课本第65页第14题
g(-x)=2×(-x)2 =2x
2
y
思考:通过练习你发现了什么?
f(-x)=-f(x), g(-x)=g(x)
0
x函数的奇偶性一、概 Nhomakorabea:对于函数f(x),在它的定义域内,把任
意一个x换成-x,(x,-x都在定义域)。
①如果都有f(-x)=f(x),则函数f(x)叫
做奇函数。
②如果都有f(-x)=f(x),则函数f(x)叫 做偶函数。
例:判断下列函数的奇偶性。
①f(x)=x 5 +x
3 ③f(x)=√x 2
②f(x)=x 4 -x 2
④f(x)=3x+1
解:①∵f(-x)=(-x) 5 +(-x)
=-x 5-x =-(x 5 +x)=-f(x) ∴此函数是奇函数。 ③ ∵f(-x)=√(-x)
3 2
② ∵f(-x)=(-x)4 -(-x) 2
6 -2 。 0 -6 y。
2
x
2、已知:g(x)=2x2 ,画出函数图象,并求g(1),g(-1),g(-x)。
解: g(1)=2×1 =2 g(-1)=2×(-1)2 =2
g(-x)=2×(-x)2 =2x
2
y
。 2 。 -1
思考:通过练习你发现了什么?
f(-x)=-f(x), g(-x)=g(x)
思考题:
函数y=5是奇函数还是偶函数 ? 偶函数 函数y=0是奇函数还是偶函数 ? 是偶函数也是奇函数
Y Y=5
5
Y
Y=0
0
x
0
x
小结:
1、定义: 对于函数f(x),在它的定义域内,把任 意一个x换
成-x,(x,-x都在定义域)。
①如果都有f(-x)=f(x),则函数f(x)叫做奇函数。
②如果都有f(-x)=f(x),则函数f(x)叫做偶函数。
=x 4-x 2 =f(x) ∴此函数是偶函数。 ④ ∵f(-x) =3(-x)+1=-3x+1
=√(x)
= f(x)
3
2
≠-f(x)
且 -3x+1≠f(x) ∴此函数既不是偶函数 也不是奇函数。
∴此函数是偶函数。
学生练习思考:
1、已知:f(x)=3x,画出函数图象,并求:f(2)、f(-2)、f(-x)。 解: f(2)=3×2=6 f(-2)=3×(-2)=-6 f(-x)=3×(-x)=-3x
。
-a 0 -f( a)
f( a) a x
。
y
。f(a) f(a) 。
-a 0 a x
二、定理
1、性质:奇函数的图象关于原点对称。
偶函数的图象关于y轴对称。
练习:P61 ,2、3题 2、如果一个函数的图象关于原点对称,那么 这个函数是奇函数。 如果一个函数的图象关于y轴对称,那么 这个函数是偶函数。
学生练习:
1、已知:f(x)=3x,画出函数图象,并求:f(2)、f(-2)、f(-x)。
y
解: f(2)=3×2=6 f(-2)=3×(-2)=-6 f(-x)=3×(-x)=-3x
0
x
2、已知:g(x)=2x2 ,画出函数图象,并求g(1),g(-1),g(-x)。
解: g(1)=2×1 =2 g(-1)=2×(-1)2 =2
0 1
x
f(x)的图象关于原点对称,g(x)的图象关于y轴对称。
复习思考
(-x,-y) 。 1、 与点(x,y)关于原点对称的点是 与点(x,y)关于y轴对称的点是 (-x,y) 。
y
2、奇函数的图象关于原点对称 设f(x)为奇函数,则有f(-x)=-f(x); 在f(x)图象上任取一点(a,f(a)) 那么,点(-a,-f(a))也在函数f(x)的图象上 所以:f(x)的图象关于原点对称 3、偶函数的图象关于y轴对称 设f(x)为偶函数,则有f(-x)=f(x) 在f(x)的图象上任取一点(a,f(a)) 那么,点(-a,f(a))也在函数f(x)的图象上 所以:f(x)的图象关于y轴对称