运筹学_第2章_对偶理论习题

合集下载

运筹学基础对偶线性规划(2)

运筹学基础对偶线性规划(2)

y1 +2y2 +y3 ≤ 3
-3y1 +y3 ≤ -5
y1 -y2 +y3=1
y1 ≥ 0, y2 , y3 ≤ 0
对偶问题(或原问题) 目标函数最大化( maxZ)
n 个约束 m 个变量 目标函数价值向量(系数) 约束条件限定向量
≤ 约束 ≥

≥0 变量 ≤ 0
无限制
§2.2 线性规划的对偶理论
n 个变量 m 个约束 约束条件限定向量(右边项) 目标函数价值向量
≥0 变量 ≤ 0
无限制
对偶问题(或原问题) 目标函数最大化( maxZ)
n 个约束 m 个变量 目标函数价值向量(系数) 约束条件限定向量
≤ 约束 ≥

-2 x1
x3 3
≥ 约束 ≤
≥0 变量 ≤ 0
x1,x2,x3

无限制
原问题线性规划模型 对偶线性规划模型
max f 2x1 3x2 min g 8y1 16 y2 12 y3
x1 2 x2 8 s.t.44x1xx,12x2 11620
s.t.
y1 4y2 2 2y1 4y3 3
yi 0,i 1,2,3
下列的表给出了原问题模型和模型的对应关系,这些也可以
≥ 约束 ≤

≥ 约束 ≤

反号
Hale Waihona Puke ≤0 变量 ≥ 0无限制
原问题(maxZ)与对偶之关系:
原问题 目标函数max
对偶问题 目标函数min
n个
变 量
无 00约束
n个 约



原问题(maxZ)口诀: 变量决定约束是同号
约 m个

运筹学习题集(第二章)

运筹学习题集(第二章)

判断题判断正误,如果错误请更正第二章线形规划的对偶理论1.原问题第i个约束是<=约束,则对偶变量yi>=0.2.互为对偶问题,或则同时都有最优解,或则同时都无最优解.3.原问题有多重解,对偶问题也有多重解.4.对偶问题有可行解,原问题无可行解,则对偶问题具有无界解.5.原问题无最优解,则对偶问题无可行解.6.设X,Y分别为{minZ=CX|AX>=b,X>=0}和{maxw=Yb|YA<=C,Y>=0}的可行解,则有(1)CX<=Yb;(2)CX是w的上界;(3)当X,Y为最优解,CX=Yb;(4)当CX=Yb 时,有YXs+YsX=0;(5)X为最优解且B是最优基时,则Y=CB-1是最优解;(6)松弛变量Ys的检验数是λs,则X=-λs是基本解,若Ys是最优解, 则X=-λs是最优解.7.原问题与对偶问题都可行,则都有最优解.8.原问题具有无界解,则对偶问题可行.9.若X,Y是原问题与对偶问题的最优解.则X=Y.10.若某种资源影子价格为0,则该资源一定有剩余.11影子价格就是资源的价格.12.原问题可行对偶问题不可行,可用对偶单纯形法计算.13.对偶单纯形法比值失效说明原问题具有无界解.14.对偶单纯形法是直接解对偶问题的一种解法.15.减少一个约束,目标值不会比原来变差.16.增加一个约束,目标值不会比原来变好.17增加一个变量, 目标值不会比原来变差.18.减少一个非基变量, 目标值不变.19.当Cj(j=1,2,3,……,n)在允许的最大范围内同时变化时,最优解不变。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第二章线性规划的对偶理论1.如果决策变量数列相等的两个线规划的最优解相同,则两个线性规划 A约束条件相同B目标函数相同 C最优目标函数值相同 D以上结论都不对2.对偶单纯形法的最小比值规则是为了保证 A使原问题保持可行 B使对偶问题保持可行C逐步消除原问题不可行性 D逐步消除对偶问题不可行性3.互为对偶的两个线性规划问题的解存在关系 A若最优解存在,则最优解相同 B原问题无可行解,则对偶问题也无可行解 C对偶问题无可行解,原问题可能无可行解 D一个问题无界,则另一个问题无可行解 E一个问题无可行解,则另一个问题具有无界解4.已知规范形式原问题(max)的最优表中的检验数为(λ1,λ2,……λn),松弛变量的检验数为(λn+1,λn+2,……λn+m),则对偶问题的最优解为 A—(λ1,λ2,……λn) B (λ1,λ2,……λn) C —(λn+1,λn+2,……λn+m)D(λn+1,λn+2,……λn+m)5.原问题与对偶问题都有可行解,则 A原问题有最优解,对偶问题可能没有最优解B原问题与对偶问题可能都没有最优解 C可能一个问题有最优解,另一个问题具有无界解D 原问题与对偶问题都有最优解计算题线性规划问题和对偶问题对于如下的线性规划问题min z = 3x1 + 2x2+x3. x1 + x2+ x3 ≤ 15 (1)2x1 - x2+ x3≥ 9 (2)-x1 + 2x2+2x3≤ 8 (3)x1 x2x3 ≥ 01、写出题目中线性规划问题的对偶问题;2、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解答:1、写出题目中线性规划问题的对偶问题;解:max w = 15y1 + 9y2 + 8y3. y1 + 2y2- y3 ≤ 3 (1)y1 - y2+ 2y3≤ 2 (2)y1 + y2+ 2y3≤ 1 (3)y1≤0、 y2 ≥0、y3 ≤02、分别求出原始问题和对偶问题的最优解(求解的次序和方法不限);解:先将原问题化成以下形式,则有mi n z = 3x1 + 2x2 + x3. x1 + x2+ x3+ x4= 15 (1)-2x1 + x2- x3+ x5= -9 (2)-x1 + 2x2+2x3+x6= 8 (3)x1 x2x3x4x5x6 ≥ 0原始问题的最优解为(X1 X2 X3 X4 X5 X6)=(2,0,5,8,0,0),minz=11对偶问题的最优解为(y1 y2 y3 y4 y5 y6)=(0,7/5,-1/5,0,19/5,0),maxw=11对于以下线性规划问题max z = -x1 - 2x2. -2x1 + 3x2≤ 12 (1)-3x1 + x2≤ 6 (2)x1 + 3x2≥ 3 (3)x1≤ 0, x2≥ 01、写出标准化的线性规划问题;2、用单纯形表求出这个线性规划问题的最优解和最优的目标函数值;3、写出这个(极大化)线性规划问题的对偶问题;4、求出对偶问题的最优解和最优解的目标函数值;5、第(2)个约束右端常数b2=6在什么范围内变化,最优解保持不变。

运筹学习题答案(第二章)

运筹学习题答案(第二章)

School of Management
运筹学教程
第二章习题解答
2.4 给出线性规划问题
min Z = 2 x1 + 3 x 2 + 5 x 3 + 6 x 4 x1 + 2 x 2 + 3 x 3 + x 4 ≥ 2 st . − 2 x1 + x 2 − x 3 + 3 x 4 ≤ − 3 x j ≥ 0 , ( j = 1, L , 4 )
page 14 30 December 2010
School of Management
运筹学教程
第二章习题解答
是原问题的可行解。 解:x1=1,x2=x3=0是原问题的可行解。原问题的对 是原问题的可行解 偶问题为: 偶问题为:
min W = 2 y1 + y 2 − y1 − 2 y 2 ≥ 1 (1) y + y ≥1 (2) 1 2 st . ( 3) y1 − y 2 ≥ 0 y1 , y 2 ≥ 0 (4)
运筹学教程
第二章习题解答
2.1 写出下列线性规划问题的对偶问题。 写出下列线性规划问题的对偶问题。
min Z = 2 x1 + 2 x 2 + 4 x 3 x1 + 3 x 2 + 4 x 3 ≥ 2 2 x + x + 3x ≤ 3 2 3 st 1 x1 + 4 x 2 + 3 x 3 = 5 x1 , x 2 , ≥ 0 , x 3 无约束
School of Management
运筹学教程
第二章习题解答
max Z = 5 x1 + 6 x2 + 3 x3 x1 + 2 x2 + 2 x3 = 5 − x + 5 x − 3 x ≥ 3 2 3 st 1 4 x1 + 7 x2 + 3 x3 ≤ 8 x1无约束 , x2 , ≥ 0, x3 ≤ 0

运筹学第2章:线性规划的对偶理论

运筹学第2章:线性规划的对偶理论


标函数求极小时取“≥”号
注:对称形式与线性规划标准型是两种不同的形 式,对称形式中约束条件的符号由目标函数决定
从以下方面比较(LP1)与(LP2):
原问题
对偶问题 约束系数矩阵的转 臵 目标函数中的价格 系数向量 约束条件的右端项 向量 Min w=Y’b A’Y≥C’ Y≥0
A
b C 目标函数 约束条件 决策变量
非基变量 基变量
XB
0 b Xs C j - zj B
XN
N
Xs
I
0
初始 单纯形表
非基变量
CB
CN
基变量
最终
单纯形表
CB
XB
XB B-1b Cj - zj
I 0
Xs B-1 N B-1 CN-CBB-1N -CBB-1
XN
若B-1b为最优解,则
CB CB ( B 1B) 0 C N CB B N 0 CB B 1 0
令 y 2 y 2 , y3 y3 y3 ,则
min 2 y1 y2 4 y3
2 y1 3 y2 y3 1 3 y y y 4 1 2 3 s.t. 5 y1 6 y2 y3 3 y1 0, y2 0, y3无约束
n j 1 m j j
C X Y b, 即 c j x j y i bi
j 1 i 1
__
__
n
m
c x ( a
j 1 m i 1 n i i i 1 i 1 j 1
n
m
ij
yi ) x j aij x j yi ( a ji yi c j )
例1

运筹学--第二章 线性规划的对偶问题

运筹学--第二章 线性规划的对偶问题

习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。

分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。

(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。

2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)对偶问题的最优解y1*=4;y2*=1,试对偶问题的性质,求出原问题的最优解。

2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)4748(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。

运筹学习题解答(chap2)(1)(1)

运筹学习题解答(chap2)(1)(1)

第二章 对偶问题与灵敏度分析一、写出下列线性规划的对偶问题1、P89,(a)321422m in x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≥=++≤++≥++.,0,;534;332;243321321321321无约束x x x x x x x x x x x x解:原模型可化为321422m in x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≥=++≥≥++.,0,;534;3-3--2-;243321321321321321无约束x x x y y y x x x x x x x x x 于是对偶模型为321532m ax y y y W +-=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+-≤+-.,0,;4334;243;22321321321321无约束y y y y y y y y y y y y2、P89,(b)321365m ax x x x Z ++=⎪⎪⎩⎪⎪⎨⎧≤≥≤++≥-+-=++.0,0,;8374;35;522321321321321x x x x x x x x x x x x 无约束解:令033≥-='x x 原模型可化为321365m ax x x x Z '-+=⎪⎪⎩⎪⎪⎨⎧≥'≥≤'+≤'='+.0,0,;83-74;3--5-;52-2321321321321321x x x y y y x x x x x x x x x 无约束于是对偶模型为321835m in y y y W +-=⎪⎪⎩⎪⎪⎨⎧≥-≥---≥+-=++.0,,;332;6752;54321321321321y y y y y y y y y y y y 无约束 或⎪⎪⎩⎪⎪⎨⎧≥≤++≥+-=++.0,,;332;6752;54321321321321y y y y y y y y y y y y 无约束二、灵敏度分析1、P92, 线性规划问题213m ax x x Z += ⎪⎩⎪⎨⎧≥≤+≤+0,1025;74212121x x x x x x最优单纯形表如下试用灵敏度分析的方法,分析:(1) 目标函数中的系数21,c c 分别在什么范围内变化,最优解不变(2) 约束条件右端常数项21,b b 分别在什么范围内变化,最优基保持不变解:(1) 1c 的分析:要使得最优解不变,则需⎪⎪⎩⎪⎪⎨⎧≤⨯-⨯+=≤⨯+⨯-=034131003513201413c c σσ 即 ⎪⎩⎪⎨⎧≤≥42511c c 所以:4251≤≤c 时可保持最优解不变。

运筹学对偶理论

运筹学对偶理论

max ω=7y1+4y2-2y3 2y1+ y2- y3 ≤3 y1 +3y3 ≤2 ≤ 4 -4y1+ 2y2 ≤-6 =-2 y1 -y2 -y3 ≥ 0 3y1 +y3=1 y1 ≥ 0y2 ≤ 0y3 无约束
11 12
13 14 15 16 17 18 19 20 21 22 23
例 对偶问题的基本性质 • 对称性:对偶问题的对偶问题是原问题 • 弱对偶性:极大化原问题的任一可行解的目标函数值,不大于其对偶问题任意可行解的 目标函数值 (鞍型图) • 无界性:原问题无界,对偶问题无可行解 • 对偶定理:若一个问题有最优解,则另一问题也有最优解,且目标函数值相等。若原问 -1 题最优基为B,则其对偶问题最优解Y*=CBB • 互补松弛性: 对偶的对偶 弱对偶定理 强对偶定理 对偶解定理 最优解定理 互补松弛定理 互补松弛定理的应用
24
第二章 对偶理论 • 这说明yi是右端项bi每增加一个单位对目标函数Z的贡献。 • 对偶变量 yi在经济上表示原问题第i种资源的边际价值。 • 对偶变量的值 yi*所表示的第i种资源的边际价值,称为影子价值。 若原问题的价值系数Cj表示单位产值,则yi 称为影子价格。 若原问题的价值系数Cj表示单位利润,则yi 称为影子利润。 第二章 对偶理论 • 影子价格不是资源的实际价格,而是资源配置结构的反映,是在其它数据相对稳定的条 件下某种资源增加一个单位导致的目标函数值的增量变化。 • 对资源i总存量的评估:购进 or 出让 • 对资源i当前分配量的评估:增加 or 减少 ①它表明了当前的资源配置状况,告诉经营者应当优先增加何种资源,才能获利更多。 ②告诉经营者以怎样的代价去取得紧缺资源。
1
2
3

运筹学_第2章_对偶理论习题

运筹学_第2章_对偶理论习题

运筹学_第2章_对偶理论习题第⼆章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3⽆限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2⽆限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。

试⽤互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代⼊上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

⼜因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。

故原问题的最优解为X*=(0,0,4,4)T2.4⽤对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,⾮基变量在⽬标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

运筹学-02对偶理论与灵敏度分析

运筹学-02对偶理论与灵敏度分析
page 9 Sep.2009
Yao Yuan School of Business Administration
Operations Research
原问题和对偶问题的对应关系
原问题(对偶问题) 对偶问题(原问题) 约束系数矩阵的转置 目标函数中的价值系数向量 约束系数矩阵 约束条件的右端向量
A b C
min W Y T b A Y C s.t. Y 0
T T
X n1,Ym1 C1n,Amn,bm1
对偶问题 约束系数矩阵的转置 目标函数中的价值系数向量 约束条件的右端向量 Min W=YTb ATY≥CT
Yao Yuan School of Business Administration
目标函数
目标函数中的价值系数向量
max Z c j x j
j 1 n
约束条件的右端向量
min W bi y i
有n个 ( j 1,..., n) m a y c 约 ij i j i 1 束 m aij y i c j 条 i 1 件 m a ij y i c j i 1
0 6 1 2
5 2 1 1
15 24 5
max Z 2 x1 x2 5 x2 15 6 x 2 x 24 1 2 s.t. x1 x2 5 x1 , x2 0
min W 15 y1 24 y 2 5 y 3 6 y 2 y3 2 s.t.5 y1 2 y 2 y 3 1 y ,y ,y 0 1 2 3
page 3 Sep.2009
min W 24 y1 26 y 2 2 y1 3 y 2 4 s.t.3 y1 2 y 2 3 y ,y 0 1 2

【免费下载】运筹学 第2章 对偶理论习题

【免费下载】运筹学 第2章 对偶理论习题

第二章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3无限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2无限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。

试用互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。

故原问题的最优解为X*=(0,0,4,4)T2.4用对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

《运筹学》第二章 对偶问题

《运筹学》第二章 对偶问题


3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无 约 束
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2

20
一组互为对偶的线性规划问题的解之间只有 下列三种情况:
(1)两个规划问题都有可行解(此时,两个规划问题都有最优 解,且最优值相等);
(2)两个规划问题都不可行; (3) 一个规划问题不可行,另一个规划问题有可行解,且具有
无界解。
21
(4)互补松弛性: 在线性规划问题的最优解中,
则 aij xj * = bi ;
bi , 则 y i* = 0 (4)’ 互补松弛性:
在线性规划问题的最优解中, 则 aij yi * = cj ;
>cj , 则 xj* = 0
n
若 y i * >0,
j=1 n
若 a ij xj * <
j=1
m
若 x j * >0,
i=1 m
若 a ij yi*
i=1 22
m
= 证b:i y∵i*
y1 3 y1

2 y2
3 y3 4 y3
3 5

2 y1 7 y2 y3 1
y1

0,
y2

0,
y

3


对偶问题的对 偶还是原问题
14
• 练习 写出下列线性规划问题的对偶问题.
max Z 4x1 3x2 2x3
4x1

运筹学第2章答案

运筹学第2章答案
即生产 A 产品 5 件,B 产品不生产,C 产品生产 3 件 其最优值 maxz=27 (2)。设 A 产品利润所对应的参数为 C1
即令 C1 ' = 3 + λ
σ 1 = −λ <= 0
1
σ2
=
λ 3
<=
0
σ3 =0
11 σ 1 = − 3 λ − 5 <= 0
13
σ5
=
λ 3

5
<=
0
P5=1/3X-3/5<=0
Cj
3
1
4
0
0
Cb
xb
b
x1
x2
x3
x4
x5
0
x4
15
3
-1
0
4
x3
6
3/5
4/5
1
σi
3/5
-11/5
0
x1 入基,min{15/3,3/(3/5)}=5,所以 x4 出基
Cj
3
1
4
Cb
xb
b
x1
x2
x3
3
x1
5
13
-1/3
0
4
x3
3
0
1
1
σi
0
-2
0
因为所有的σ i <=0,所以得到最优解 X=(5,0,3,0,0)T,
32/5
0
0
1
-1/5
8/5
2
x2
3/5
0
1
0
1/5
-3/5
3
18/5
1
0
01/52Fra bibliotek5x1

运筹学第二章线性规划的对偶理论复习题

运筹学第二章线性规划的对偶理论复习题
min w = 5 y1 + 12 y2 st. y1 + 2 y2 ≥ 2 y1 + 3 y2 ≥ 1 2y1 + 4 y2 ≥ 3 y1 ≥ 0,y2无符号限制
2, 0)T ; (2)由题知原问题的最优解为 x* = (3,
5
由互补松弛定理得:在对偶问题中对应第一,二个约束为紧,第三个约束条件 为松,即,
max z = x1 + x2
s.t.
− x1 + x2 + x3 ≤ 2 − 2 x1 + x2 − x3 ≤ 1 x1 , x2 , x3 ≥ 0
有可行解,但无最优解.
⎛0⎞ ⎟ 证明: x = ⎜ ⎜0⎟ ⎜0⎟ ⎝ ⎠
是线性问题的可行解,即该问题存在可行解;
又∵其对偶问题为:
min w = 2 y1 + y2 st. -y1 − 2 y2 ≥ 1
x1 + x 2 − x3 ≤ 2 x1 − x 2 + x3 = 1 2 x1 + x2 + x3 ≥ 2
x1 ≥ 0, x 2 ≤ 0, x3无约束
的最大值不超过 1. 证明:该线性问题的对偶问题为:
min w = 2 y1 + y2 + 2 y3 st. y1 + y2 + 2 y3 ≥ 1 y1 − y2 + y3 ≤ 2 -y1 + y2 + y3 = 1 y1 ≥ 0,y2 自由,y3 ≤ 0
7、考虑下列原始线性规划
max z = 2 x1 + x2 + 3x3
s.t.
x1 + x2 + 2 x3 ≤ 5 2 x1 + 3x 2 + 4 x3 = 12

运筹学第二章——第八节—线性规划的对偶理论

运筹学第二章——第八节—线性规划的对偶理论

四、对偶问题经济学含义——影子价格
因为Z*=Y*=Yb 所以:Δ Z/ Δ b=Y b——资源的量 Z——目标函数 经济学含义:资源每变动一个单位,目标函 数(利润、总产值等)变动的大小。 资源对生产做出的贡献。(影子价格) 是对现有资源实现最大效益的一个评价,叫 机会成本。
V*X=0, Y*U=0,其中V是对偶问题的剩余变量,U是 原问题的松弛变量。
(七)原问题在单纯性法迭代过程中的检验 数对应于对偶问题的一个基本解。(对应性 定理) 原问题 XB XN 对应基B检验数 0 CN-CBB-1BN 对偶问题的变量 -YS1 -YS2 XS –CBB-1 -Y
对偶问题性质的启示
原问题 有最优解 无可行解 有可行解无上界 无有限最优解 对偶问题 有最优解 无可行解 无有限最优解 有可行解但无下界
由互补松弛性定理可知: 当U>0,即AX <b时,资源未充分利用时,影 子价格为0。
二、原问题与对偶问题之间的转化
1、目标函数 MAX——Min 2、约束条件——变量 约束条件n个——变量n个 约束条件≥0 ——变量≤ 0 约束条件≤ 0 ——变量 ≥ 0 约束条件=0——变量无约束 要点:max为反向关系(约束条件——变量)
二、原问题与对偶问题之间的转化
3、变量——约束条件 变量m个——约束条件m个 变量≥0——约束条件≥ 0 变量≤ 0 ——约束条件≤ 0 变量无约束——约束条件=0 4、目标函数中变量的系数C为对偶问题中约 束条件的右端常数项b,个数对等变动。
(五)若原问题和对偶问题具有可行解,若 原问题或对偶问题之一有最优解,则另一个 对偶问题也必有最优解,且最优值相同。 (主对偶性定理) 证明 含义: 若原问题有一个对应于基B的最优解,则 CBB-1为对偶问题的最优解。

运筹学_第2章_对偶理论习题

运筹学_第2章_对偶理论习题

第二章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3无限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2无限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。

试用互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。

故原问题的最优解为X*=(0,0,4,4)T2.4用对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

运筹学:对偶理论与灵敏度分析习题与答案

运筹学:对偶理论与灵敏度分析习题与答案

一、填空题1、对偶问题的对偶问题是()。

正确答案:原问题2、若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡()Y﹡b。

正确答案:=3、若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX()Yb。

正确答案:<=4、若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡()Y*b。

正确答案:=5、设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为()。

正确答案:min=Yb YA>=c Y>=06、影子价格实际上是与原问题各约束条件相联系的()的数量表现。

正确答案:对偶变量7、线性规划的原问题的约束条件系数矩阵为A,则其对偶问题的约束条件系数矩阵为()。

正确答案:AT8、在对偶单纯形法迭代中,若某bi<0,且所有的aij≥0(j=1,2,…n),则原问题()。

正确答案:无解二、选择题1、线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为()形式。

A. “≥”B. “≤”C. “>”D. “=”正确答案:A2、如果z*是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优目标函数值w﹡满足()。

A.W﹡=Z﹡B.W﹡≠Z﹡C.W﹡≤Z﹡D.W﹡≥Z﹡正确答案:A3、如果某种资源的影子价格大于其市场价格,则说明()。

A.该资源过剩B.该资源稀缺C.企业应尽快处理该资源D.企业应充分利用该资源,开辟新的生产途径正确答案:B4、线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为()形式。

A.≥B.≤C. >D. =正确答案:A5、对偶单纯形法的迭代是从()开始的。

A.正则解B.最优解C.可行解D.可行解正确答案:A6、如果某种资源的影子价格大于其市场价格,则说明()。

A.该资源过剩B.该资源稀缺C.企业应尽快处理该资源D.企业应充分利用该资源,开辟新的生产途径正确答案:B7、线性规划灵敏度分析的主要功能是分析线性规划参数变化对()的影响。

《运筹学》第二章 对偶问题和灵敏度分析jssk1

《运筹学》第二章 对偶问题和灵敏度分析jssk1

2.1 线性规划的对偶理论
解:写出该问题的对偶问题
min W 20 y1 20 y2 y1 2 y2 1 2y y 2 2 1 2 y1 3 y2 3 3 y 2 y 4 2 1 y1 , y2 0
根据互补松弛性,可得: X3*=4>0 则 2y1+3y2=3
s.t. AX ≤b X≥0 s.t. YA ≥ C Y≥0
2.1 线性规划的对偶理论
二、原问题和对偶问题的关系
1、原问题目标函数求最大值,对偶问题求最小值; 2、原问题目标函数的系数是对偶问题约束条件的右端项,原问 题中的右端项是对偶问题目标函数的系数; 3、原问题约束条件为“≤”,则在其对偶问题中决策变量为 “≥”;原问题中决策变量为“≥”,则在其对偶问题中的约束条 件为“≥”; 4、原问题中的约束条件个数等于它的对偶问题中的变量个数, 原问题中的变量个数等于它的对偶问题中的约束条件个数;
YA ≥ C
Y≥0
在单纯形法的每一步迭代中,目标函数取值 Z=CBB-1b+(CN-CBB-1N)XN ,当非基变量XN=0时有 Z=CBB-1b和检验数CN-CBB-1N中都有乘子Y=CBB-1, 那么Y的经济意义是什么?
2.1 线性规划的对偶理论
Y=CBB-1=(y1,y2,…,ym),则得
Z CB B b Yb bi yi
2.1 线性规划的对偶理论
三、对偶问题的基本定理
1、对称性:对偶问题的对偶是原问题。
2、弱对偶定理:若X(0)是原问题的可行解,Y(0)是对偶 问题的可行解,则一定有CX(0) ≤ Y(0)b
max Z=CX 证明:设原问题是 AX ≤b X≥0
则对偶问题是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章线性规划的对偶理论
2.1 写出下列线性规划问题的对偶问题
max z=2x1+2x2-4x3
x1 + 3x2 + 3x3 ≤30
4x1 + 2x2 + 4x3≤80
x1、x2,x3≥0
解:其对偶问题为
min w=30y1+ 80y2
y1+ 4y2≥2
3y1 + 2y2 ≥2
3y1 + 4y2≥-4
y1、y2≥0
2.2 写出下列线性规划问题的对偶问题
min z=2x1+8x2-4x3
x1 + 3x2-3x3 ≥30
-x1 + 5x2 + 4x3 = 80
4x1 + 2x2-4x3≤50
x1≤0、x2≥0,x3无限制
解:其对偶问题为
max w=30y1+80 y2+50 y3
y1-y2 + 4 y3≥2
3y1+5y2 + 2y3≤8
-3y1 + 4y2-4y3 =-4
y1≥0,y2无限制,y3≤0
2.3已知线性规划问题
max z=x1+2x2+3x3+4x4
x1 + 2x2 + 2x3 +3x4≤20
2x1 + x2 + 3x3 +2x4≤20
x1、x2,x3,x4≥0
其对偶问题的最优解为y1*=6/5,y2*=1/5。

试用互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为
min w=20y1+ 20y2
y1 + 2y2≥1 (1)
2y1 + y2 ≥2 (2)
2y1 +3y2≥3 (3)
3y1 +2y2≥4 (4)
y1、y2≥0
将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以
2x3*+3x4* = 20
3x3* +2x4* = 20
解得x3* = x4* = 4。

故原问题的最优解为
X*=(0,0,4,4)T
2.4用对偶单纯形法求解下列线性规划
min z=4x1+2x2+6x3
2x1 +4x2 +8x3 ≥24
4x1 + x2 + 4x3≥8
x1、x2,x3≥0
解将问题改写成如下形式
max(-z)=-4x1-2x2-6x3
-2x1-4x2 -8x3 + x4=-24
-4x1-x2-4x3+x5 =-8
x1、x2,x3,x4,x5≥0
显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

整个问题的计算过程列在表2—7中。

最后一个单纯形表中,已得到一个可行的正侧解,因而得到问题的最优解为
X*=(0,4,4)T
最优值为z*=32
2.5设某线性规划问题的初始单纯形表和最优单纯形表分别为
现在要问:
(1)c3在什么范围内变化,表中最优解不变?
(2)c3从3变为8,求新的最优解
解(1)由于在最优单纯形表中,c3为非基变量的价格系数,因此其变化仅会影响到检验数σ3=-4,因此当Δc3≤-σ3=4时,表中最优解不变。

(2)当c3从3变为8时,则表中的检验数σ3从—4变为1,即表中的最优解将发生变化,用单纯形法求解得到如表2—11中所示的新的最优解。

即新的最优解为X=(0,160/3,20/3)。

2.6某工厂在计划期内要安排甲、乙两种产品,已知生产一件产品所消耗的A、
B、C三种原材料的数量以及单位产品的利润如下表所示:
若x1、x2分别表示工厂生产甲、乙产品的数量,则使工厂获得最大利润的生产计划数学模型为:
max z=5x1+4x2
x1 +3x2 ≤90
2x1 + x2≤80
x1 + x2≤45
x1、x2,x3≥0
用单纯形法求解该问题时,其初始单纯形表和最优单纯形表分别如表2—13和3—14所示,试分析使最优基不变的b3的变化范围。

解 由表2—13和表2—14可知,当B=(p 3,p 1,p 2)时,有
⎪⎪⎪⎭


⎛---=-21
01105211
B
⎪⎪⎪⎭
⎫ ⎝⎛=-1035
25
1
b B 当下式成立时,最优基不变。

010355250
21
01105211035
25333
3
1
1≥⎪⎪⎪⎭


⎛∆+∆-∆-=⎪⎪⎪⎭⎫ ⎝⎛∆⎪⎪⎪⎭⎫ ⎝
⎛---+⎪⎪⎪⎭⎫ ⎝
⎛=∆+--b
b b b b B b B
即 25-5Δb 3≥0,35-Δb 3≥0,10+Δb 3≥0 解不等式有
-5≤Δb 3≤5 此外,以B -1的第三列各元素去除最优单纯形表中右端常数项对应各列,用公式可直接求出Δb 3,即
⎭⎬⎫⎩⎨⎧----≤∆≤⎭⎬⎫⎩⎨⎧-525,1
35
min 210max b
同样可得 -5≤Δb 3≤5
因此,不影响最优基的b 3的变化范围是[40,50]。

2.7 在例2.11的生产计划问题中:(1)若生产产品甲的工艺结构发生了改进,
这时关于它的技术向量变为p 1‘
=(1,2,1/2)T ,试分析对原最优计划有什么影响;(2)若该厂除了生产前两种产品外,拟开发新产品丙,已知产品丙每件消耗A 、B 、C 原材料各为2、4、1kg ,每件可获利润8千元。

问该厂是否应该生产该产品和生产多少?
解 (1)由于产品甲生产工艺的改进,这样原最优单纯形表中的第1列将会发生改变,具体为
⎪⎪
⎪⎭

⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝
⎛---=-02/12/12/11121
0110
521'
11p B
代入原最优单纯形表中得到
将第1列化为单位向量,并用对偶单纯形法迭代一次得到如表2—16所示的新的最优生产计划。

(2)设新产品的产量为x 3‘(件),其技术系数向量为p 3‘
=(2,4,1)T ,由表2—14可求出
σ3‘= c 3’-C B B -1p j ‘
= 8-(0,1,3)(2,4,1)T =1>0
即安排生产产品丙是有利的。

对应x 3‘
在最优单纯形表中的列向量为
⎪⎪
⎪⎭

⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝
⎛---=-23514221
0110
521'
11p B
代入到最优表2—14中,并用单纯形法迭代一次得新的最优表2—17。

由表2—17,得最优解
X*=(20,20,5)T
即该工厂生产产品甲、乙、丙分别为20,20,5件,可使工厂获得最大利润220千元。

2.8红旗商场是个中型的百货商场,它对售货人员的需求经过统计分析如表2—18所示。

为了保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,问应该如何安排售货人员的作息,既满足了工作需要又使配备的售货人员的人数最少?(只建模型,不求解)
表2—18
解:设x1为星期一开始上班的人数,x2为星期二开始上班的人数, (x7)
期日开始上班的人数。

我们的目标是要求售货人员的总数最少。

因为每个售货员都工作五天,休息两天,所以我们只要计算出连续工作五天的售货人数,也就计算出了售货员的总数。

我们把连续工作五天的售货员按照开始工作的时间分成7类,各类的人数分别为x1,x2,…,x7,即有
目标函数:min x1+x2+x3+x4+x5+x6+x7.
我们再按照每天所需售货员的人数写出约束条件,例如星期日需要28人,我们知道商场中的全休售货员中除了星期一开始上班和星期二开始上班的人外都应该上班,即有x3+x4+x5+x6+x7≥28,这样我们就建立了如下的数学模型:
目标函数:min x1+x2+x3+x4+x5+x6+x7
x3+x4+x5+x6+x7≥28
x4+x5+x6+x7+x1≥15
x5+x6+x7+x1+x2≥24
x6+x7+x1+x2+x3≥25
x7+x1+x2+x3+ x4≥19
x1+x2+x3+x4+x5≥31
x2+x3+x4+x5+x6≥28
x1、x2、x3、x4、x5、x6、x7≥0。

相关文档
最新文档