啤酒发酵自动控制解决方案

啤酒发酵自动控制解决方案
啤酒发酵自动控制解决方案

啤酒发酵自动控制解决方案

一、概述:

近年来,我国的啤酒需求量日趋增长,为适应这一市场需求,国内各啤酒生产厂家均在努力扩大生产规模,降低生产成本,提高产品质量。而现在国内一些中小企业的啤酒生产状况仍较落后,自动化程度低,甚至大部或全部仍处于手工操作。在全部生产过程中,糖化、发酵过程是个非常复杂的生化过程,其中时间、温度、压力、流量等参数控制得是否恰当直接关系到啤酒的产量、质量和消耗。因此,提高该工艺过程的控制水平,无疑是解决问题的关键。我们浙江浙大中自集成公司根据对啤酒生产工艺的深入了解,在厂、校专家、教授、工程技术人员的通力合作下,成功地开发了啤酒糖化、发酵自动化控制系统。该系列控制系统是浙江浙大中自集成公司自行开发的高新技术产品,它集自动化仪表技术、自动控制理论、微机控制技术、微机网络技术、集散系统技术于一体,具有自动化程度化高、结构紧凑、操作简单方便、可靠性高等特点。本系统的使用大大减轻了工人的劳动强度,由于发酵温度可以严格按工艺设定曲线运行,消除了操作工人为因素的影响,提高了控制精度,确保了发酵工艺的正确执行,保证产品质量的长期稳定,由于系统可以长期保持运行数据,大大提高了管理水平。

二、啤酒工艺过程:

啤酒生产过程主要分为:制麦、糖化、发酵、罐装四个部分。

一般讲啤酒自动化,主要是指糖化和发酵过程的自动化。

三、控制系统简介:

浙江浙大中自集成控制股份有限公司在广泛的用户调查、专家访谈、市场调研与行业分析的基础上,吸收浙江大学工业自动化国家工程研究中心、浙江大学工业控制技术国家重点实验室、浙江大学工业控制技术研究所数十年的科研成

果,基于浙大中自长期的科技攻关与技术创新实力,并结合其丰富的系统集成与工程应用经验,经过不断分析总结、开发创新、测试改进与考核完善,成功推出了新一代Suny系列集散控制系统。

Suny系列集散控制系统采用尖端的电子技术、仪表控制技术、现代控制理论,吸取迄今为止的各种控制系统的长处,是集成综合了智能仪表、多功能回路控制器、顺序控制器、可编程控制器功能的集散控制系统。具有先进控制策略、图形操作界面和在线实时组态工具;实现工业过程的实时监视、记录、操作、管理,及其连续控制、逻辑控制、顺序控制的综合;是一种实现各行各业复杂多样工业自动化构想的新型计算机控制系统。特别适合于国内企业组建控制系统和对现有控制设备进行技术改造,如工业窑、环保设备、反应器、精镏塔、加热炉、发酵罐、食品机械、干燥器、蒸发器、造纸机、以及中小型锅炉等类似控制要求的工业设备或工业过程。

四、糖化过程的自动化

4、1工艺简介:原料(大米、麦芽)经除尘、粉碎、调浆后送入糊化、糖化锅内,并严格按照一定的工艺曲线进行升温、保温,在酶的作用下,使麦芽(包括辅料)充分溶解出来,然后,将麦汁与麦糟过滤分离。过滤后的麦汁经煮沸、蒸发、浓缩以达到要求的浓度,同时在此过程添加酒花,煮沸后的麦汁送入旋流沉清槽旋流沉清后,经薄板冷却器冷却至8℃左右送入发酵罐。

4、2控制系统结构及硬件选型:糖化过程自动控制系统是由CRT操作站、控制站、现场仪表及执行机构组成,如图(一)所示,系统容量为:AI:48 AO:16 DI:288 DO:192

CRT操作站是由一台操作员站、一台工程师站、两台大屏彩显、一台打印机、通讯卡及相应软件组成。操作员及工程师站选用我们DLL公司的计算机。

控制站是由SunyPLC300可编程控制器构成,分布式I/O结构,SunyPLC300与CPU以以太网方式通讯,遵从IEEE802。3协议,通讯速率为10Mbps。I/O 扩展用RS485,有四种速率可选。

现场仪表及执行机构的选型主要考虑快速、准确、可靠、卫生及无泄漏。测温元件选用铠装铂电阻,反应速度快;液位、变送器选用高性能的变送器,齐平膜片结构防堵、卫生;物位仪表、流量计、调节阀等仪表要求其调节性能好,无泄漏。

4、3系统功能及特点

分布式I/O结构,通讯速度快。

计算机及SunyPLC 300功能强大,速度快,信息存储量大,数据处理能力强。扩容方便。

除系统设置画面外,实际使用时,有流程图、数据总表、工艺曲线、实时趋势曲线、历史趋势曲线、数据报表、系统报警、打印管理等画面。

4、4控制关键:

为了能够提高啤酒产量及质量,降低能耗,必须实现整个生产过程的自动顺序控制,包括从原料粉碎至麦汁冷却、CIP自动清洗等。关键工艺参数必须控制得当,否则难以保证啤酒质量,关键控制点及控制方案如下:

4、4、1投料水及洗糟水温度控制

此为简单的单回路调节,一次元件选用铠装铂热电阻能迅速反应冷热水混合后的温度,通过PLC控制合流三通阀调节冷热水比例,可较好的完成温度控制。

4、4、2糊化、糖化锅温度控制

由于两锅体积较大、温度滞后大、很难获得理想的温度控制曲线。采用增量型PID算式进行处理,获得较好的效果,其算式如下:

U(k)=A×E(k)-B×E(k-1)+C×E(k-2)

式中A=K(1+T0/T1+Td/T0)

B=Kc(1+2Td/T0)

C=Kc(Td/T0)

E(k)=Qr(k)-Q(k)

式中Qr(k)——第K个采样周期给定温度值

Q(k)——第K个采样周期实测温度值

其控制框图如下:

根据被控制对象的特点,在PID算式上进行特殊处理:

A.系统在保温阶段Qr(k)不变,采用PI控制方式;

B.升温时采用PID算式;

C.折点提前关阀门:

D.对U(k)和阀位输出进行限幅处理。

4、4、3过滤麦汁流量调节

过滤速度的快慢直接影响糖化批次,所以过滤麦汁流量的控制就显得异常重要,过滤麦汁流量的大小主要是根据麦汁浊度来确定的,但目前国内生产的浊度计质量不理想而国外同类产品价格太昂贵,在控制中我们放弃了浊度这一参数,根据过滤麦汁流量的经验曲线和糟层阻力的大小建立一专家控制系统,保证麦汁快速过滤。

五、发酵罐的自动化:

麦芽汁被送到发酵罐群,随后,酵母加入到麦芽汁。根据啤酒的类型和体积,计算机根据预定的配方,自动添加多少酵母。温度也是关键的。这时,计算机将根据特定的温度控制曲线,自动控制发酵容器的介质温度,(两周)。然后在一个温控室中的容器里贮藏。(四周),最后进行瓶装和罐装。

5、1发酵罐的生产技术要求:

a、罐顶压力显示;

b、多个温区温度的显示与控制;控制精度0.2℃。

c、每温度区可预置24个程序段;

d、系统有手动和自动二种控制方式;

e、各参数上、下限超限报警;

f.可根据需要扩展监控罐群的容量。

5、2系统结构示意图:

5、3控制难点及要求:发酵罐的温度控制是关键,温度高,有可能导致酵母死亡;温度过低,会使酒龄增长,增加了成本。它是由升温段、保持段、降温段控制构成;控制系统严格按温度控制曲线,控制冷、热媒质进出量,以保证生产介

质转化成合格产品的外部条件。操作过程要素及模拟的控制曲线如下:

动作过程如下:

可以通过控制系统的支持功能,来进行温度曲线的灵活控制,斜坡功能块最多可产生多达24个斜坡输出,算法的输出作为副回路的设定值。副回路挂接一个PID算法控制回路,使PID回路的设定值可以按照设定的斜坡曲线随时间变化改变。斜坡算法有下列主要参数是:时间单位TimUnit(秒、分钟、小时)、时间范围TimSpan(小时数)、24条斜坡线段(TIM0~TIM24和OUT0~OUT24)、回路方式Mode(手动方式、自动方式)、斜坡时间Time、斜坡控制结束后的操作EndMode、手动输出MOUT等。

六、系统效果分析:

啤酒生产的自动化带来了可喜的经济效益,废品率降低了,物耗和能耗也大幅度节约;开发新产品灵活了;以人为本,减轻了一线工人的劳动强度;提高了劳动生产率,提高了企业参与市场竞争的能力。下面是我们承担的某啤酒厂糖化车间自控工程实施的前后对比:

《酿酒工艺学》复习思考题答案

7ru 《酿酒工艺学》复习思考题(答案仅供参考,非标准答案) 浸麦度:浸麦后大麦的含水率。 煮沸强度:指煮沸锅单位时间(h)蒸发麦汁水分的百分数。 原麦汁浓度:发酵前麦汁中含可溶性浸出物的质量分数。 无水浸出率:100g干麦芽中浸出物的克数。 浸出物:在一定糖化条件下所抽提的麦芽可溶性物质。 糊化:淀粉受热吸水膨胀,从细胞壁中释放,破坏晶状结构,并形成凝胶的过程 液化:淀粉长链在受热或淀粉酶的作用下,断裂成短链状,粘度迅速降低的过程。 糖化:指将麦芽和辅料中高分子贮藏物质及其分解产物通过麦芽中各种水解酶类作用,以及水和热力作用,使之分解并溶解于水的过程。 浸出糖化法:麦芽醪纯粹利用其酶的生化作用,用不断加热或冷却调节醪的温度,使之糖化完成。麦芽醪未经煮沸。用于制作上面发酵的啤酒。 煮出糖化法:麦芽醪利用酶的生化作用和热力的物理作用,使其有效成分分解和溶解,通过部分麦芽醪的热煮沸、并醪,使醪逐步梯级升温至糖化终了,用于全麦发酵生产下面发酵啤酒 复式糖化法:糖化时先在糊化锅中对不发芽谷物进行预处理——糊化、液化(即对辅料进行酶分解和煮出),然后在糖化锅进行糖化的方法。用于添加非发芽谷物为辅料生产下面发酵啤酒 蛋白质休止:利用麦芽中的内、外肽酶水解蛋白质形成多肽和氨基酸, 泡持性:通常,啤酒倒入干净的杯中即有泡沫升起,泡沫持久的程度即为泡持性。 挂杯:倒一杯酒,轻轻摇杯,让酒液在杯壁上均匀地转圈流动,停下来酒液回流,稍微等会儿,你就会看到摇晃酒杯的时候,酒液达到的最高的地方有一圈水迹略为鼓起,慢慢地就在酒杯的壁面形成向下滑落的酒液,象一条条小河,这就是挂杯。 清蒸清碴:酒醅和碴子严格分开,不混杂。即原料清蒸、清碴发酵、清蒸流酒。 清蒸混碴:酒醅先蒸酒,后配粮混合发酵。 混蒸混碴:将酒醅与粮粉混合蒸馏,出甑后冷却、加曲,混合发酵。 粮糟:母糟配粮后称之粮糟 酒醅(母糟):指正在发酵或已经发酵好的材料。 喂饭法发酵:将酿酒原料分成几批,第一批先做成酒母,在培养成熟阶段,陆续分批加入新原料,起扩大培养、连续发酵的作用,使发酵继续进行。 生啤酒:不经巴氏灭菌,而采用其他方式除菌达到一定生物稳定性的啤酒。 鲜啤酒:不经巴氏灭菌的新鲜啤酒。 干型酒:酒的含糖量<15g/L的酒,以葡萄糖计。 淋饭酒母:传统的自然培养法,用酒药通过淋饭酒制造的自然繁殖培养酵母菌,这种酒母为淋饭酒母。串蒸:食用酒精或白酒经香醅料层再次蒸馏生产白酒的工艺。 酒的分类。 发酵酒:以粮谷、水果、乳类等为原料,主要经酵母发酵等工艺制成的、酒精含量小于24%(V/V)的饮料酒。 蒸馏酒:以粮谷、薯类、水果等为主要原料,经发酵、蒸馏、陈酿、勾兑制成的、酒精度在18%~60%(V/V)的饮料酒。 配制酒:以发酵酒、蒸馏酒或食用酒精为酒基,加入可食用的辅料或食品添加剂,进行调配、混合或在加工制成的、已改变其原酒基风味的饮料酒。 黄酒的分类。 1.按生产方法分类:

发酵罐温度串级控制系统概述

一、被控对象工作原理及结构特点等 发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶以及维生素和单细胞蛋白等。 发酵反应器(发酵罐)是发酵企业中最重要的设备。发酵罐式必须具有适宜于微生物生长和形成产物的各种条件,促进微生物的新陈代谢,使之能在低消耗下获得较高产量。例如,发酵罐的结构应尽可能简单,便于灭菌和清洗;循环冷却装置维持适宜的培养温度;由于发酵时采用的菌种不同、产物不同或发酵类型不同,培养或发酵条件又各有不同,还要根据发酵工程的特点和要求来设计和选择发酵罐的类型和结构。 通风发酵设备要将空气不断通入发酵液中,供给微生物所需的氧,气泡越小,气泡的表面积越大,氧的溶解速率越快,氧的利用率也越高,产品的产率就越高。通风发酵罐有鼓泡式、气升式、机械搅拌式、溢流喷射自吸式等多种类型。 机械搅拌通风发酵罐是发酵工厂常用的类型之一,它是利用机械搅拌器的作用,使空气和賿液充分混合促使氧在賿液中溶解,以保证供给微生物生长繁殖、发酵所需要的氧气,同时强化热量传递。无论是微生物发酵、酶催化或动物植物细胞培养的微生物工程工厂都应用此类设备,占目前发酵罐总数的70%~80%,常用语抗生素、氨基酸、有机酸和酶的发酵生产。机械搅拌通风发酵罐是属于一种搅拌釜式反应器,除用作化学反应和生物反应器外搅拌反应器还大量用于混合、分散、溶解、结晶、萃取、吸收或解吸传热等操作。搅拌反应器由搅拌容器和搅拌机两大部分组成。加班容器包括筒体、换热原件及内构件、搅拌器、搅拌轴及其密封装置、传动装置等统称为搅拌机。 1.1温度对发酵的影响 微生物药品发酵所用的菌体绝大多数十中温菌,如丝状真菌、放线菌和一般细菌。它们的最适生长温度一般在20~40摄氏度。在发酵过程中,应维持适当温度,以使微生物生长代谢顺利进行。由于微生物的种类不同,所具有的酶系及其性质也不同,因此所要求的温度也不同,如细菌的生长温度大多比霉菌高。有些微生物在生长、繁殖和合成代谢产物等各个阶

啤酒发酵温度过程控制

PLC在啤酒发酵温度控制中的应用 概述 啤酒的发酵过程是在啤酒酵母的参与下,对麦汁的某些组成进行一系列代谢,从而将麦汁风味转变为啤酒风味的过程。啤酒发酵是啤酒生产工艺流程中关键环节之一,也是一个极其复杂的在发酵罐内发生并释放大量热量的生化放热反应过程。由于这一过程中不仅麦汁中的可酵糖和氨基酸等营养物质被酵母细胞酶分解为乙醇(C2H5OH)和二氧化碳(CO2),同时还产生一系列的发酵副产物,如:双乙酰,高级醇、醛、酸、酯等。这些代谢产物的含量虽然极少,但它们对啤酒质量和口味的影响很大,而这些中间代谢产物的生成取决于发酵温度。因此发酵过程是否正常和顺利,将直接影响到最终啤酒成品的质量。比如,发酵过程的温度若发生剧烈变化,不仅会使酵母早期沉淀、衰老、死亡、自溶,造成发酵异常,还直接影响到酵母代谢副产物组成,从而对啤酒酒体与风味,及啤酒胶体稳定性造成危害。所以发酵过程工艺条件的控制历来都受到酿酒工作者的高度重视。 过去啤酒发酵过程中各种工艺参数的控制,多用常规表显示,人工现场操作调节,手工记录来实现。然而随着啤酒产量的不断增大,发酵罐数量逐步增多(有的厂已达30~40个),倘若仍然沿用常规办法,不仅会因仪表众多,给工人的生产操作造成极大的不便,而且还会因疏忽、错漏等人为原因,造成生产质量的不稳定,甚至发生生产事故。因此,设计用可编程控制器(PLC)自动控制啤酒的发酵温度。 一啤酒发酵过程控制 1 被控对象 啤酒发酵是在发酵罐中静态进行的,它是由罐体、冷却带、保温层等部件组成。发酵罐的形状一般为圆锥状,容积较大,大部分在100m3(我国的啤酒发酵罐容积在120m3~500m3)以上。啤酒发酵要严格的按着工艺曲线进行,否则就会影响啤酒质量。为了有利于热量的散发,在发酵罐的外壁设置了上、中、下三段冷却套,相应设立上、中、下三个测温点和三个偏心气动阀,通过阀门开度调节冷却套内的冰水流量以实现对酒体温度的控制。以阀门开度为控制量,酒体温度为被控量,相应有3个冷媒阀门,通过控制流过冷却带的冷媒流量,控制发酵罐的温度。在发酵的过程中,温度在不断的升高,当达到上限温度时,要打开制冷设备,通过酒精在冷却管内循环使罐内的温度降下来。当发酵温度低于工艺要求的温度时,关闭冷媒,则啤酒按工艺要求继续发酵,整个发酵过程大约20多天完成。因此,控制好啤酒发酵过程中温度及其升降速率是决定啤酒质量和生产效率的关键。 2 啤酒发酵温度曲线 啤酒发酵工艺曲线如图1所示,包括自然升温、高温恒温控制、降温及低温恒温控制等三个阶段。在前期的自然升温阶段基本上不需要加以控制,这是由于啤酒罐发酵过程中,升温是靠发酵本身产生的热量进行的,任其自然升温;在恒温阶段,通过控制冷媒开关阀,保持发酵罐内温度恒定;在降温阶段,通过控制冷媒开关阀,以指定速率降温。

啤酒酿造期末考试题及答案

《啤酒酿造与文化》期末考试(20) 姓名:XXX 班级:聂聪成绩:分 一、单选题(题数:50,共分) 1 啤酒成份中不含哪种物质()(分) 分 A、 蛋白质 B、 碳水化合物 C、 脂肪 D、 矿物质 我的答案:C 2 酿造优质啤酒的前提条件是()。(分) 分 A、 啤酒酵母 B、 酿造水质 C、 麦芽、酒花、水和酵母 D、 酿造工艺 我的答案:C 3 美国精酿运动的起点就是IPA,它起始于上世纪哪个年代()(分)分 A、 B、 C、 D、

我的答案:B 4 啤酒酿造中,浅色大麦芽最后阶段的干燥温度通常控制在()。(分) 分 A、 60-65℃ B、 65-70℃ C、 70-75℃ D、 80-85℃ 我的答案:D 5 影响精酿啤酒发展和推广的主要因素是()。(分) 分 A、 啤酒质量 B、 啤酒文化的普及度 C、 啤酒种类 D、 消费者的口味 我的答案:B 6 啤酒酿造时,醪液中的哪种酶活力高可增加麦汁中可发酵性糖含量()(分)分 A、 α—淀粉酶 B、 β—淀粉酶 C、 蛋白酶 D、 葡聚糖酶 我的答案:B 7 啤酒灌装机是在()条件下,缓慢而平稳地将酒装入瓶内。(分) 分 A、 常压 B、 等压

C、 常温 D、 真空 我的答案:B 8 德国巴伐利亚夏季人们最喜欢饮用的啤酒是()。(分) 分 A、 比尔森啤酒 B、 棕色啤酒 C、 黑啤酒 D、 带酵母的小麦啤酒 我的答案:D 9 非洲的古老啤酒酿造中,主要使用()。(分) 分 A、 大麦芽 B、 高粱 C、 小麦 D、 玉米 我的答案:B 10 啤酒酿造时,麦过滤槽过滤操作中麦汁出现混浊,应进行()。(分) 分 A、 回流 B、 快速过滤 C、 连续耕糟 D、 提高洗糟水温度 我的答案:A 11 食物的香味会通过鼻腔和咽喉到达鼻子内部的嗅球,人类拥有大约多少万个嗅觉受体()(分)

啤酒发酵论文

啤酒发酵过程的研究 专业班级: 作者: 学号: 指导老师:

啤酒是人类最古老的酒精饮料,是水和茶之后世界上消耗量排名第三的饮 料。啤酒于二十世纪初传入中国,属外来酒种。啤酒以大麦芽﹑酒花﹑水为主 要原料﹐经酵母发酵作用酿制而成的饱含二氧化碳的低酒精度酒。 啤酒一般典型特征表现在多方面。在色泽方面﹐大致分为淡色﹑浓色和 黑色3种﹐不管色泽深浅﹐均应清亮﹑透明无浑浊现象﹔注入杯中时形成泡 显﹐且酒体爽而不淡﹐柔和适口﹐而浓色啤酒苦味较轻﹐具有浓郁的麦芽香 味﹐酒体较醇厚﹔含有饱和溶解的CO2﹐有利于啤酒的起泡性﹐饮用後有一 种舒适的刺激感觉﹔应长时间保持其光洁的透明度﹐在规定的保存期内﹐不 应有明显的悬浮物。 啤酒发酵过程是指啤酒酵母在一定条件下,利用麦汁中的可发酵性物质而 进行的正常生命活动,而啤酒就是啤酒酵母在生命活动之中所产生的产物。由 于酵母菌类型的不同,发酵的条件和产品要求、风味等的不同,造成发酵方式 也不相同。 1、啤酒发酵的过程方法和注意事项 1.1 酵母扩大培养的目的 啤酒酵母扩大培养是指从斜面种子到生产所用的种子的培养过程。酵母扩培 的目的是及时向生产中提供足够量的优良、强壮的酵母菌种,以保证正常生产 的进行和获得良好的啤酒质量。一般把酵母扩大培养过程分为二个阶段:实验 室扩大培养阶段(由斜面试管逐步扩大到卡氏罐菌种)和生产现场扩大培养阶 段(由卡氏罐逐步扩大到酵母繁殖罐中的零代酵母)。扩培过程中要求严格无 菌操作,避免污染杂菌,接种量要适当。 1.2 啤酒酵母扩大培养的方法 1.2.1实验室扩大培养阶段 斜面原菌种 --→斜面活化 --→ 10ml液体试管 --→ 100ml培养 瓶 --→ 1L培养瓶 25℃,3~4天25℃,24~36h 25℃, 24h 20℃,24~36h --→ 5L培养瓶 --→ 25L卡氏罐 16~18℃,24~36h 14~16℃,36~48h ⑵生产现场扩大培养阶段 25L卡氏罐→ 250L汉生罐→ 1500L培养罐→ 100hL培养 罐→ 20m3繁殖罐 12~14℃,2~3天 10~12℃,3天 9~11℃,3 天 8~9℃,7~8天 --→0代酵母 1.2.2酵母扩培要求: 酵母扩培是基础,只有培养出来高质量的酵母,才能生产出好的啤酒。扩培必须保

基于PLC的啤酒发酵自动控制系统设计

辽宁工业大学PLC技术及应用课程设计(论文)题目:啤酒发酵过程中温度的PLC控制 院(系):电气工程学院 专业班级: 学号: 学生姓名: 指导教师:(签字) 起止时间:2013.12.9-2013.12.18

辽宁工业大学课程设计说明书(论文) 课程设计(论文)报告的内容及其文本格式 1、课程设计(论文)报告要求用A4纸排版,单面打印,并装订成册,内容包括: ①封面(包括题目、院系、专业班级、学生学号、学生姓名、指导教师姓名、、起止时间等) ②设计(论文)任务及评语 ③中文摘要(黑体小二,居中,不少于200字) ④目录 ⑤正文(设计计算说明书、研究报告、研究论文等) ⑥参考文献 2、课程设计(论文)正文参考字数:2000字周数。 3、封面格式 4、设计(论文)任务及评语格式 5、目录格式 ①标题“目录”(小二号、黑体、居中) ②章标题(四号字、黑体、居左) ③节标题(小四号字、宋体) ④页码(小四号字、宋体、居右) 6、正文格式 ①页边距:上2.5cm,下2.5cm,左3cm,右2.5cm,页眉1.5cm,页脚1.75cm,左侧装订; ②字体:一级标题,小二号字、黑体、居中;二级标题,黑体小三、居左;三级标题,黑体四号;正文文字,小四号字、宋体; ③行距:20磅行距; ④页码:底部居中,五号、黑体; 7、参考文献格式 ①标题:“参考文献”,小二,黑体,居中。 ②示例:(五号宋体) 期刊类:[序号]作者1,作者2,……作者n.文章名.期刊名(版本).出版年,卷次(期次):页次. 图书类:[序号]作者1,作者2,……作者n.书名.版本.出版地:出版社,出版年:页次.

啤酒发酵实验

实验室啤酒发酵 一、实验目的:熟悉静止培养操作,观察啤酒发酵过程,掌握发酵过程中一些指标的 分析操作技能。 二、实验原理:啤酒酵母将麦芽汁发酵,产生酒精等发酵产物(啤酒)。 三、实验器材: ⑴. 100升发酵罐。 ⑵. 0~10O BX糖度表。 (3).10℃-30℃可调生化培养箱。 培养基: ⑴. 麦芽汁发酵培养基10Plato, 50升,糖化制取。 ⑵. 麦芽汁琼脂培养基:麦芽汁加2%琼脂,自然pH。 ⑶. 麦芽汁液体培养基:酵母扩大培养用。 菌种:啤酒生产用酵母菌株。 四、实验步骤: (1)麦汁制备 (2)酵母菌种分离纯化与质量鉴定

(3)菌种扩大培养 (4)啤酒主发酵:麦汁50升,10O BX ,11℃→接种量×107个细胞/mL →主发酵,11℃,5~7天→至时结束(嫩啤酒)。在主发酵过程中,每天测定下列项目:糖度、细胞浓度、出芽率、染色率、酸度、α-氨基氮、还原糖、酒精度、pH、双乙酰。然后以时间为横坐标,这些指标为纵坐标,叠画于方格纸上。 (5)后发酵 五、作业要求 (1). 画出发酵周期中上述上述指标的曲线图,并解释它们的变化。 (2). 记下操作体会与注意点。 实验一协定法糖化试验 一、实验目的:协定法糖化试验是欧洲啤酒酿造协会(EBC)推荐的评价麦芽质量的标准方法,我们用该法进行小量麦芽汁制备,并借此评价所用麦芽的质量。 二、实验原理:利用麦芽所含的各种酶类将麦芽中的淀粉分解为可发酵性糖类,蛋白质分解为氨基酸(具体参见理论部分第二节)。 三、实验器材和试剂: 1 实验室糖化器:由水浴和500~600 mL的烧杯组成糖化仪器,杯内用玻棒搅拌或用100℃温度计作搅拌器(此时搅拌应十分小心,以免敲碎水银头)。实验时杯内液面应始终低于水浴液面。最好采用专用糖化器:该仪器有一水浴,水浴本身有电热器加热和机械搅

发酵罐温度控制系统讲解

题目:发酵罐温度控制系统设计

课程设计(论文)任务及评语院(系):教研室:Array 注:成绩:平时40% 论文质量40% 答辩20% 以百分制计算

摘要 本题要设计的是温度控制系统,发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响。因此,对发酵过程中的温度进行检测和控制就显得十分重要。 本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。 本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。 关键词:温度控制;PID控制器;V/I转换;比较机构

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1 概述 (2) 2.2 系统组成总体结构 (2) 2.3 传感器选择 (2) 第3章电路设计 (4) 3.1 传感器电路 (4) 3.2 比较机构电路 (7) 3.3 PID调节器并联实现电路 (7) 3.4 V/I转换电路 (8) 3.5 直流稳压电源电路 (9) 第4章仿真与分析 (10) 4.1 传感器电路仿真 (10) 4.2 PID控制器电路 (11) 4.3 V/I转换电路 (12) 第5章课程设计总结 (14) 参考文献 (15) 附录Ⅰ (16) 附录Ⅱ (18) 附录Ⅲ (20)

第1章绪论 在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉、发酵罐和锅炉中的温度进行检测和控制。 本次课设要求设计发酵罐的温度控制系统。发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响:它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制,除这些直接影响外;温度还对发酵液的理化性质产生影响,如发酵液的粘度;基质和氧在发酵液中的溶解度和传递速率。某些基质的分解和吸收速率等,进而影响发酵的动力学特性和产物的生物合成。 并且现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子等。而发酵过程是酵母在一定的条件下,利用可发酵性物质而进行的正常生命活动。 发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 在发酵罐温度控制系统中应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器是工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型,控制理论的其他技术也难以采用,系统控制器的结构和参数必须依靠经验和现场调试来确定时,应用PID控制技术最为方便。采用PID算法进行温度控制,它具有控制精度高,能够克服容量滞后的特点,特别适用于负荷变化大、容量滞后较大、控制品质要求又很高的控制系统。 本次课设要求自行设计模拟式PID控制器,通过与前面传感器测定的发酵罐温度产生的电压信号进行比较,转换为输出时的4~20mA电流信号来对冷水阀门开度进行控制,采用冷水法对发酵罐进行降温,以达到对发酵罐温度进行控制的目的。参数要求测定范围是30℃~50℃,测量精度为±0.5℃,以此作为对温度传感器的选择依据。

啤酒发酵操作程序和注意事项

啤酒发酵操作程序和注意事项 1.酵母扩大培养的目的 啤酒酵母扩大培养是指从斜面种子到生产所用的种子的培养过程。酵母扩培的目的是 及时向生产中提供足够量的优良、强壮的酵母菌种,以保证正常生产的进行和获得良好的啤 酒质量。一般把酵母扩大培养过程分为二个阶段:实验室扩大培养阶段(由斜面试管逐步扩 大到卡氏罐菌种)和生产现场扩大培养阶段(由卡氏罐逐步扩大到酵母繁殖罐中的零代酵母)。 扩培过程中要求严格无菌操作,避免污染杂菌,接种量要适当。 2.啤酒酵母扩大培养的方法 ⑴实验室扩大培养阶段(示例) 斜面原菌种 --→斜面活化 --→ 10ml液体试管 --→ 100ml培养 瓶 --→ 1L培养瓶 25℃,3~4天25℃,24~36h 25℃, 24h 20℃,24~36h --→ 5L培养瓶 --→ 25L卡氏罐 16~18℃,24~36h 14~16℃,36~48h ⑵生产现场扩大培养阶段 25L卡氏罐→ 250L汉生罐→ 1500L培养罐→ 100hL培养 罐→ 20m3繁殖罐 12~14℃,2~3天 10~12℃,3天 9~11℃,3天 8~ 9℃,7~8天 --→0代酵母 (2)酵母扩培要求: 酵母扩培是基础,只有培养出来高质量的酵母,才能生产出好的啤酒。扩培必须保证两点: ①原菌种的性状要优良; ②扩培出来的酵母要强壮无污染。扩培在实验室阶段,由于采用无菌操作,只要能遵守操作技术和工艺规定,很少出现杂菌污染现象。进入车间后,如卫生条件控制不好,往往会出现染菌现象,所以扩培人员首先无菌意识要强,凡是接种、麦汁追加过程所要经过的管路、阀门必须用热水或蒸汽彻底灭菌,室内的空气、地面、墙壁也要定期消毒或杀菌,通风供氧用的压缩空气也必须经过0.2μm的膜过滤之后才能使用。同时充氧量要适量,充氧不足酵母生长缓慢,充氧过度会造成酵母细胞呼吸酶活性太强,酵母繁殖量过大对后期的发酵不利的。一般扩培酵母在进入培养罐前每天要通氧三次,每次20分钟。发酵后的培养,要求麦汁中溶解氧9mg/L左右。最后,每一批扩培的同时还应对酵母的发酵度、发酵力、双乙酰峰值、死灭温度等指标进行检测,以便及时、正确掌握酵母在使用过程中的各种性状是否有新的变化。 (3)酵母的添加:酵母添加前麦汁的冷却温度非常重要。各批麦汁冷却温度要求必须呈阶梯式升高,满罐温度控制在7.5℃~7.8℃之间,严禁有先高后低现象,否则将会对酵母活力和以后的双乙酰还原产生不利的影响。同时要准确控制酵母添加量,如果添加量太小,则酵母增长缓慢,对抑制杂菌不利,一旦染菌,无论从口味还是双乙酰还原都将受到影响。添加量太小会因酵母增值倍数过大而产生较多的高级醇等副产物;添加量过大,酵母易衰老、自溶等,添加量控制在7‰左右。 (4)温度控制:在发酵过程中,温度的控制十分关键。根据菌种特性,采用低温发酵,高温还原。既有利于保持酵母的优良性状,又减少了有害副产物的生成,确保了酒体口味比较纯净、爽口。如果发酵温度过高,虽然可缩短发酵周期,加速双乙酰还原,但过高的发酵温度会使啤酒口味比较淡泊,

啤酒厂生产控制系统

第一章西门子PCS7啤酒厂生产控制系统 引言 包括具体介绍啤酒的工艺和项目中西门子PCS7控制系统大体结构 1 啤酒生产工艺 啤酒酿造需要大麦水和酵母四种基本原料 常常还采用大米糖等辅料 发酵清酒其他辅助工序还有CO2回收 热水制备空气压缩等等 麦汁制备: 采用大麦水及辅料进行麦汁制备;  得到啤酒;  啤酒处理: 对发酵成熟的啤酒进行过滤高浓稀释等处理;  等待灌装;  这是啤酒生产的最后一道工序;

头酒尾等待灌装    图1-1 啤酒厂生产过程图  1.1.1 糖化过程 整个糖化生产过程就是一个麦汁制备和处理过程 特别是可发酵性糖   啤酒糖化生产过程是啤酒生产的第一个关键性环节 质量糖化过程工艺指标控制的好坏口感 整个糖化过程主要包括原料粉碎糖化 煮沸冷却等生产工序 1 粉碎设备主要由料仓粉碎机等单元设备组成 湿法粉碎锤式粉碎四种 大米等千粉碎物直接进入粉碎机进行粉碎:湿法粉碎是将麦芽 麦芽等粉碎物在进入粉碎机之前的蒸气或水雾喷湿 对麦芽等粉碎物进行细粉碎 不同的粉碎方式其粉碎工艺各有不同 其操作流程可以简单归纳为:由储仓运来的麦芽

先进入分离筛 大米分别进入粉碎机进行粉碎形成麦芽浆大米浆分别送入糖化锅及糊化锅 除了实现料仓控制原料计量等一般测控要求以外温度以及PH值控制 2 它是由糖发酵而来的 糊化水分子大量进入淀粉分子中破裂在这一膨胀过程中没有发生物质的分解 通过淀粉酶的作用 在糖化过程中主要产生下列可被啤酒酵母发酵和不可发酵的淀粉分解产物:  (a)糊精:不可发酵;  (b)麦芽三糖:能被所有高发酵度酵母发酵酵母才能分解它(在后酵储存时分解 称为主发酵性糖;  (d)葡萄糖:最先被酵母发酵  为保证啤酒质量这个过程也是麦汁制备中最重要的过程 为了使该过程能够尽最大可能形成更多酶必须工作在最佳温度及PH值范围内   麦汁中的各种糖分和糊精共同影响着啤酒的质量 这些主要因素有:  (a)糖化过程中的温度:62^-63可以得到最大量的麦芽糖和最高的最终发酵度各阶段的休止温度蛋白休止麦芽糖形成休止78 浸出物溶液的浓度最终发

发酵罐温度控制系统的设计

洛阳理工学院 计算机控制技术与应用课程设计 题目:发酵培养基温度控制系统设计 学生姓名: 学号: 班级: 专业:

摘要 本题要设计的是发酵培养基温度控制系统,发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响。因此,对发酵过程中的温度进行检测和控制就显得十分重要。 本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。 本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。 关键词:温度控制,PID控制器,V/I转换,比较机构

目录 前言........................................................................................ 错误!未定义书签。 1.1.1 发酵培养基简介 3 1.1.2工艺背景:................................................................ 错误!未定义书签。 1.2温度对发酵的影响...................................................... 错误!未定义书签。 1.2.1温度影响微生物细胞生长................................. 错误!未定义书签。 1.2.2温度影响产物的生成量..................................... 错误!未定义书签。 1.2.3温度影响生物合成的方向................................. 错误!未定义书签。 1.2.4温度影响发酵液的物理性质............................. 错误!未定义书签。 1.3、影响发酵温度变化的因素:..................................... 错误!未定义书签。 1.4发酵热的测定................................................................ 错误!未定义书签。 1.5最适温度的选择与发酵温度的控制............................ 错误!未定义书签。 1.5.1温度的选择....................................................................................... VII 2 培养基温度控制系统的设计.................................................. 错误!未定义书签。 2.1总体设计方案.............................................................................................. VII 2.1.1 系统总框图...................................................................................... VII 2.2硬件设计................................................................................................... V III 2.2.1温度采集电路.................................................................................. V III 2.2.2 PLC与计算机的通信......................................................................... I X 2.3软件部分......................................................................................................... X 3总结........................................................................................................................ X III 参考文献:............................................................................................................... X III

啤酒发酵机制及工艺控制

啤酒发酵机制及工艺控制 【本课程教学目标】 1、通过本节内容的学习,明白啤酒发酵的原理及如何控制发酵中的各种条件。 2、引导学生了解啤酒发酵的流程,感悟如何保证啤酒质量、提高啤酒产量。 3、让学生明白啤酒等食品的来之不易,学会珍惜一粥一饭。【本课程教学难点】 1、啤酒发酵过程中温度、时间、罐压等工艺条件的控制 2、啤酒发酵的操作步骤 【本课程教学重点】 1、啤酒发酵机制 2、啤酒发酵工艺条件控制 【本课程教学方法】 阅读、提问、讨论、总结分析 【本课程课时安排】2课时 【本课程教学过程】 一、导入 通过前面内容的学习,我们学习了酿造啤酒的原料及对原料的处理,还了解了酿造啤酒酵母的特性。今天,咱们一起学习一个很有意思的内容———如何酿造啤酒。

二、正课 1、啤酒发酵代谢主产物的形成 ①、提问:啤酒的主要成分是什么呢? 讨论并归纳:酒精也叫乙醇 ②、提问:在课本中找出啤酒酵母是如何利用冷却的麦芽汁发酵生产啤酒的? 讨论并归纳:麦芽汁的主要成分为C6H12O6 啤酒酵母利用C6H12O6在有氧条件下获得生命活动所需的能量,在无氧条件下生成啤酒主要成分C2H5OH。 反应式如下:有氧下C6H12O6+O2+ADP+Pi→H2O+CO2+ATP 无氧下C6H12O6+H2O→C2H5OH+CO2 2、啤酒发酵代谢副产物的形成 提问:找出啤酒发酵过程中产生的副产物及其对啤酒品质的影响 讨论并归纳: 代谢副产物含量过高对啤酒品质影响 双乙醇出现馊饭味 高级醇使啤酒有“后苦味”,出现“上头”现象 酯类使啤酒有不愉快的香味 醛类使啤酒有强烈的刺激性和辛辣感及腐败性气味含硫化合物对啤酒风味影响很大 总结:代谢副产物对啤酒品质有不良的影响,所以发酵过程中要严格控制代谢副产物的生产量。

啤酒生产过程自动控制系统的优化设计

啤酒生产过程自动控制系统的优化设计 啤酒生产是我国的一个传统产业,随着我国经济的发展以及人们生活水平的提高,啤酒企业得到了空前的发展。在啤酒的生产过程中,其自动控制系统的优劣,对于啤酒生产企业的经济效益会产生直接影响。具体表现为啤酒的生产成本、啤酒生产的控制精度以及企业的生产效率等因素。为了保障啤酒生产企业能够降低生产成本、提高啤酒的质量、扩大市场份额,就需要对啤酒生产过程中的自动控制系统进行优化设计。 标签:工业自动化;自动化系统;工业电气 引言 随着我国科技水平的不断提高,在我国的啤酒行业中,电气自动化技术得到了空前地发展。当前,我国的啤酒行业在应用自动控制技术的前提下,正朝着规模化、集团化的方面发展。尽管如此,我国的啤酒生产企业仍存在需要改进的地方。其一,啤酒的档次低,品种少。其二,部分企业自动控制水平较差,主要以人工控制为主。其三,啤酒生产过程中对于能源以及原材料的消耗比较大。因此,如何提高啤酒的质量与市场占有率,优化啤酒生产过程中的自动控制系统,成为啤酒生产企业亟待解决的问题。 1 自动控制系统的组成及功能 自动控制系统主要是对啤酒生产过程进行控制、检测以及管理。该系统主要包括两个组成部分。其一,连续调节控制系统;其二,逻辑连锁控制系统。根据啤酒生产的特点及要求,可以采用分散就地控制、集中调度管理的方式,形成一套完整的自动控制系统。该系统主要包括以下几方面的功能。 1.1 糖化过程控制 在自动控制系统中,对于糖化过程进行控制具体表现为以下几点。其一,对浸渍水、调浆水、洗槽水、麦汁冷却温度的控制。其二,对糊化锅、糖化锅、煮沸锅等温度的控制。其三,对过滤槽、澄清槽、防溢锅的自动控制。对于糖化过程进行控制是比较复杂的,主要包括糊化、糖化、过滤、煮沸以及澄清等工序。在实际生产过程中,各工序是间歇进行的,并且各个工序在时间上需要进行交叉作业。糖化过程的自动控制涉及的设备较多,因此对于自动控制系统提出了更为严格的要求。 1.2 发酵过程控制 在自动控制系统中,对于发酵过程进行控制主要包括:温度、压力、液位、酵母扩培、清酒过滤等工序。通过对个工序的参数进行全方位的检测,不仅能够对啤酒的发酵过程进行控制,还能保证啤酒的质量能够达到标准,最终提高企业

啤酒酿造期末考试题及答案

?《啤酒酿造与文化》期末考试(20) :XXX 班级:聂聪成绩:97.0分 一、单选题(题数:50,共50.0 分) 1 啤酒成份中不含哪种物质?()(1.0分) 1.0 分 ?A、 蛋白质 ?B、 碳水化合物 ?C、 脂肪 ?D、 矿物质 我的答案:C 2 酿造优质啤酒的前提条件是()。(1.0分) 1.0 分 ?A、 啤酒酵母 ..

?B、 酿造水质 ?C、 麦芽、酒花、水和酵母 ?D、 酿造工艺 我的答案:C 3 美国精酿运动的起点就是IPA,它起始于上世纪哪个年代?()(1.0分)1.0 分 ?A、 60.0 ?B、 70.0 ?C、 80.0 ?D、 90.0 我的答案:B 4 啤酒酿造中,浅色大麦芽最后阶段的干燥温度通常控制在()。(1.0分) ..

1.0 分 ?A、 60-65℃ ?B、 65-70℃ ?C、 70-75℃ ?D、 80-85℃ 我的答案:D 5 影响精酿啤酒发展和推广的主要因素是()。(1.0分) 1.0 分 ?A、 啤酒质量 ?B、 啤酒文化的普及度 ?C、 啤酒种类 ?D、 消费者的口味 我的答案:B 6 ..

啤酒酿造时,醪液中的哪种酶活力高可增加麦汁中可发酵性糖含量?()(1.0分) 1.0 分 ?A、 α—淀粉酶 ?B、 β—淀粉酶 ?C、 蛋白酶 ?D、 葡聚糖酶 我的答案:B 7 啤酒灌装机是在()条件下,缓慢而平稳地将酒装入瓶。(1.0分) 1.0 分 ?A、 常压 ?B、 等压 ?C、 常温 ..

?D、 真空 我的答案:B 8 德国巴伐利亚夏季人们最喜欢饮用的啤酒是()。(1.0分) 1.0 分 ?A、 比尔森啤酒 ?B、 棕色啤酒 ?C、 黑啤酒 ?D、 带酵母的小麦啤酒 我的答案:D 9 非洲的古老啤酒酿造中,主要使用()。(1.0分) 1.0 分 ?A、 大麦芽 ?B、 ..

啤酒发酵

1发酵过程中麦汁的变化 pH值的下降(ph下降,一般在酵母对数生长期,前快后慢麦汁的pH值一般在5.2-5.6,发酵液的pH值一般在4.2-4.4),含氮物的减少,氧化还原势RH的下降,啤酒色泽变浅,苦味物质和多酚物质的析出,酵母的凝聚(发酵代谢产物使啤酒pH值下降,接近酵母蛋白质的等电点,使酵母带电也趋于零,不能使酵母相互排斥分开,从而产生凝聚。),啤酒清亮度的增加(浊度下降),啤酒中的CO2溶解,草酸钙的形成(草酸是糖代谢的中间产物,与Ca2+结合后形成草酸钙)。2pH值下降的影响 蛋白质和多酚物质的析出,苦味物质的析出,色度,后熟速度加快,啤酒泡沫特性,啤酒口味细腻,生物稳定性提高,有利于酵母凝聚 3pH值下降的原因 挥发性及不挥发性有机酸的形成,CO2的形成,一级磷酸盐被酵母消耗,释放出H离子,NH2离子被酵母吸收,钾离子被酵母吸收,并释放出H离子 4影响pH值下降的因素 麦汁的性质,酵母的种类,酵母添加量和通风强度,发酵状况,微生物状况酵母自溶。 5含氮物减少的原因 酵母吸收麦汁中的可同化氮,高分子蛋白质物质的沉降析出,吸附于酵母细胞表面,被CO2带于泡盖中 6RH值:麦汁、发酵液、啤酒中许多的氧化性和还原性物质相互作用,达到平衡时,反映在电极电位上的数值称rH值。rH是表示溶液的氧化还原电势 rH值大,氧化性强,还原性弱;rH值小,还原性强,氧化性弱 麦汁的rH值为20-26麦汁通氧后,氧含量较多,rH值较高,发酵液的rH值为8-10(随着酵母的繁殖,氧很快被酵母消耗,因而rH值逐渐降低,RH值大小,影响酵母的生理活动,能改变酵母的发酵产物。对啤酒质量的影响,rH值越小,啤酒质量越好,啤酒色泽越浅、氧化感越小。 7色泽变浅(一般浅色啤酒下降:1.5-2.5EBC) 原因:随着发酵温度、pH值的变化,麦汁中色素物质析出进入泡盖。通过酵母细胞壁的吸附作用,色素物质被沉淀物吸附后一起沉降 8苦味物质和多酚物质析出的原因(发酵后约1/3的苦味物质损失,多酚物质约减少25%,对啤酒苦味的纯正性和非生物稳定性有利。) pH值的下降,CO2带入泡盖,酵母吸附 9影响啤酒澄清的因素 混浊物的特性和数量,澄清时的酒液温度,酒液的运动情况,啤酒的pH值 后酵贮酒设备的形状和酒液高度,澄清时间,酒液的粘度 传统发酵方式的发酵技术 10主发酵操作(主要的发酵过程,70%的糖在此阶段发酵) 酵母添加,酵母的繁殖和倒池,发酵过程,下酒,酵母的回收,清洗和杀菌 11酵母添加:酵母添加的原则:确保(在添加温度5-6℃时)添加酵母12-16小时后起发酵开始。 酵母添加量:酵母泥:0.5升浓酵母泥/hl 12°P麦汁;酵母数:12-15×106个/ml麦汁 决定酵母添加量的因素:酵母的生理状态,酵母泥的稠度,麦汁浓度,麦汁中FAN 量,发酵时间,添加温度,麦汁溶氧量

啤酒包装自动生产线解决方案演示教学

啤酒包装自动生产线 解决方案

啤酒包装自动生产线解决方案 1.工艺流程及平面布局 (1)啤酒包装自动生产线工艺流程 如图1所示是生产能力为36000瓶/h啤酒灌装生产线流程示意图。其主要组成单机有:卸箱机、洗瓶机、验瓶机、灌装压盖机、杀菌机、贴标机、装箱机或热收缩薄膜包装机等。 图1 啤酒包装自动生产线工艺流程图 (2)啤酒包装自动生产线车间平面布局 ①平面布局依据的条件 进行车间的平面布局设计,需要提供以下资料: ·生产线的规模及生产工艺要求; ·车间建筑平面图;

·啤酒瓶及瓶箱规格,配套设备情况及相关资料; ·用户要求。 ②平面布局应该注意以下几点 ·设备分布间隔要合理、场地使用要合理、布局要紧凑; ·各台设备的操作者位置应该尽量考虑集中在一个公共的操作场地,形成一个操作中心,达到一人操作两台机器,减少操作工数量; ·操作者通道畅通,位置宽松,有良好的通风采光及安全设施,充分体现以人为本的企业管理理念; ·输送系统有较大的缓冲时间和贮存能力,使瓶子运送畅通; ·车间内要有一定的空箱和木板堆放空间; ·车间内或设备间有一定的维修场地; ·预留以后扩大生产的余地。 ③啤酒包装自动生产线平面布局形式 可分为如下两大类:直线布局形式、U形布局形式。 U形布局方式: 啤酒包装生产线U形布局方式 优缺点:

·脏瓶区与成品区分隔在车间的两端,二者相距较远,更符合水平卫生条件; ·潮湿区与干燥区分开较远,使得贴标后的成品不容易受潮; ·车间区域地面有利于成品堆放,工作环境较好; ·卸垛机与码垛机分隔距离较长,使得木板输送线路拉长,投资较大。 直线布局形式: 啤酒包装生产线直线布局方式 优缺点: ·卸垛机与码垛机之间的木板输送线路较短,节省投资; ·卸垛机与码垛机布置在车间的同一端,铲车可以交替使用,提高利用率; ·布局比较紧凑,中间有一个公共场地可作设备维修使用; ·脏瓶区与成品区在车间的同一端,二者相距较近,有可能使得成品酒受到卸脏瓶时的尘埃污染。 2.单机生产能力的选配 啤酒生产线通常以杀菌机(或灌装压盖机)为基准,其前后设备的生产能力逐级递增5%~10%,如图2所示。

啤酒酿造期末考试题及标准答案

啤酒酿造期末考试题及答案

————————————————————————————————作者:————————————————————————————————日期:

?《啤酒酿造与文化》期末考试(20) 姓名:XXX 班级:聂聪成绩:97.0分 一、单选题(题数:50,共50.0 分) 1 啤酒成份中不含哪种物质?()(1.0分)1.0 分 ?A、 蛋白质 ?B、 碳水化合物 ?C、 脂肪 ?D、 矿物质 我的答案:C 2 酿造优质啤酒的前提条件是()。(1.0分)1.0 分 ?A、 啤酒酵母 ?B、

?C、 麦芽、酒花、水和酵母 ?D、 酿造工艺 我的答案:C 3 美国精酿运动的起点就是IPA,它起始于上世纪哪个年代?()(1.0分)1.0 分 ?A、 60.0 ?B、 70.0 ?C、 80.0 ?D、 90.0 我的答案:B 4 啤酒酿造中,浅色大麦芽最后阶段的干燥温度通常控制在()。(1.0分)1.0 分 ?A、

?B、 65-70℃ ?C、 70-75℃ ?D、 80-85℃ 我的答案:D 5 影响精酿啤酒发展和推广的主要因素是()。(1.0分) 1.0 分 ?A、 啤酒质量 ?B、 啤酒文化的普及度 ?C、 啤酒种类 ?D、 消费者的口味 我的答案:B 6 啤酒酿造时,醪液中的哪种酶活力高可增加麦汁中可发酵性糖含量?()(1.0

分) 1.0 分 ?A、 α—淀粉酶 ?B、 β—淀粉酶 ?C、 蛋白酶 ?D、 葡聚糖酶 我的答案:B 7 啤酒灌装机是在()条件下,缓慢而平稳地将酒装入瓶内。(1.0分)1.0 分 ?A、 常压 ?B、 等压 ?C、 常温 ?D、 真空

发酵罐的设计

目录 第一章啤酒发酵罐结构与动力学特征 (3) 一、概述 (3) 二、啤酒发酵罐的特点 (3) 三、露天圆锥发酵罐的结构 (4) 3.1罐体部分 (4) 3.2温度控制部分 (5) 3.3操作附件部分 (5) 3.4仪器与仪表部分 (5) 四、发酵罐发酵的动力学特征 (6) 第二章发酵罐的化工设计计算 (7) 一、发酵罐的容积确定 (7) 二、基础参数选择 (7) 三、D、H的确定 (7) 四、发酵罐的强度计算 (9) 4.1 罐体为内压容器的壁厚计算 (9) 五、锥体为外压容器的壁厚计算 (11) 六、锥形罐的强度校核 (13) 6.1内压校核 (13) 6.2外压实验 (14) 6.3刚度校核 (14)

第三章发酵罐热工设计计算 (14) 一、计算依据 (14) 二、总发酵热计算 (15) 第四章发酵罐附件的设计及选型 (19) 一、人孔 (19) 二、接管 (19) 三、支座 (20) 第五章发酵罐的技术特性和规范 (21) 一、技术特性 (21) 二、发酵罐规范表 (22) 参考文献 (24)

发酵罐设计实例 第一章啤酒发酵罐结构与动力学特征 一、概述 啤酒是以大麦喝水为主要原料,大米、酒花和其他谷物为辅料经制麦、糖化、发酵酿制而成的一种含有二氧化碳、酒精和多种营养成分的饮料酒。我国是世界上用谷物原料酿酒历史最悠久的国家之一,但我国的啤酒工业迄今只有100余年的历史。改革开放以来,我国啤酒工业得到了很大的发展,生产大幅度增长,发展到现在距世界第二位。由于啤酒工业的飞速发展,陈旧的技术,设备将受到严重的挑战。为了扩大生产,减少投资保证质量,满足消费等各方面的需要,国际上啤酒发酵技术子啊原有传统技术的基础上有很大进展。尤其是采用设计多种形式的大容量发酵和储酒容器。这些大容器,不依靠室温调节温度,而是通过自身冷却来控制温度,具有较完善的自控设施,可以做到产品的均一性,从而降低劳动强度,提高劳动生产率。 就发酵罐的外形来分,主要有圆柱锥形底罐、圆柱蝶形罐、圆柱加斜底的朝日罐和球形罐等。 二、啤酒发酵罐的特点 1、单位占地面积的啤酒产量大;而且可以节约土建费用; 2、可以方便地排放酵母及其他沉淀物(相对朝日罐、通用罐、贮就罐而言);

相关文档
最新文档