旅行商问题(TSP)

合集下载

货郎问题

货郎问题
}
int main()
{
int i, j, k;
while(scanf("%d", &n) && n)
{
for(i = 1; i <= n; i++)
scanf("%d", d + i);
for(i = 0; i <= n; i++)
for(ห้องสมุดไป่ตู้ = 0; j <= n; j++)
{
ans = Min(ans, dp[n][i] + abs(d[i] - d[n]));
}
printf("%d\n", ans);
}
}
#include <stdio.h>
#include <stdlib.h>
const int inf = 1000000000;
int n;
int d[128];
int dp[128][128];
int Min(int a, int b)
{
return a < b ? a : b;
dp[i][j] = inf;
dp[0][0] = dp[1][0] = 0;
for(i = 2; i <= n; i++)
{
for(j = i - 1; j >= 0; j--)
dp[i][i - 1] = Min(dp[i][i - 1], dp[i - 1][j] + (j == 0 ? 0 : abs(d[j] - d[i])));

实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。

一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。

给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。

TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。

1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。

它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。

遗传算法具有全局搜索能力强、适用于多种优化问题等优点。

二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。

(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。

(3)选择操作:根据适应度选择优秀的个体进入下一代。

(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。

(5)变异操作:对交叉后的个体进行变异,增加解的多样性。

(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。

(7)迭代:重复步骤(2)至(6),直至满足终止条件。

2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。

以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。

旅行商问题(TSP)

旅行商问题(TSP)

iS jS
除起点和终点外,各边不构成圈

xij

0, 1


(7 1) (7 2) (7 3)
5
0 8 5 9 12 14 12 16 17 22
8
0
9 15 17
8
11
18
14
22

5 9 0 7 9 11 7 12 12 17
9 15 7 0
lingo解决旅行商问题 model: sets: city/1..6/:u; link(city,city):dist,x; endsets data: dist=99999,702,454,842,2396,1196,
702,99999,324,1093,2136,764, 454,324,99999,1137,2180,798, 842,1093,1137,99999,1616,1857, 2396,2136,2180,1616,99999,2900, 1196,764,798,1857,2900,99999; enddata
C=v1,v2,…,vi,vj,…,vj-1,vi+1,vj+1,…,vm,v1 (3)C0C,重复步骤(2),直到条件不满足为止,最后得 到的C即为所求。
例对下图的K6,用二边逐次修正法求较优H圈.
较优H圈: 其权为W(C3)=192
分析: 这个解的近似程度可用最优H圈的权的下界与
其比较而得出.即利用最小生成树可得最优H圈的一个下界.
设C是G的一个最优H圈,则对G的任一顶点v, C-v是
G-v的生成树.如果T是G-v的最小生成树,且e1是e2与v关联
的边中权最小的两条边,则w(T)+w(e1)+w(e2)将是w(C)

智能优化-TSP-旅行商问题

智能优化-TSP-旅行商问题

智能优化实验报告基于遗传算法的TSP问题求解研究一、问题描述1、TSP问题的概述旅行商问题 (Traveling Salesman Problem,简称 TSP) 是一个经典的组合化问题。

它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城出发需要经过所有城市后回到出发地,应如何选择行进路线以使总行程短。

从图论的角度看,该问题实质是在一个带权完全无向图中找一个权值最的小回路。

在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。

旅行商问题也是经典的组合数学的问题,生活中随处可见这类组合数学问题。

例如,计算下列赛制下的总的比赛次数:n个球队比赛,每队只和其他队比赛一次。

在纸上画一个网络,用铅笔沿着网络的线路走,在笔不离开纸面且不重复线路的条件下,一笔画出网络图。

一个邮递员从邮局出发,要走完他所管辖的街道,他应该选择什么样的路径,这就是著名的“中国邮递员问题”。

一个通调网络怎样布局最节省?美国的贝尔实验室和IBM公司都有世界一流的组合数学家在研究这个问题,这个问题直接关系到巨大的经济利益。

库房和运输的管理也是典型的组合数学问题,怎样安排运输使得库房充分发挥作用,进一步来说,货物放在什么地方最便于存取。

上述的这些例子中,其中一部分就和旅行商问题有关系。

2、TSP问题研究意义解决旅行商问题有着极其重要的理论和现实意义。

从理论层面来讲,解TSP不仅为其他算法提供了思想方法平台,使这些算法广泛地应用于各种组合优化问题;而且经常被用来测试算法的优劣,如模拟退火算法、禁忌搜索、神经网络、进化算法等,都可用旅行商问题来测试。

从实际应用层面来讲,旅行商问题作为一个理想化的问题,尽管多数的研究成果不是为了直接的应用,但却被广泛地转化为许多组合优化问题,最直接的就是其在交通、物流和大规模生产中的应用。

3、TSP问题的解决TSP问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。

组合优化中的旅行商问题求解

组合优化中的旅行商问题求解

组合优化中的旅行商问题求解在组合优化领域中,旅行商问题(Traveling Salesman Problem,TSP)是一类具有重要实际应用价值和理论研究意义的问题。

该问题要求在给定一系列城市和各城市之间的距离情况下,找到一条最短路径,使得旅行商能够恰好访问每个城市一次,并最终回到出发城市。

TSP在计算机科学、运筹学和数学等多个领域都得到了广泛的关注和研究。

1. TSP的数学建模旅行商问题可以用图论中的图来描述和解决。

首先,我们将每个城市表示为图中的一个节点,城市之间的距离表示为节点之间的边。

若每对节点之间的边都有权重,表示相应城市之间的距离,旅行商问题就可以转化为求解图的最短哈密顿回路(Hamiltonian cycle)的问题。

2. 求解TSP的经典算法2.1 蛮力算法蛮力算法是最简单直观的求解TSP的方法,它遍历所有可能的路径,并计算出总的路径长度,然后选择最短路径作为解。

然而,蛮力算法的时间复杂度为O(n!),当城市数量增加时,计算时间将呈指数级增长,因此适用于城市数量较少的情况。

2.2 最邻近插入算法最邻近插入算法从一个起始城市开始,每次选择离当前城市最近的未访问城市作为下一个访问城市,直到访问完所有城市,并回到起始城市。

该算法的时间复杂度为O(n^2),但它可能会得到次优解,因为贪心策略在选择下一个城市时只考虑了当前状态,没有考虑到整体最优解。

2.3 分支限界法分支限界法是一种基于回溯的求解TSP的优化方法,其思想是通过剪枝操作,去掉一些分支,从而减少搜索空间。

该算法首先选择一个起始城市,然后逐步扩展路径,每次选择一个未访问的城市,并通过计算路径长度来更新当前最优路径。

同时,在搜索过程中,根据当前路径长度和已知的最短路径长度,进行剪枝操作,以减少无效的计算。

分支限界法可以得到较优的解,但其时间复杂度仍然较高,因此在处理大规模问题时可能会面临困难。

3. 近似算法及元启发式算法为了求解大规模问题或提高求解效率,研究者们提出了许多近似算法和元启发式算法。

回溯法旅行商问题(TSP问题)

回溯法旅行商问题(TSP问题)

回溯法旅⾏商问题(TSP问题)学习链接:、今天早上做了⽆数个梦,然后被紧紧地吸附在床上。

挣扎⼀番后爬起来,已经是9点了。

然后我开始研究旅⾏商问题。

在⼀个⽆向图中找到⼀个可以遍历所有节点的⼀个最短回路。

理论上说可以⽤全排列列出所有解的下标,然后⼀个⼀个试,时间复杂度o(n!)。

但是可以⽤回溯法,⽤【约束函数】(constraint)判断当前路径是否连通,⽤【界限函数】(bound)判断当前路径是否⽐已经求得的最短路径⼩。

这两个判断任意⼀个不符,则做“剪枝操作”(不再对后续节点进⾏遍历)。

可以看出回溯法⽐穷举要⾼明的多。

这个回溯法和⼋皇后问题也有⼀些区别。

TSP问题需要构造⼀棵排列树:根节点为{0}第⼀层{0,1}第⼆层{0,1,2},{0,2,1}第三层{0,1,2,3},{0,1,3,2},{0,2,1,3},{0,2,3,1},{0,3,1,2},{0,3,2,1}……并且回溯法要求对图进⾏DFS操作,即深度优先搜索。

因为需要⾸先⾸次找到最深处的节点,才能设置当前最优解,好让后续问题能有参考。

Java代码:1public class Main {23public static void main(String[] args) {4int[][] adjMatrix={5 {0,20,6,4},6 {20,0,5,10},7 {6,5,0,15},8 {4,10,15,0},9 };10 TSP problem=new TSP(adjMatrix);111213 }14 }1516class TSP{17int vexnum=0;//顶点数⽬18int adjMatrix[][];19 TSP(int[][] adjMat){20 adjMatrix=adjMat;21 vexnum=adjMatrix.length;22int init[]={0};23 Backtrack(1,init);24int a;25 a=0;26 }27int bestCost=0;28int[] bestX;//最优解向量29boolean isTraverseDeep=false;30//回溯法递归31//初始x:[0]32void Backtrack(int t,int[] x){//对顶点t进⾏操作,⽗结点的解向量是x,33if(t>=vexnum){//解向量的第⼀个元素应该是初始顶点,如0,最后⼀个元素也是034 x[t]=0;//最后⼀个节点赋值:0。

TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点

v1.0 可编辑可修改TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。

其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。

旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。

非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。

若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。

TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。

因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。

二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。

但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。

2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。

数学建模经典问题——旅行商问题

数学建模经典问题——旅行商问题
的另一个结点的编号(其中一个结点编号为i); node_ base(i)= dmin_j(i, 1)+ dmin_j(i, 2):表示与i点关联边中长
度最短的两条边之和; C*(T):最优回路长度;
25
于是,dmin(i, 1)代表与第i个结点关联的所有边 中最长边的长度,dmin_j(i, 1) 代表与第i个结点关联 的所有边中次长边的另一个结点编号(其中一个结点 编号为i),第i结点的dmin(i, k)和dmin_j(i, k)可由距 离矩阵w轻易求得。
20
当然,用该方法有时会找不到TSP的最优解, 因为很可能在进行了几轮迭代后,却找不到新的不 等式。Padborg与Hong曾计算了74个TSP,其中54 个得到了最优解,其余的虽未得到最优解,却得到 了很好的下界,如果与近似方法配合,可以估计近 似解的精确程度。如,他们解过一个有313个城市的 TSP,获得一个下界41236.46,而用近似方法能得 到一条长为41349的路线,于是可估计出所得近似解 与最优解的误差不超过0.26%。
14
早在1954年,Dantzig等人就曾提出过一种方 法(非多项式算法),并且求出了一个42城市的 TSP最优解。到了1960年代,不少人用分支定界法 解决了许多有几十个城市的TSP。还有人提出了一 些近似方法,也解决了许多有几十个城市甚至上百 个城市的TSP(有时找到的仅是近似解)。更值得 注意的是,从1970年代中期开始,Grotschel与 Padberg等人深入研究了TS多面体的最大面 (facet),并从所得结果出发获得了一种解TSP的 新算法,可以解决一些有100多个城市的TSP,且都 在不长的时间内找到了最优解。
一、数学模型 1. 标准TSP 旅行商问题(简称TSP),也称货郎担问题或 旅行推销员问题,是运筹学中一个著名的问题,其 一般提法为:有一个旅行商从城市1出发,需要到城 市2、3、…、n去推销货物,最后返回城市1,若任 意两个城市间的距离已知,则该旅行商应如何选择 其最佳行走路线

TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。

其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。

旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,?,n);2)非对称旅行商问题(dij≠dji,?i,j=1,2,3,?,n)。

非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。

若对于城市V={v1,v2,v3,?,v n}的一个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。

TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。

因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。

二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。

但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。

2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。

3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。

tsp

tsp

一、问题描述旅行商问题,即TSP问题(Travelling Salesman Problem)是指对给定一组n个城市和它们两两之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次而且总的旅行距离最短。

此问题是典型NPC组合优化问题(NPC=Non-deterministic Polynomial complete,即是多项式复杂程度的非确定性完全问题。

)。

优化问题有三个基本要素:变量、约束和目标函数。

在求解过程中,选定的基本参数称为变量;对变量取值的限制成为约束;表示可行方案衡量标准的函数成为目标函数。

二、问题分析与建模TSP问题的数学描述为:在一个边赋权的带权图中,寻找最小汉密尔顿回路。

对于N个城市的TSP问题,其城市的数目应为N。

若N个城市中,每两个城市之间都有连通的路径,其连通路径数目应为n*(n-1)/2。

而对于含有个顶点无向连接图来说,其完全图的边数也为n*(n-1)/2,因此可以用含有n个顶点的完全连通无向图来形象的描绘TSP问题的已知条件,而此完全连通无向图中每条边上的权值,可以表示TSP问题中每两个顶点之间的路径长度。

因此在其后的设计中,使用带权的完全无向连通图来分析TSP问题的求解过程。

一棵生成树是连通图的一个极小连通子图,它含有连通图中的全部n个顶点,一个连通图的最小生成树,是此图所有生成树中代价和最小的一棵生成树。

它与TSP问题所求路径有许多相同之处,它们都必须经过所有的n个顶点,n个顶点之间都是相互连通(但在TSP问题中,路径为回路),并且路径长度为最短。

因此,对于TSP问题的求解,可以借助于最小生成树的求解方法。

三、求解问题的算法用最小生成树解决TSP问题。

构造最小生成树可以有多种,其中一种为普里姆(Prim)算法。

算法的描述为::在含有n(n>1)个顶点的完全连通无向图中,任意选择一个顶点Vi作为起始点,在与顶点Vi相关联的n-1条边中,选择一条权值最小的边ei,此边可连接V i及图中另一个顶点Vj,然后在与V i或Vj相关联除ei以外的所有边中,选择权值最小的边ej,ej又可连接另外一个顶点(边的选则还要保证树中没有环的产生)。

tsp问题

tsp问题

TSP问题求解旅行商问题(traveling saleman problem,简称tsp):已知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市只能访问一次,最后又必须返回出发城市。

如何安排他对这些城市的访问次序,可使其旅行路线的总长度最短?用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只通过一次的具有最短距离的回路。

这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商问题(dij≠dji,,任意i,j=1,2,3,…,n)。

若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:min l=σd(t(i),t(i+1))(i=1,…,n)旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法求其近似解。

一.遗传算法:初始化过程:用v1,v2,v3,…,vn代表所选n个城市。

定义整数pop-size作为染色体的个数,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。

适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)).评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=alpha*(1-alpha).^(i-1) 。

旅行商问题

旅行商问题

旅行商问题旅行商问题(Traveling Saleman Problem,TSP)又译为、,简称为,是最基本的路线问题,该问题是在寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。

最早的旅行商问题的数学规划是由Dantzig(1959)等人提出。

目录1简介“旅行商问题”常被称为“”,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。

规则虽然简单,但在地点数目增多后求解却极为复杂。

以42个地点为例,如果要列举所有路径后再确定最佳行程,那么总路径数量之大,几乎难以计算出来。

多年来全球数学家绞尽脑汁,试图找到一个高效的TSP问题在物流中的描述是对应一个物流配送公司,欲将n个客户的订货沿最短路线全部送到。

如何确定最短路线。

TSP问题最简单的求解方法是。

它的解是多维的、多局部极值的、趋于无穷大的复杂解的空间,搜索空间是n个点的所有排列的集合,大小为(n-1)。

可以形象地把看成是一个无穷大的丘陵地带,各山峰或山谷的高度即是问题的极值。

求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到山顶或谷底的过程。

2研究历史旅行商问题字面上的理解是:有一个推销员,要到n个城市推销商品,他要找出一个包含所有n个城市的具有最短路程的环路。

TSP的历史很久,最早的描述是1759年欧拉研究的骑士周游问题,即对于棋盘中的64个方格,走访64个方格一次且仅一次,并且最终返回到起始点。

TSP由RAND公司于1948年引入,该公司的声誉以及线性规划这一新方法的出现使得TSP成为一个知名且流行的问题。

3问题解法旅行推销员的问题,我们称之为巡行(Tour),此种问题属于的问题,1、途程建构法(Tour Construction Procedures)从中产生一个近似最佳解的途径,有以下几种解法:2、途程改善法(Tour Improvement Procedure)先给定一个可行途程,然后进行改善,一直到不能改善为止。

TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点

TSP的⼏种求解⽅法及其优缺点TSP的⼏种求解⽅法及其优缺点⼀、什么是TSP问题旅⾏商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定⼀条经过各城市当且仅当⼀次的最短路线。

其图论描述为:给定图G=(V,A),其中V为顶点集,A 为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定⼀条长度最短的Hamilton回路,即遍历所有顶点当且仅当⼀次的最短距离。

旅⾏商问题可分为如下两类:1)对称旅⾏商问题(dij=dji,Πi,j=1,2,3,?,n);2)⾮对称旅⾏商问题(dij≠dji,?i,j=1,2,3,?,n)。

⾮对称旅⾏商问题较难求解,我们⼀般是探讨对称旅⾏商问题的求解。

若对于城市V={v1,v2,v3,?,v n}的⼀个访问顺序为T={t1,t2,t3,?,t i,?,t n},其中t i∈V(i=1,2,3,?,n),且记t n+1=t1,则旅⾏商问题的数学模型为:minL=。

TSP是⼀个典型的组合优化问题,并且是⼀个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接⽐较标准。

因此,快速、有效地解决TSP有着重要的理论价值和极⾼的实际应⽤价值。

⼆、主要求解⽅法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插⼊、最远插⼊、最近添加、贪婪插⼊等。

但是,由于构造型算法优化质量较差,迄今为⽌已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退⽕算法2)禁忌搜索算法3)Hopfield神经⽹络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1 模拟退⽕算法⽅法1)编码选择:采⽤描述TSP解的最常⽤的⼀种策略——路径编码。

2)SA状态产⽣函数的设计:对于基于路径编码的SA状态产⽣函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插⼊操作(INS)。

求解TSP问题算法综述

求解TSP问题算法综述

求解TSP问题算法综述一、本文概述本文旨在全面综述求解旅行商问题(Traveling Salesman Problem, TSP)的各种算法。

TSP问题是一个经典的组合优化问题,自提出以来就引起了广泛的关注和研究。

该问题可以描述为:给定一系列城市和每对城市之间的距离,求解一条最短的可能路线,使得一个旅行商从某个城市出发,经过每个城市恰好一次,最后返回出发城市。

本文将首先介绍TSP问题的基本定义、性质及其在实际应用中的重要性。

接着,我们将综述传统的精确算法,如动态规划、分支定界法等,以及它们在求解TSP问题中的优缺点。

然后,我们将重点介绍启发式算法和元启发式算法,包括模拟退火、遗传算法、蚁群算法等,这些算法在求解大规模TSP问题时表现出良好的性能和效率。

本文还将探讨近年来新兴的机器学习算法在TSP问题求解中的应用,如深度学习、强化学习等。

我们将对各类算法进行总结和评价,分析它们在不同场景下的适用性和性能表现。

我们也将展望TSP问题求解算法的未来发展方向,以期为相关领域的研究和实践提供有益的参考和指导。

二、经典算法求解旅行商问题(TSP)的经典算法多种多样,每种算法都有其独特的优缺点和适用场景。

本节将对一些代表性的经典算法进行综述。

暴力穷举法(Brute-Force):暴力穷举法是最简单直观的TSP求解算法。

其基本思想是生成所有可能的旅行路径,计算每条路径的总距离,然后选择最短的那条。

虽然这种方法在理论上可以找到最优解,但由于其时间复杂度为O(n!),对于大规模问题来说计算量极大,因此并不实用。

动态规划(Dynamic Programming, DP):动态规划是一种通过将问题分解为更小的子问题来求解的优化方法。

对于TSP问题,DP算法可以将一个大循环中的多个子问题合并成一个子问题,从而减少重复计算。

然而,TSP的DP算法仍面临“维度灾难”的问题,即当城市数量增多时,所需存储空间和计算时间呈指数级增长。

简述旅行商问题

简述旅行商问题

旅行商问题:是一个经典的组合优化问题。

经典的TSP可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。

应如何选择行进路线,以使总的行程最短。

从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。

由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个NP完全问题。

由于其在交通运输、电路板线路设计以及物流配送等领域内有着广泛的应用,国内外学者对其进行了大量的研究。

早期的研究者使用精确算法求解该问题,常用的方法包括:分枝定界法、线性规划法、动态规划法等。

但是,随着问题规模的增大,精确算法将变得无能为力,因此,在后来的研究中,国内外学者重点使用近似算法或启发式算法,主要有遗传算法、模拟退火法、蚁群算法、禁忌搜索算法、贪婪算法和神经网络等。

旅行商问题描述

旅行商问题描述

设城市数量为n,则有
( n 1)! 2
条不同路径。
算法的复杂程序呈指数增加。城市数量越多,所需的计算时 间成本越大,当城市数量无穷多时,则不可能被计算出来。 例:当n=20,路径数有1.2×1018 ,即使每秒列举1亿条路径, 需350年才能全部列出。
二、近似算法
• 1、路径构建法: 从距离矩阵中产生一个近似最佳解的途径,有以下几种解法: (1)最近邻点法:一开始以寻找离场站最近的需求点为起始路线 的第一个顾客,此后寻找离最后加入路线的顾客最近的需求点,直到 最后。 (2)节省法:以服务每一个节点为起始解,根据三角不等式两边 之和大于第三边之性质,其起始状况为每服务一个顾客后便回场站, 而后计算路线间合并节省量,将节省量以降序排序而依次合并路线, 直到最后。 (3)插入法:如最近插入法、最省插入法、随意插入法、最远插 入法、最大角度插入法等。 • 2、路径优化法:先产生一条初始巡回路径,再改变其中某些车市的 顺序,使路径优化,逐渐接近最优解。 • 3、智能算法
3、智能算法
• 至今没有找到多项式时间算法解(无法用一个确定的公式 来求解)的一类问题,但问题的所有可能答案,都是可以 在多项式时间内计算得出并进行正确与否的验算。
应用
1、印刷电路版的走刀问题 2、车间调度、电网配线 3、交通运输:航线安排、物流配送
求解算法:
一、精确算法—穷举法 • 旅行商问题实际上是一个排列组合问题。穷举法:将所有 的可能路线全部求出,通过比较找到全局最优解,但计算 量在顶点数稍微多一点情况下,这时由于可行解太多,而 使算法不可行。
旅行商问题是一个典型的组合优化问题,也是一个典型的 NPC问题。 该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合 爆炸。 以42个地点为例:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表示连接两城市的路,边上的权W(e)表示距
离(或时间或费用)。于是旅行推销员问题就
成为在加权图中寻找一条经过每个顶点正好一
次的最短圈的问题,即求最佳Hamilton 圈的
问题。
基本概念
•: 1) 哈米尔顿路径(H路径): 经过图G每个顶点正好一次的路径; 2) 哈米尔顿圈(H圈);经过G的每个顶点正好一次的圈; 3) 哈米尔顿图(H图): 4) 最佳H圈: 含H圈的图。
到的C即为所求。
例对下图的K6,用二边逐次修正法求较优H圈.
较优H圈:
C3 v1v4v5v6v2v3v1
其权为W(C3)=192
分析: 这个解的近似程度可用最优H圈的权的下界与 其比较而得出.即利用最小生成树可得最优H圈的一个下界. 设C是G的一个最优H圈,则对G的任一顶点v, C-v是 G-v的生成树.如果T是G-v的最小生成树,且e1是e2与v关联 的边中权最小的两条边,则w(T)+w(e1)+w(e2)将是w(C) 的一个下界. 取v=v3,得G-v3的一最小生成树(实线),其权 w(T)=122,与v3关联的权最 小的两条边为v1v3和v2v3, 故w(C) w(T)+w(v1v3)+w(v2v3) =178. 故最优H圈的权 应满足178 w(C) 192.
参考书: 1.龚劬 《图论与网络最优化算法》 重庆大学出版社,2009 2.西北工业大学数学建模指导委员会 《数学建模简明教程》 高等教育出版社
主讲:重庆大学 龚 劬
主要内容
引 例 基本概念 TSP模型的应用 算法简介 最佳灾情巡视路线的模型 的建立与求解
引 例
•:
1. 98年全国大学生数学建模竞赛B题“最佳灾 情巡视路线”中的前两个问题: 今年(1998年)夏天某县遭受水灾. 为考察灾情、
2.
3.

分枝定界法
算法简介
二次逐次修正法 (1)任取初始H圈 C0=v1,v2,…,vi,…,vj,…vm,v1 (2)对所有的i,j,1<i+1<j<m,若 w(vi,vj)+w(vi+1,vj+1) <w(vi,vi+1)+w(vj,vj+1) 则在C0中删去边(vi,vi+1)和(vj,vj+1)而加入边(vi,vj) 和(vi+1,vj+1),形成新的H圈C,即 C=v1,v2,…,vi,vj,vj-1,…,vi+1,vj+1,…,vi,v1 (3)C0C,重复步骤(2),直到条件不满足为 经过每个 顶点一次的权最小闭通路;
5) 最佳推销员回路:
6) TSP问题: 在完备加权图中求最佳H圈的问题。
TSP问题举例

工件排序
设有n个工件等待在一台机床上加工,加工完i,接 着加工j,这中间机器需要花费一定的准备时间tij,问 如何安排加工顺序使总调整时间最短? 此问题可用TSP的方法求解,n个工件对应n个顶点, tij表示(i,j) 上的权,因此需求图中权最小的H路径。
组织自救,县领导决定,带领有关部门负责人到
全县各乡(镇)、村巡视. 巡视路线指从县政府 所在地出发,走遍各乡(镇)、村,又回到县政 府所在地的路线.
引 例
•:
1)若分三组(路)巡视,试设计总路程最 短且各组尽可能均衡的巡视路线. 2)假定巡视人员在各乡(镇)停留时间T=2 小时,在各村停留时间t=1小时,汽车行驶速度V =35公里/小时. 要在24小时内完成巡视,至少应分 几组;给出这种分组下最佳的巡视路线.
对角线完全算法
结论: 若能在n×n距离矩阵中找出n个不同行也不同 列的元素,使它们的和为最小值。若这n个元素构成 一条哈米尔顿圈时,此圈便是最佳H圈。 矩阵的简化 :将矩阵的每一行的各元素减去本行的 最小元素称为对行简化,从第i行减去的数称为第i 行的约数,记为R(i)。将矩阵的每一列的各元素 减去本列的最小元素称为对列简化,从第j列减去的 数称为第j列的约数,记为R’(j)。各行各列的约数之 和称为矩阵的约数,记为R。矩阵经行的简化和列的 简化后所得矩阵称为该矩阵的简化矩阵。
引 例
公路边的数字为该路段的公里数.
引 例
2. 问题分析 本题给出了某县的公路网络图,要求在不同的条件下, 灾情巡视的最佳分组方案和路线. 将每个乡(镇)或村看作一个图的顶点,各乡镇、村之 间的公路看作此图对应顶点间的边,各条公路的长度(或 行驶时间)看作对应边上的权,所给公路网就转化为加权 图,问题就转化为图论中一类称之为旅行推销员问题, 即在给定的加权网络图中寻找从给定点O出发,行遍所有
顶点至少一次再回到点O,使得总权(路程或时间)最小.
原始问题
•:
旅行商问题(TSP,traveling salesman problem) 一个商人欲到n个城市推销商品,每两个城市i 和j之间的距离为dij,如何选择一条道路使得 商人每个城市正好走一遍后回到起点且所走路 线最短。
原始问题
•:
图论模型 构造一个图G=(V,E),顶点表示城市,边

计算机布线
一个计算机接口含几个组件。每个组件上都置有若 干管脚。这些管脚需用导线连接。考虑到以后改变方便 和管脚的细小。要求每个管脚最多连两条线。为避免信 号干扰以及布线的简洁,要求导线总长度尽可能小。
TSP问题举例


计算机布线(续) 问题容易转化为TSP问题,每个管脚对应于图的顶点, d(x,y)代表两管脚x与y的距离,原问题即为在图中寻求 最小权H路径。 电路板钻孔 MetelcoSA是希腊的一个印刷电路板(PCCB)制造商。 在板子上对应管脚的地方必须钻孔,以便以后电子元件 焊在这板上。典型的电路板可能有500个管脚位置,大多 数钻孔都由程序化的钻孔机完成,求最佳钻孔顺序。此 问题其实就是求500个顶点的完备加权图的最佳H圈的问 题,即TSP问题。用求解出的H圈来指导生产,使Metclo 的钻孔时间缩短了30%,提高了生产效率。
算法简介
TSP问题是NP-hard问题,即不存在多项式时间算法. 也就是说,对于大型网络(赋权图),目前还没有一个精确求解 TSP问题的有效算法,因此只能找能求出相当好(不一定最 优)的解的算法.
算法简介

1.
近似算法或启发式算法
一般是以构造型算法得到一个初始解,然后再用改 进型算法逐步改进。 常见的构造型算法有两种:Christofides最小权匹 配算法 ,对角线完全算法。 常见的改进型算法有两种:二次逐次修正法, Feiring矩阵逐次改进法。
相关文档
最新文档