第12章结构的塑性分析和极限荷载

合集下载

塑性分析和极限荷载

塑性分析和极限荷载

三、基本假设 1、材料为“理想弹塑性材料” 。 、材料为“理想弹塑性材料” 2、拉压时,应力、应变关系相同。 、拉压时,应力、应变关系相同。 3、满足平截面假定。即无论弹、塑性阶段,保持平截面不变。 、满足平截面假定。即无论弹、塑性阶段,保持平截面不变。
σ
σy
卸载时有残余变形
ε
§12-2 纯弯曲梁的极限弯矩和塑 性铰
(4)极限状态 )
2、确定单跨梁极限荷载的机动法 、
q
l
qu
A
θ

Mu x
l θ 2

θ
B
dx C
Mu
Mu
临界状态时, 临界状态时,由虚功方 程: 2∫ xθ ⋅ qu dx = M u ⋅ θ + M u ⋅ θ + M u ⋅ 2θ
1 2 l θ ⋅ qu = 4 M uθ 4 16 M u qu = ∴ l2
1. 弹性阶段
b b 2 2
z h 2 h 2
M
M
σ = Eε
Ms σs = 1 2 bh 6
ε =κy
1 M s = bh 2σ s 6
κ= κs =
ε
y h/2 = 2σ s Eh
σs / E
y
σs
h 2 h 2
2.弹塑性阶段
y σ = σs y0
y
κ =
εs
y0
=
σs
Ey0
=
h κs 2 y0
p
机构4 机构
p
q = 2p
p1 = 2.5
Mu a
1.2 p
θ
Mu
Mu
θ 2θ
pu = 1.33
Mu a

11 结构力学—— 结构的极限荷载

11 结构力学—— 结构的极限荷载

MC

哈工大 土木工程学院
25 / 46
17
结构的塑性分析和极限荷载
A B C FP D
破坏机构实现的条件:
(1)B、C 点出现塑性铰 则:
M C Mu
M A Mu
M B Mu
3
A
Mu
Mu
Mu FP B
Mu
D
9Mu F l
P1
Mu C Mu
Mu
M A 3Mu
哈工大 土木工程学院
哈工大 土木工程学院

12 / 46
17
结构的塑性分析和极限荷载
限弯矩。
80 mm
例题:已知材料的屈服极限σs =240MPa,求图示截面的极 解:
A 0.0036 2 m
g
A1 A2 A / 2 0.0018 2 m
A1 形心距离下端0.045m A2 形心距离上端0.01167m A1与A2的形心距离为0.0633m

哈工大 土木工程学院
7 / 46
17
结构的塑性分析和极限荷载
s
y 弹性阶段 结束的标志是最外纤维某 处应力达到屈服极限应力σs ,此时的弯 矩称屈服弯矩 Ms。 s 2 bh M s dA. y s W s W 弹性抗弯截面系数 6
弹塑性阶段 截面上既有塑性区又 有弹性区(弹性核 y0)。随弯矩 增大,弹性核逐渐减小。
Mu
FP u
6Mu l

20 / 46
哈工大 土木工程学院
17
结构的塑性分析和极限荷载
q
例题:试求图示结构的极限荷载 qu 解: 由梁的弯矩图可 A 知:第一个塑性 铰必出现在固定 支座处; 1 2 ql 8 首先求当出现第一 个塑性铰时支座B 的 约束反力FRB

09-结构力学2——结构的塑性分析与极限荷载

09-结构力学2——结构的塑性分析与极限荷载

ql
(a) A
B
0.5l 0.5l
q 1.5ql
C
D
l 0.75l 0.75l
1.2Mu 1.2Mu
(c)
Δ
Mu
q

l 2


1.2M uB
1.2M uC

Mu
( B
C
)

8.8 l
M
u

q2

17.6 l2
M
u
河北水利电力学院
28
CD跨破坏时
ql
(a) A
B
0.5l 0.5l
q 1.5ql
.]


S

A

.
26.79KN m
河北水利电力学院
7
塑性铰、极限荷载
FP
FPu
l/2
l/2
Mu
①图中简支梁随着荷载的增大,梁跨中弯矩达到极限弯矩Mu。
②跨中截面达到塑性流动阶段,跨中两个无限靠近的截面可以产生有
限的相对转角,因此,当某截面弯矩达到极限弯矩Mu时,就称该截面
河北水利电力学院
17
2 虚功法
A
Mu
FPu
C
1 Mu l/2

1
2 l/2
设破坏机构
B
令机构产生虚位移,C截面竖向位移和荷载FPu同向,
大小为δ。
1


l/2

2
l
2

21

4
l
列出刚体虚功方程: FPu M u M u 0
FPu

Mu
(

l

结构力学结构的塑性分析与极限荷载 ppt课件

结构力学结构的塑性分析与极限荷载 ppt课件
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以:
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩

《结构力学》教学大纲

《结构力学》教学大纲

《结构力学》教学大纲大纲说明课程代码:5125015总学时:80学时(讲课76学时,上机4学时)总学分:5学分课程类别:必修适用专业:土木工程专业(本科)预修要求:高等数学、理论力学、材料力学课程的性质、目的、任务:结构力学是土木工程专业的一门主要的技术基础课。

它的任务是在学习理论力学和材料力学的基础上,了解和掌握杆件结构的计算原理和方法,熟悉各类结构的受力特点和性能,培养结构分析和计算的能力,为学习有关专业课程和解决生产实践中的结构力学问题打好基础。

通过学习,使学生掌握平面杆件结构的组成分析、静定结构和超静定结构的内力和位移的计算分析方法。

课程教学的基本要求:本课程的学习中,要密切联系实际,培养学生正确的分析问题的方法,注意正确理解掌握基本概念和基本方法。

考虑到课程性质,建议采用多媒体教学手段。

计算机应用是本课程的重要组成部分,在教学中应予以充分重视。

大纲的使用说明:本大纲适用于土木工程本科专业80课时的结构力学课程使用,可根据具体的课时情况作适当的增删。

大纲正文第一章绪论学时:2学时(讲课2学时)本章讲授要点:结构力学的研究对象和任务;平面杆件结构和荷载的分类;结构计算简图概念及确定计算简图的原则。

重点:结构力学的研究对象和任务;结构计算简图概念及确定计算简图的原则。

难点:确定计算简图第一节结构力学的研究对象和任务第二节结构的计算简图第三节平面杆件结构和荷载的分类第四节结构力学的学习方法习题:3题第二章平面体系的几何组成分析学时:4学时(讲课3学时,习题1学时)本章讲授要点:几何不变体系的基本组成规律;对体系几何组成的分析和判定;静定结构和超静定结构的几何组成特征。

重点:运用无多余约束的几何不变体系的三个简单组成规则分析一般体系的几何组成。

难点:三刚片体系中虚铰在无穷远处的情况。

第一节概述第二节几何不变体系组成规则及体系分析举例习题:6题第三章静定结构的内力计算学时:10学时(讲课8学时,习题2学时)本章讲授要点:梁、刚架的内力计算及内力图的绘制;多跨静定梁、静定平面刚架、三铰拱、受弯杆件与桁架杆件组合结构的内力计算;结点法和截面法计算静定平面架内力;三铰拱的受力特点,内力图特征,合理拱轴概念及静定结构的基本特征。

结构力学课件 第十二章 结构的极限荷载

结构力学课件 第十二章 结构的极限荷载

Mu
× 2δθ
=
0
Pu
A
δθ B
δθ
C Mu
2δθ
Pu/2
本例中,截面上有剪力,剪力 会使极限弯矩值降低,但一般 影响较小,可略去不计。
机械系 董达善 教授
第十二章 结构的极限荷载
§12-3 单跨超静定梁的极限荷载
超静定梁有多余约束,出现一个塑性铰后仍是几何不变体系。
A截面先出现塑性铰,这时 M A = 3Pl /16 = M u P = 16M u / 3l
机械系 董达善 教授
第十二章 结构的极限荷载
§12-5 计算极限荷载的穷举法和试算法
上节定理的应用:
极小定理的应用
穷举法:列出所有可能的破坏机构,用平衡条件求出这些破坏 机构对应的可破坏荷载,其中最小者既是极限荷载。
试算法:每次任选一种破坏机构,由平衡条件求出相应的可破 坏荷载,再检验是否满足内力局限性条件;若满足,该可破坏 荷载既为极限荷载;若不满足,另选一个破坏机构继续运算。
Pu1 ≥ Pu2 若把 Pu2看成可破坏荷载,Pu1 看成可接受荷载。
故有
Pu1 ≤ Pu2 Pu1 = Pu2
3.极小定理:极限荷载是所有可破坏荷载中最小的。
证明:由于极限荷载 Pu 是可接受荷载,由基本定理 Pu ≤ P+ 4.极大定理:极限荷载是所有可接受荷载中最大的。
证明:由于极限荷载 Pu 是可破坏荷载,由基本定理 Pu ≥ P−
令 M max = M u ,得
Pu
=
4Mu
/
l
=
4 4000
× 26.79×106
=
26.79
kN
l/2
l/2

结构的极限荷载和例题讲解

结构的极限荷载和例题讲解

简化计算: 假设材料为理想弹塑性材料,其应力~应变关系下图所示。
§12-2 极限弯矩和塑性铰 破坏机构 静定梁的计算
一、弹塑性阶段工作情况
理想弹塑性材料T形截面梁处于纯弯曲状态时
弹性状态:
图b:截面处于弹性阶段,σ<σs (屈服极限) 图c:截面最外边缘处σ=σs (达到屈服极限) 屈服弯矩(弹性极限弯矩)MS = Wσs(W:弯曲截面系数) 图d:截面处于弹塑性阶段。 靠外部分形成塑性区,其应力为常数,σ=σs , 靠内部分仍为弹性区,称弹性核,其应力直线分布 图e:截面全部达到塑性——极限情形, 这时的弯矩是该截面所能承受的最大弯矩 ——极限弯矩,以Mu 表示。
等截面超静定梁(图a) (各截面Mu相同) 弹性——弹塑性阶段——极限状态过程:
(1)弹性阶段弯矩图:P≤Ps (2首)先弹在塑A性端阶形段成M并图扩:大荷,载然超后过CP截s,面塑也性形区成
塑性性铰区。。A端首先达到Mu并出现第一个塑
(3)极限状态M图:荷载再增加,A端弯矩 增量为零,当荷载增加到使跨中截面的弯矩达 到Mu时,在该截面形成第二个塑性铰,于是梁 即变为机构,而梁的承载力即达到极限值。此 时的荷载称为极限荷载Pu——极限状态(e)。
破坏机构——极限状态: 结构出现若干塑性铰而成为几何可变或瞬变体系时 ——结构丧失承载能力
三、静定梁的计算
静定梁由于没有多余联系,因此,出现一个塑性铰时,即 成为破坏机构。
对于等截面梁,在弯矩绝对值最大截面处达到极限弯矩, 该截面形成塑性铰。
由塑性铰处的弯矩等于极限弯矩和平衡条件,就可求出静 定梁的极限荷载。
结构的极限荷载和例题 讲解
§12-1 概述
结构设计方法:
1、容许应力法(弹性分析法):

结构力学 第12章结构的极限荷载

结构力学 第12章结构的极限荷载

§12-5 计算极限荷载的穷举法和试算法
1、穷举法:也称机构法或机动法。列举所有可能的破坏机构, 、穷举法:也称机构法或机动法。列举所有可能的破坏机构, 求出相应的荷载,取其最小者即为极限荷载。 最小者即为极限荷载 求出相应的荷载,取其最小者即为极限荷载。 2、试算法:任选一种破坏机构,求出相应荷载,并作弯矩图, 、试算法:任选一种破坏机构,求出相应荷载,并作弯矩图, 若满足内力局限条件,则该荷载即为极限荷载; 若满足内力局限条件,则该荷载即为极限荷载; 如 不满足,则另选一机构再试算……,直至满足。 不满足,则另选一机构再试算 ,直至满足。 试求图a所示变截面梁的极限荷载 所示变截面梁的极限荷载。 例12-3 试求图 所示变截面梁的极限荷载。 解:此梁出现两个塑性铰即成为破坏 机构。 机构。除最大负弯矩和最大正弯 截面外, 矩所在的A、 截面外 矩所在的 、C截面外,截面突 变处D右侧也可能出现塑性铰 右侧也可能出现塑性铰。 变处 右侧也可能出现塑性铰。
静定结构出现一个塑性铰即成为 静定结构出现一个塑性铰即成为 破坏机构。对等截面梁,塑性铰出现 破坏机构。对等截面梁, 在|M|max处。 所示截面简支梁, 图a所示截面简支梁,跨中截面弯 所示截面简支梁 矩最大, 矩最大,该处出现塑性铰时梁成为机 构如图b。 构如图 。同时该截面弯矩达到极限弯 矩Mu。 由平衡条件作 图如 。 由平衡条件作M图如 图如c。 由
qu = 11.66Mu l2
§12-4比例加载时有关极限荷载的几个定理
比例加载:作用于结构上的各个荷载增加时, 比例加载:作用于结构上的各个荷载增加时,始终保持它们 之间原有的固定比例关系,且不出现卸载现象。 之间原有的固定比例关系,且不出现卸载现象。 荷载参数F:所有荷载都包含的一个公共参数。 荷载参数 :所有荷载都包含的一个公共参数。确定极限荷 载 实际上就是确定极限状态时的荷载参数Fu。 实际上就是确定极限状态时的荷载参数 结构处于极限状态时应同时满足: 结构处于极限状态时应同时满足: (1)机构条件。结构出现足够数目的塑性铰而成为机构。 )机构条件。结构出现足够数目的塑性铰而成为机构。 (2)内力局限条件。任一截面的弯矩绝对值 )内力局限条件。任一截面的弯矩绝对值|M|≤ Mu。 (3)平衡条件。结构的整体或任一局部仍维持平衡。 )平衡条件。结构的整体或任一局部仍维持平衡。

结构力学 第十二章 结构弹性稳定

结构力学 第十二章 结构弹性稳定

跳跃现象
(突跳失稳)
cr
Fcr
荷载增加到一定 程度时,构件由 受压突然翻转为 受拉,出现跳跃 现象。
c
Fcr
r
11 / 66
简单结构稳定分析
由于实际结构刚度都很大,变形和杆件尺 寸相比十分微小,因此作受力分析列平衡方程 时都忽略变形影响。因此线弹性材料力-位移成 正比,叠加原理适用。
在作稳定分析时,必须考虑变形的影响, 这时叠加原理不再适用。
kl
2.618kl 0.382kl
Pcr 0.382 kl y2 1.618 y1
Hale Waihona Puke ---临界荷载 ---失稳形式
17 / 66
三、无限自由度体系(P24)
x
挠曲线近似微分方程为:
P
P
EIy(x) M (x) M py Q(l x) EIy(x) Py Q(l x)
Q
Q
l
EI
yx
A
一个自由度
Pk y1
EI k B
A
y2
两个自由度
x
P
EI
yx y
无限多自由度
15 / 66
§12-2 用静力法确定临界荷载
稳定问题分析的基本方法之一:静力法 依据结构失稳时平衡的二重性,利用静力平衡条件, 确定临界荷载的方法——静力法。
一、一个自由度体系(P21)
P
MA 0
l EI A
k k
第十二章 结构弹性稳定
极值点失稳(第二类失稳)——失稳前后变形性质没
有发生变化,力-位移关系曲线存在极值点,达到
极值点的荷载使变形迅速增长,导致结构压溃。
F
F
F<Fcr

临塑荷载,界限荷载及极限荷载三者的关系_

临塑荷载,界限荷载及极限荷载三者的关系_

临塑荷载,界限荷载及极限荷载三者的关系1. 引言1.1 概述本文旨在探讨临塑荷载、界限荷载和极限荷载三者之间的关系。

这三个概念是结构工程中非常重要的指标,用于评估和设计建筑物的承载能力。

通过对这些荷载的深入理解,我们可以更好地保证结构的安全性和可靠性。

1.2 文章结构本文将分为五个主要部分进行阐述,依次为引言、临塑荷载、界限荷载、极限荷载以及三者之间的关系分析。

在每个部分中,我们将详细介绍相关概念、定义以及应用场景,并结合实例进行分析,以帮助读者全面了解这些内容。

1.3 目的本文的目的有两点:一是介绍临塑荷载、界限荷载和极限荷载三者之间存在的联系与差异;二是探讨它们在工程实践中的应用。

通过对这些内容的研究和讨论,我们可以提高对结构工程设计与评估中各种设计参数和指标的理解与运用能力。

以上就是“1. 引言”部分内容,请随后开始撰写“2. 临塑荷载”部分的内容。

2. 临塑荷载2.1 定义与范围临塑荷载是指在结构承受正常使用和维护条件下发生的加载情况。

它是指材料逐渐失去其初始强度并进入临界状态时施加在结构上的荷载。

在这种状态下,结构仍然能够保持稳定并完成其设计功能。

临塑荷载的范围包括不同类型的建筑结构和工程设施,如房屋、桥梁、隧道以及其他各种基础设施。

这些结构通常会受到多种力的作用,如重力、风压、地震力等。

2.2 影响因素临塑荷载的大小取决于多个因素。

首先是所使用的材料类型和质量,不同材料具有不同的强度和耐久性,因此对应着不同的临塑荷载能力。

除了材料因素,结构自身的形状、尺寸和设计也会对临塑荷载产生影响。

此外,环境条件也是影响临塑荷载的重要因素之一。

例如,在高风区域中建立一个耐风压合格标准较高的建筑物,相对于一般地区来说,它的临塑荷载能力应该更强。

2.3 工程应用在工程实践中,了解临塑荷载的概念和计算方法至关重要。

通过准确计算和评估结构在不同加载情况下的临塑荷载能力,可以确保结构在正常使用条件下具有合理的安全储备。

8、结构的塑性极限分析解析

8、结构的塑性极限分析解析
n 1 k 1 n 1 k 1
r
n 1
(4)-(2)得:
r
* * * M M ( x ) S k k k k 0,
* * ( ) N a a 0 即 可得 a 1
*
这便证明了上、下限定理。
• 以上定理说明,由静力许可场可得到极限载荷的
6M s 由以上讨论可知,Ps L
E,如果梁是理想刚塑性材料构成,也会得到同样的极 限载荷,其值仅仅与结构本身和载荷形式有关,而与 结构的残余应力和加载历史无关。
一、静力法
——通过与外载荷相平衡且在结构内处处不违反 屈服条件的广义应力场来寻求所对应外载荷的最大值 的一种方法。 两种思路:已知弯矩图和未知弯矩图 A C P 解:1、未知弯矩图
B
超静定次数n=1,可能出现 塑性铰的个数m=2
设多余约束为FB,则用多余约束表示的平衡方程有2个:
PL M A FB L 2 M FB L C 2
不违反屈 服条件
M A Ms MC Ms
PL FB L 2 M s M A Ms F L M M B s C Ms 2 PL PL FB L M s M s 2 2 2M s FB L 2M s
M s 2
P M s M s 2 6M s / L 6M s Ps L
说明:对于复杂结构可能破损机构一般有好几种,对应于 每一种破损机构都有一个载荷值,真实的极限载荷是这些 载荷中的最小值。
静力法
A ① ② C P B ③
解:1、未知弯矩图
FB M
M 3 M B 消去FB、MB PL FB L MB M 3 2M 2 M 1 M 2 2 2 PL 平衡条件 M 1 FB L MB 2

结构力学 结构的塑性分析与极限荷载

结构力学  结构的塑性分析与极限荷载

A l/3
FPu
B
DC
Mu
B
Mu
D
l/3
l/3
B
3 l
D
6 l
此时M图如图,MA=3Mu
3M u
Mu
A
B
l/3 l/6
FPu
D
C
Mu
当3M u M u,此破坏可实现。
由虚功方程可得: FPu MuB MuD
FPu
Mu
(3 l
6) l
FPu
M u l
2 当截面D和A出现塑性铰时的破坏机构
FPu Mu' A MuD
极限荷载
q 2l x 2M u x(l x) l
qu
22 3 24
Mu l2
11
.7
Mu l2
极限荷载复习题
1. 极限分析的目的是什么? 答:寻找结构承载能力的极限,充分利用材料。
2. 试说明塑性铰与普通铰的异同。 答:当截面弯矩达到极限弯矩时,这种截面可称为塑性铰; 塑性铰是单向铰,塑性铰只能沿弯矩增大的方向发生有限的 转角;塑性铰可传递弯矩,普通铰不能传递弯矩。
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s
c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s
c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档