新人教版八年级下册数学《中位数和众数》课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• ⑴中位数、众数的定义。(注意:确定中位数时要分数据个数是奇数 个还是偶数个) ⑵中位数、众数的作用:中位数也是用来描述数据的集中趋势的,它 是一个位置代表值。如果知道一组数据的中位数,那么可以知道,小 于或大于这个中位数的数据约各占一半。众数也常作为一组数据的代 表,用来描述数据的集中趋势。当一组数据有较多的重复数据时,众 数往往是人们所关心的一个量。 • ⑶灵活运用:平均数、中位数和众数都可以作为一组数据的代表,都 可用来描述数据的集中趋势,但它们各有自己的特点,能够从不同的 角度提供信息。在实际应用中,需要分析具体问题的情况,选择适当 的量来代表数据。
1.经理所说的公司的平均月薪2000元是否欺骗了阿冲? 2.平均数真能客观反映工人的真实工资水平吗? 3.哪个数能够真正反映工人的工资水平呢? 4.四人小组讨论交流,互换观点想法.
你怎样看待该公司员工的收入?
员工 经理 副经理 职员A 职员B 职员C 职员D 职员E 职员F 杂工 月工 资/元 6000 4000 1700 1300 1200 1100 1100 1100 500
(2).当数据个数为奇数时,中位数是 这组数据中的一个数据;但当数据个数为 偶数时,其中位数是最中间两个数据的平 均数,它不一定与这组数据中的某个数据 相等。
平均数、众数及中位数都是描述一组数据的集中 趋势的特征数,但描述的角度和适用范围有所不同。 平均数的大小与一组数据里的每个数据均有关系,其 中任何数据的变动都会相应引起平均数的变动; 众数着眼于对各数据出现的频数的考查,其大小只与 这组数据中的部分数据有关。当一组数据中有不少数据 多次重复出现时,其众数往往是我们关心的一种统计量; 中位数则仅与数据的排列位置有关,某些数据的变动 对它的中位数没有影响。当一组数据中的个别数据变动 较大时,可用它来描述其集中趋势。
注意1: (1)、求中位数要将一组数据按大 小顺序排列,而不必计算,顾名思义,中位 数就是位置处于最中间的一个数(或最中间 的两个数的平均数),排序时,从小到大或 从大到小都可以. ( 2 )、众数是一组数据中出现次数最多 的数据,是一组数据中的原数据,而不是 相应的次数.
注意2:( 1).一组数据中的众数有 时不只一个,如数据2、3、-1、2、 1、3中,2和3都出现了2次,它们都 是这组数据的众数。
阿冲应聘 去详细了解一下看看:
我公司员工收入 很高,月平均工 资为2000元 我们好几人工资 都是1100元. 职员C 我的工资是 1200元,在公 司算是中等收 入.
经理
职员D
该公司员工的月工资如下:
员工 经理 副经理 职员A 职员B 职员C 职员D 职员E 职员F 杂工 月工 资/元 6000 4000 1700 1300 1200 1100 1100 1100 500
1. 已知 一组数据:2,4,3,5,4,4,3,2,3,那么它的众数 是________ 2. 1、2、2、4、4、6这组数据的中位数是______, 众数是______。
Байду номын сангаас
人数
10 8 6 4 2 0
工人日加工零件数
8 4 5 9 6 4
3
4
5
6
7
8 日加工零件数
请找出这些工人日加工零件数的中位数,说明这 个中位数的意义。
1.月平工资2000元,指所有员工工资的平均数是2000 元.说明公司每月将支付工资总计2000×9元. 2.职员C的工资1200元,恰好居所有员工工资的“正中间” (恰有4人的工资比他高,有4人的工资比他低)我们称它为中 位数. 3. 9个员工中有3个人的工资为1100元,出现的次数最多,我 们称它为众数.
(1)你认为用哪个数据表示该公司员工的 “平均水平更合适? (2)为什么该公司员工收入的平均数比中 位数高得多? 一般地,n个数据按大小顺序排列,处于最 中间位置的一个数据(或最中间两个数据的平 均数)叫做这组数据的中位数(median). 一组数据中出现次数最多的那个数据叫做这 组数据的众数(mode).
尺码/厘米 销售量/双
22 1
22.5 2
23 5
23.5 11
24 7
24.5 3
25 1
根据上面的数据回答下列问题: ①哪种尺码的鞋销量最多,哪种尺码的鞋销量最少? ②请你根据上面①中得到的结果为这家鞋店提供进货 建议。
例2.某校为了了解全校400名学生参 加课外锻炼的情况,随机对40•名学 生一周内平均每天参加课外锻炼的 时间进行了调查,结果如下:(单 位:分) 40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 40 39 32 45 40 50 45 40 50 26 45 40 45 35 40 42 45
分组 14.5~22.5 22.5~30.5 30.5~38.5
频数 2 3 10
频率 0.050
0.250 0.125 0.025 1.000
38.5~46.5
46.5~54.5 54.5~62.5 合计
19
5 1 40
(1)补全频率分布表.
(2)填空:在这个问题中, 总体是_________,样本是________.由统计分析 得,•这组数据的平均数是39.35(分),众数是 __________,中位数是________. (3)如果描述该校400名学生一周内平均每天参 加课外锻炼时间的总体情况,•你认为用平均数、 众数、中位数中的哪一个比较合适?