二项式定理十大典型问题及例题.doc

合集下载

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐1n n n n +1) n n n n nn n n n n n n n n n n n n n n n n n n n n n n n1. 二项式定理:,2. 基本概念:(a + b )n = C 0a n + C 1a n -1b ++ C r a n -r b r++ C n b n (n ∈ N * )①二项式展开式:右边的多项式叫做的二项展开式。

r +1 ②二项式系数:展开式中各项的系数. ③项数:共项,是关于与的齐次多项式 (r = 0,1C , r 2,⋅⋅⋅, n ) (r b a n④通项: 展开式中的第项叫做二项式展开式的 T C =r r a C +nr -1a r b nr -r b r 通项。

用表示。

3. 注意关键点: ①项数:展开式中总共有项。

r +1 n n(n +1) ②顺序:注意正确选择,,其顺序不能更改。

与是不同 (b r +b a +a 1)n 的。

③指数:的指数从逐项减到,是降幂排列。

的指数从b 0n a 逐项减到,是升幂排列。

各项的次数和等于. ④系数: 注意正确区分二项式系数与项的 C 0 , C 1 , C 2 , ⋅b a ⋅⋅, C r ,⋅⋅⋅, C n . 系数, 二项式系数依次是项的系数是与的系数(包括二项式系数)。

4. 常用的结论:令 令 5. 性质:(1+ x )n = C 0 + C 1x + C 2a x 2=+1,b =+ C x ,r x r ++ C n x n (n ∈ N *) (1- x )n = C 0 - C 1x + C 2x 2a -=1,+b C = r -x x r ,++ (-1)n C n x n(n ∈ N *) ①二项式系数的对称性:与首末两端“对距离”的 C C k 0 ==C C kn-1两个二项式系数相等,即,···nnnn②二项式系数和:令,则二项式系数的C 0 + C 1 + C 2 +a = +b C = r 1+ + C n = 2n和为, 变形式。

(完整版)二项式定理典型例题解析.docx

(完整版)二项式定理典型例题解析.docx

二项式定理 概 念 篇【例 1】求二项式 ( a - 2b)4 的展开式 . 分析:直接利用二项式定理展开.解:根据二项式定理得(a - 2b)4=C 04 a 4+C 14 a 3( - 2b)+C 24 a 2(- 2b)2+C 34 a( - 2b)3+C 44 ( -2b) 4=a 4 - 8a 3b+24a 2b 2- 32ab 3 +16b 4.说明:运用二项式定理时要注意对号入座,本题易误把- 2b 中的符号“-”忽略 .【例 2】展开 (2x - 32) 5.2x分析一:直接用二项式定理展开式.解法一: (2x -35 05143233 232332x2) =C 5 (2x) +C 5 (2x) (- 2x 2)+C 5 (2x) (-2x 2 ) +C 5 (2x) (- 2x2) +C 54 (2x)( -3) 4+C 55(-3)52x 22x 2=32x 5- 120x 2+180 - 135 + 405-243x4 7 10 .x 8x 32x分析二:对较繁杂的式子,先化简再用二项式定理展开 .解法二: (2x -35(4x 3 3)5 2x 2) =32x10=110 [ C 05 (4x 3)5+C 15 (4x 3 )4(- 3)+C 52 (4x 3)3(- 3)2+C 35 (4x 3)2(- 3)3+C 45 (4x 3)(- 3)4+32xC 55 (-3) 5]1 10 (1024x 15- 3840x 12+5760x 9-4320x 6+1620x 3- 243)=32x=32x 5- 120x 2+180-135+ 405 - 243 .xx 4 8x 732x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.【例 3】在 (x - 3 )10 的展开式中, x 6的系数是.解法一:根据二项式定理可知x 6 的系数是 C 104 .解法二: (x - 3 )10 的展开式的通项是r-r(- 3 )r .T r+1=C 10 x 10令 10- r =6,即 r=4,由通项公式可知含 x 6 项为第 5 项,即 T 4+1 =C 104 x 6(- 3 )4=9C 104 x 6.∴ x 6 的系数为 9C 104 .上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6 这一项系数,而不是求含x 6 的二项式系数,所以应是解法二正确.如果问题改为求含 x 6 的二项式系数,解法一就正确了,也即是C 104 . 说明:要注意区分二项式系数与指定某一项的系数的差异 .二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关, 与二项式无关,后者与二 式、二 式的指数及 数均有关.【例 4】已知二 式(3 x - 2)10,3x(1)求其展开式第四 的二 式系数; (2)求其展开式第四 的系数; (3)求其第四 .分析:直接用二 式定理展开式.解: (3 x -210的展开式的通 是Trx10-r- 2r, ,⋯,)=C 10 (3) ( ) (r=0 10).3x3x 1(1)展开式的第 4 的二 式系数C 103 =120.(2)展开式的第 43 72 3的系数 C 103 (-) =- 77760.3(3)展开式的第 4 - 77760( x )7 1,即- 77760x .x 3明:注意把 (3x - 2) 10写成[ 3 x +(-2)] 10,从而凑成二 式定理的形式 .3x3x【例 5】求二 式( x 2+ 1)10 的展开式中的常数 .2 x分析:展开式中第r +1C 10r(x 2 )10-r (21)r ,要使得它是常数 ,必 使“x ”的指x数 零,依据是x 0=1, x ≠ 0.解: 第 r +1 常数 ,1 rr 20 51 r 5 r- rr() =C 10 x( ) (r =0 , 1,⋯, 10),令 20- r=0,得 r=8.T r +1=C 10 (x )2 2x2∴ T 9=C 108( 1)8= 45 .2256∴第 9 常数 ,其45 .256明:二 式的展开式的某一 常数 ,就是 不含 “ 元”,一般采用令通 T r+1中的 元的指数 零的方法求得常数 .【例 6】(1) 求 (1+2x)7 展开式中系数最大 ;(2)求 (1- 2x)7 展开式中系数最大 .分析:利用展开式的通 公式, 可得系数的表达式,列出相 两 系数之 关系的不等式, 而求出其最大 .解: (1) 第 r+1 系数最大, 有C r 7 2r C r 7 1 2r 1,C r 7 2r C r 7 12r 1,7 !2r7 !2r 1,即 r !(7 r ) !(r 1) !(7 r 1) !7 !2r (r7 ! r2r 1, r !(7 r ) !1) !(7 1) !2 1 ,r 16 ,化 得r8 r 解得3又∵ 0≤ r ≤ 7,∴ r=5.71 r2 .r13.r 13∴系数最大T 6=C 75 25x 5=672x 5.(2)解:展开式中共有 8 ,系数最大 必 正 ,即在第一、三、五、七 四 中取得.又因 (1- 2x)7 括号内的两 中后两 系数的 大于前 系数的 ,故系数最大必在中 或偏右,故只需比T 57两 系数的大小即可C 74 ( 2)4C 73 > 1,所以系数和 T. 6( 2) =1C 7 4C 7最大 第五 ,即T 5=560x 4.明:本例中(1) 的解法是求系数最大 的一般解法,(2) 的解法是通 展开式多 分析,使解 程得到 化,比.【例 7】 (1+2x)n 的展开式中第6 与第7 的系数相等,求展开式中二 式系数最大的 和系数最大的 .分析:根据已知条件可求出n ,再根据 n 的奇偶性确定二 式系数最大的 .解: T 6=C n 5 (2x)5, T 7=C n 6 (2x)6,依 意有 C 5n 25=C n 6 26,解得 n=8. (1+2 x)8 的展开式中,二 式系数最大的 T 5=C n 4 (2x)4=1120x 4.C 7r 2rC 7r 1 2r 1 ,第 r +1 系数最大, 有C 7r 2rC 7r 1 2r 1.∴ 5≤ r ≤6.∴ r =5 或 r =6.∴系数最大的 T 6=1792x 5 ,T 7=1792x 6.明: (1)求二 式系数最大的 , 根据二 式系数的性 ,n 奇数 中 两 的二式系数最大; n 偶数 ,中 一 的二 式系数最大 .(2) 求展开式中系数最大 与求二 式系数最大 是不同的,需根据各 系数的正、化情况,一般采用列不等式,再解不等式的方法求得.用 篇【例 8】若 n ∈N * , (2 +1)n= nnn 、 n ∈Z) ,b n 的()2 a +b (abA. 一定是奇数B. 一定是偶数C.与 b n 的奇偶性相反D.与 a 有相同的奇偶性分析一:形如二 式定理可以展开后考 .解法一:由 ( 2 +1)n =n n ,知 n n2 ) n2 a +b 2 a +b =(1+=C n 0 +C 1n 2 +C n 2 ( 2 )2+C n 3 ( 2 )3+ ⋯ +C n n (2 )n .∴ b n =1+C 2n ( 2 )2+C 4n ( 2 )4+ ⋯∴ b n 奇数 . 答案: A分析二: 的答案是唯一的,因此可以用特殊 法 .解法二: n ∈ N * ,取 n=1 , (2 +1) 1=( 2 +1) ,有 b 1=1 奇数 .取 n=2 , ( 2 +1)2=2 2 +5,有 b 2=5 奇数 .答案: A【例 9】若将 (x+y+z)10 展开 多 式, 合并同 后它的 数()A.11B.33C.55D.66分析: (x+y+z)10 看作二 式[( x y)10z ] 展开 .解:我 把 x+y+z 看成 (x+y)+z ,按二 式将其展开,共有11“ ”,即 (x+y+z)10=10[( x10k10-k ky) z ] =C 10 (x+y) z .k 0,由于“和”中各 z 的指数各不相同,因此再将各个二 式(x+y) 10-k 展开,不同的乘 C 10k (x+y)10-k z k (k=0, 1,⋯, 10)展开后,都不会出 同 .下面,再分 考 每一个乘C 10k (x+y)10-k z k (k=0 , 1,⋯, 10).其中每一个乘 展开后的 数由(x+y)10-k 决定,而且各 中 x 和 y 的指数都不相同,也不会出 同 .故原式展开后的 数11+10+9+⋯ +1=66.答案: D明:化三 式 二 式是解决三 式 的常用方法 .【例 10】求 (| x | +1- 2)3 展开式中的常数 .| x |分析:把原式 形 二 式定理 准形状 .解:∵ (| x | + 1- 2)3=(| x | - 1)6,| x || x |∴展开式的通 是T r+1=C 6r ( | x | )6-r (- 1 )r =(- 1)r C 6r ( | x | )6- 2r .| x |若 T r+1 常数 , 6- 2r =0, r =3.∴展开式的第 4 常数 ,即 T 4=-C 36 =- 20.明: 某些不是二 式,但又可化 二 式的 目,可先化 二 式,再求解 .【例 11】求 ( x - 3 x )9 展开式中的有理 .分析:展开式中的有理 ,就是通 公式中x 的指数 整数的.1127 r解:∵ T r+1=C 9r (x 2 )9-r (- x 3 )r =(- 1)r C 9r x6.令 27r∈ Z ,即 4+3r∈ Z ,且 r=0 , 1, 2,⋯, 9.66∴ r=3 或 r =9.当 r=3 , 27 r =4, T 4=(- 1)3C 39 x 4=- 84x 4. 6当 r=9 ,27 r=3, T 10=( - 1)9C 99 x 3=-x 3.6∴ ( x - 3 x )9的展开式中的有理 是第 4 - 84x 4,第 10 - x 3.明:利用二 展开式的通 T r +1 可求展开式中某些特定 .【例 12】若 (3x - 1)77 7 6 61=a x +a x + ⋯ +a x+a ,求(1)a 1 +a 2 ⋯+a 7; (2)a 1 +a 3 +a 5+a 7;0 2 4 6(3)a +a +a +a .分析:所求 果与各 系数有关可以考 用“特殊 ”法,整体解决 .解: (1)令 x=0, a 0=- 1,令 x=1 , a 7+a 6+ ⋯ +a 1+a 0=27=128.①∴ a 1+a 2+⋯ +a 7=129.(2)令 x=- 1, a 7+a 6+a 5+a 4+a 3+a 2+a 1+a 0=( -4) 7.②由(1) ( 2)得: a 1+a 3+a 5+a 7= 1[ 128- (- 4)7] =8256.22(3)由 (1) (2) 得 a 0 +a 2+a 4+a 6 = 1 [ 128+(-4) 7] =- 8128.2 2明: (1)本解法根据 恒等式特点来用“特殊 ”法, 是一种重要的方法,它用于恒等式 .(2)一般地, 于多 式g(x)=( px+q)n =a 0+a 1x+a 2x 2+a 3x 3+a 4x 4 +a 5x 5+a 6x 6+a 7x 7, g(x)各 的系数和g(1),g(x)的奇数 的系数和1[ g(1)+ g(- 1)],g(x)的偶数 的系数和1[ g(1)22- g (- 1)] .【例 13】 明下列各式(1)1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n =3n ;(2)(C 0n )2+(C 1n ) 2+ ⋯ +(C n n )2=C n 2 n ;(3)C 1n +2C 2n +3C 3n + ⋯ +nC n n =n2n -1.分析: (1)(2) 与二 式定理的形式有相同之 可以用二 式定理,形如数列求和,因此可以研究它的通 求 律 .明: (1)在二 展开式 (a+b)n =C 0n a n +C 1n a n -1b+C 2n a n -2b 2+ ⋯ +C n n 1 ab n -1+C n n b n 中,令 a=1, b=2,得 (1+2) n =1+2C 1n +4C 2n + ⋯ +2n -1C n n 1 +2n C n n ,即1 2+ ⋯ +2n -1n 1 n n =3n.1+2C n +4C nC n +2 C n(2)(1+ x)n (1+x)n =(1+ x) 2n ,12r12r2n.∴ (1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )(1+C n x+C n x 2+ ⋯ +C n x r + ⋯ +x n )=(1+ x)而 Cn 是 (1+ x)2n 的展开式中 x n 的系数,由多 式的恒等定理,得2nC 0n C n n +C 1n C n n 1 + ⋯ +C 1n C n n 1 +C n n C 0n =C n 2n . ∵ C m n =C n n m , 0≤ m ≤ n ,∴ (C n 0 )2+(C 1n )2+ ⋯ +(C n n )2=C 2n n .(3) 法一:令 S=C 1n +2C n 2 +3C n 3 + ⋯ +nC n n . ①令 S=C 1n +2C n 2 + ⋯ +(n - 1)C n n 1 +nC n n =nC n n +(n - 1)C n n 1 + ⋯ +2C n 2 +C 1n=nC n n +(n - 1)C 1n + ⋯ +2C n n 2 +C n n 1 .②由① +②得 2S=nC 1n +nC n2 +nC n3 + ⋯ +nC n n =n(C n n +C 1n +C n2 +C n3+ ⋯ +C n n ) 0123n=n(C n+C n +C n +C n + ⋯ +C n )=n2n.∴ S=n2n-1,即 C 1n +2C n2 +3C 3n + ⋯ +nC n n =n2n-1.法二:察通:kC n k =k n n( n1) !nC n k11 .k ! (n k) !(k1)! (n k) !∴原式 =nC +C n n11 )= n2n-1,12即C n +2C n0121 +nC3+⋯n 101231 +⋯n 1 +nC n 1+nC n n 1+nC n 1=n(C n 1+C n 1+C n 1 +C n 3⋯n n-1+3C n ++nC n =n2 .明:解法二中 kC n k =nC n k11可作性住 .【例 14】求 1.9975精确到 0.001的近似 .分析:准确使用二式定理把 1.997 拆成二之和形式如 1.997=2- 0.003.解: 1.9975=(2- 0.003)5=25- C 15 240.003+C 52 230.0032- C 35 220.0033+⋯≈32-0.24+0.00072 ≈ 31.761.明:利用二式定理行近似算,关是确定展开式中的保留,使其足近似算的精确度 .【例 15】求: 5151-1 能被 7 整除 .分析:了在展开式中出7 的倍数,把51 拆成 7 的倍数与其他数的和(或差 )的形式.明: 5151-1=(49+2) 51-1=C 051 4951+C 151 49502+ ⋯ +C 5051 49· 250+C 5151 251- 1,易知除 C 5151 251- 1 以外各都能被7 整除 .又 251- 1=(2 3)17- 1=(7+1) 17- 1=C0717+C1716+⋯+C167+C17-171717171=7(C 170 716+C 171 715+⋯ +C 1716 ).然能被 7 整除,所以5151- 1 能被 7 整除 .明:利用二式定量明有关多式(数 )的整除,关是将所多式通恒等形二式形式,使其展开后的各均含有除式.新篇【例 16】已知 (x lgx+1) n的展开式的最后三系数之和22,中一20000. 求 x.分析:本看似繁,但只要按二式定理准确表达出来,不求解!解:由已知 C n n +C n n 1 +C n n 2 =22,即 n2+n- 42=0. 又 n∈ N*,∴ n=6.T4中一, T4=C 3lg x 3,即 (xlgx 3lg x=10. 6(x ) =20000)=1000. x两取常用数,有1 lg2x=1, lgx=± 1,∴ x=10 或 x= .10明:当目中已知二展开式的某些或某几之的关系,常利用二式通公式,根据已知条件列出等式或不等式行求解.【例 17】 f(x)=(1+ x)m+(1+ x)n(m, n∈ N* ),若其展开式中关于x 的一次的系数和11, m,n 何,含 x2的系数取最小?并求个最小.分析:根据已知条件得到x2的系数是关于 x 的二次表达式,然后利用二次函数性探最小 .解: C 1m +C 1n =n+m=11. C m2+C n 2 =1(m2-m+n2- n)=m2n211 ,22∵ n∈N *,∴ n=6 或 5, m=5 或 6 , x 2 系数最小,最小 25.明:本 是一道关于二次函数与 合的 合 .【例 18】若 (x+ 1- 2)n 的展开式的常数 -20,求 n.x分析: 中 x ≠ 0,当 x > 0 ,把三 式 (x+1- 2)n化 ( x -1)2n ;当 x < 0 ,xx同理 (x+1-2) n nx - 1 2 n x 的 指数 零, 而解出 n.x=(- 1) () .然后写出通 ,令含x解:当 x > 0 , ( x+ 1- 2)n =(x -1 )2n ,xx其通 T r+1=C 2n r( x )2n -r (-1)r =(- 1)r C 2r n ( x )2n -2r .x令 2n - 2r=0 ,得 n=r ,∴展开式的常数 (- 1)r C 2n n ;当 x < 0 , (x+ 1-2) n =(- 1)n(x -1)2n .同理可得,展开式的常数 (- 1)r C 2n n .xx无 哪一种情况,常数 均 (- 1)r C 2n n .令 (- 1)r C 2n n =20.以 n=1,2, 3,⋯,逐个代入,得n=3.明:本 易忽略x < 0 的情况 .【例 19】利用二 式定理 明(2 n -1 2.) <n31分析:2 不易从二 展开式中得到,可以考 其倒数n 1 .n 12明:欲 (2)n -1 < 21成立,只需 (3)n -1<n1成立 .3n22而 ( 3)n - 1=(1+ 1)n - 1=C n1 +C1n 11+C n 21 ( 1)2+ ⋯ +C n n 11 (1)n -122222=1+ n 1 21 2⋯n 1 1) n -12+C n1 () ++C n 1 (22>n 1.2明:本 目的 明 程中将( 3)n -1化 (1+ 1)n -1,然后利用二 式定理展开式是解2 2决本 的关 .【例 20】求 : 2≤ (1+1) n < 3(n ∈N * ).n1 n 与二 式定理 构相似,用二 式定理展开后分析.分析: (1+)n明:当 n=1 , (1+ 1)n =2.n当 n ≥2 , (1+ 1)n=1+C 1n n又C n k ( 1 )k = n(n 1) (nnk ! n k1 +C n2 1 + ⋯ +C n n ( 1 )n =1+1+C n 2 1 + ⋯ +C n n ( 1 )n> 2.n n 2 n n 2n k 1) ≤ 1 ,k !所以 (1+ 1)n≤ 2+1+ 1 + ⋯ + 1< 2+1 + 1 + ⋯ + 1n2 !3 !n!1 2 2 3 ( n 1) n=2+(1 -1)+(1 - 1 )+ ⋯ +( 1 - 1)22 3 n 1 n=3- 1< 3.n上有 2≤ (1+1)n < 3.n明:在此不等式的 明中,利用二 式定理将二 式展开,再采用放 法和其他有关知 ,将不等式 明到底 .【例 21】求 : 于n ∈N *, (1+ 1) n< (1+ 1)n+1 .nn 1分析: 构都是二 式的形式,因此研究二 展开式的通 是常用方法 .明: (1+1) n展开式的通 Tr1A n rnr+1 =C n n r=r ! n r= 1 n(n 1)(n 2) (n r 1)r ! n r=1 (1-12 r 1 ).r !)(1 -)⋯ (1-nnn(1+1 )n+1展开式的通 T ′ r+1=C n r11 1) r =A n r 1 rn 1( n r !(n 1)=1 n(n 1)(n 2) (n r1)r !n r= 1 (1- 1 )(1- 2)⋯ (1-r1 ).r !n 1n 1n1由二 式展开式的通 可明 地看出 T r+1< T ′ r+1所以 (1+ 1 )n< (1+1)n+1nn 1明:本 的两个二 式中的两 均 正 ,且有一 相同. 明 ,根据 特点,采用比 通 大小的方法完成本 明.【例 22】 a 、 b 、c 是互不相等的正数,且a 、b 、c 成等差数列, n ∈ N * ,求 : a n +c n>2b n .分析: 中 未出 二 式定理的形式,但可以根据a 、b 、c 成等差数列 造条件使用二 式定理 .明: 公差d , a=b - d , c=b+d.a n +c n - 2b n =(b - d)n +( b+d)n - 2b nn1n - 12n - 2 2nn n1n - 12n - 22n=[ b - C n b d+C n bd + ⋯ +(- 1) d ]+[ b +C n bd+C n bd + ⋯ +d ]明:由 a 、 b 、 c 成等差,公差 d ,可得 a=b - d , c=b+d , 就 利用二 式定理 明此 造了可能性 . 即(b - d)n +(b+d) n > 2b n ,然后用作差法改(b - d)n +( b+d)n- 2b n > 0.【例 23】求 (1+2x - 3x 2)6 的展开式中x 5 的系数 .分析:先将 1+2x - 3x 2 分解因式, 把三 式化 两个二 式的 , 即(1+2 x - 3x 2)6 =(1+3x)6 (1- x)6.然后分 写出两个二 式展开式的通 ,研究乘x 5 的系数, 可得到解决.解:原式 =(1+3 x)6(1 -x)6,其中 (1+3x)6 展开式之通T k+1=C k 6 3k x k , (1- x)6 展开式之通 T r+1=C r 6 (- x)r .原式 =(1+3x) 6(1- x)6 展开式的通C 6k C 6r (- 1)r 3k x k+r .要使 k+r =5,又∵ k ∈ {0 , 1, 2, 3, 4, 5, 6} , r ∈{0 , 1,2, 3, 4, 5, 6} ,必k 0, 或 k 1, 或 k 2, 或 k 3, 或 k 4, 或 k 5,r 5r4r 3r2r 1r 0 .故 x 5 系数 C 60 30C 65 (- 1)5+C 16 31 C 64 (- 1)4+C 62 32C 63 ( - 1)3+C 63 33C 62 (- 1)4+C 64 34C 16(- 1)+C 65 35 C 60 (- 1)0=- 168.明:根据不同的 构特征灵活运用二 式定理是本 的关.【例 24】 (2004年全国必修 + 修 1)(x -1)6 展开式中的常数 ()xA.15B.- 15C.20D.- 203r3解析: Trr6-r - rrr 32x) =(- 1) C2,当 r=2 ,3-2=15.r +1=(- 1)C 6 (xxr=0 ,T 3=( -1) C62答案: A【例 25】 (2004 年江 )(2x+ x )4 的展开式中 x 3 的系数是 ()A.6B.12C.24D.48解析:T r +12 rr rx ) 4-r (2x) r =( -1) r r r 2,当 r =2 ,2+ r3- 22=24.=(- 1) C 4 (2 C 4 x2 =3 ,T =( 2) C 4答案: C【例 26】 (2004年福建理 )若 (1- 2x )9展开式的第3288, lim 1 1+ ⋯ +1( +2n)nxxx的 是 ()A.2B.11D.2C.52解析: T r+1=( -1) r C r 9 (2 x )r =(-1) r C r 9 2xr ,当 r =2 , T 3=(- 1)2C 92 22x =288.∴ x= 3.21 112 ∴ lim3 =2.( + 2 + ⋯+n)= nxxx123答案: A【例 27】 (2004 年福建文 )已知 (x - a)8 展开式中常数1120,其中 数 a 是常数,x展开式中各 系数的和是( )A.28B.38C.1 或 38D.1 或 28解析: Tr+1=( -1) rr8 -ra r rr8-2r,当 r=4 , T4 4 =1120,∴ a=± 2.C x() =(- a)C x=(- a) Cx∴有函数 f(x)=(x - a)8.令 x=1, f(1)=1 或 38.x答案: C【 例 28 】(2004 年 天 津 ) 若 (1 - 2x)20040 12 22004 2004=a +a x+a x + ⋯ +ax(x ∈ R) , (a +a )+( a +a)+0 10 2(a 0+a 3)+ ⋯ +(a 0+a 2004)= .(用数字作答 )解析:在函数 f(x)=(1 - 2x)2004中, f(0)= a 0 0 1 2+ ⋯ +a 2004,=1, f(1)=a +a +a=1 (a 0+a 1 )+(a 0+a 2)+( a 0 +a 3 )+⋯+( a 0 +a 2004) =2004a 0 +a 1+a 2+ ⋯ +a 2004=2003a 0 +a 0+a 1+a 2+ ⋯ +a 2004 =2003f(0)+ f(1) =2004.答案: 2004。

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐学员编号:年级:高二课时数: 3 学员姓名:辅导科目:数学学科教师:教学内容1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈ ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。

用1r n rr r n T C ab -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n nnn n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n nn n n n x C C x C x C x C x n N *-=-+-+++-∈ 5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r nn nn n n n C C C C C ++++++= , 变形式1221r nn nn n n C C C C +++++=- 。

二项式定理典型例题(含解答)复习课程

二项式定理典型例题(含解答)复习课程

解:二项式的展开式的通项公式为:‘ 2n 3rc r丄 >r~4~ C n r X 2前三项的r 0,1,2.得系数为: t 1 1,t 22 2n,t3 c :2 28n(n 1),由已知:2t 2 t 1 t 3 n 1(n1),••• n 816 3r通项公式为Tr1C8P 「01,28,T r 1为有理项,故163r 是4的倍数,81 2 1 2C g -8 xx • 28256说明:本题通过抓特定项满足的条件, 利用通项公式求出了 r 的取值,得到了有理项.类• r 0,4,8.依次得到有理项为T iX4,T 5 C 8^4X ^^X ,T 9 2 8 似地,(■: 2 3 3)100的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有典型例题四310R1 6例4( 1 )求(1 X) (1 X)展开式中X 的系数;(2)求(X 2)展开式中的常数项.X分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题, 视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.(1)可以解:(1) (1 x)3(1 x)10展开式中的X 5可以看成下列几种方式得到,然后合并同类项:用(1 X)3展开式中的常数项乘以 (1 X)10展开式中的 X 5项,可以得到C 10X 5 ; 用 (1 x)3展开式中的一次项乘以(1 X)10展开式中的X 4项可得到(3x)(C :o X 4)3C 4°X 5 ;3210用(1 X)中的X 乘以(1 X)展开式中的3 2 x 可得到3x33 3 5 mC 10X3C 10X ;用 (1 3X)中的X 3项乘以 (1 X)10展开式中的X2项可得到C 32 23x C 10 xC 20X 5,合并同类项得 X 5 项为:(C 0C 4。

3C 3。

C 0)X 563X 5 .(2)(X121X •由X1x12展开式的通项公式T r' 2)12C12X6 r,可得展开式的常数项为 C :2 924二项式定理典型例题典型例题一n例1在二项式 x 1的展开式中前三项的系数成等差数列, 求展开式中所有有理项.分析:典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.说明:问题(2)中将非二项式通过因式分解转化为二项式解决•这时我们还可以通过 合并项转化为二项式展开的问题来解决.典型例题五例5 求(1 X 2 6 5X )展开式中X 5的系数.分析 :(1 X2X 1 O )不是二二项式,我们通过1 2X X(1 X) X 2 或1 (XX )展开解: 方法一: (1 X X 2 )6(1X26x) X(1 X 6)6(1 x)5x 2 15(1 4 4x) X其中含X 5的项为 C :x 5 6C ;x 5 15C 14X 5 6x 5 .含 x 5项的系数为 6.方法一二: (1 X 2\6X )1 (X2、6X )1 6(x x 2) 15(x2、22、3x ) 20(x x )15(x x 2 )46(x x2\5/)(x6X )5555其中含X 5的项为20( 3)x 15( 4)x 6x 6x .二x 5项的系数为6.方法3:本题还可通过把(1 xX 2)6看成6个1 xX 2相乘,每个因式各取一项相乘可得到乘积的一项, x 5项可由下列几种可能得到. 5个因式中取x , —个取1得到C 6x 5.31323个因式中取x , —个取 x 2,两个取1得到C 6 C 3X ( x ). 1个因式中取X ,两个取 x 2,三个取1得到C 6 C 5x ( x ) •合并同类项为(C ; c l c ; C6C 5)X 5 6x 5, X 5项的系数为6•典型例题六例 6 求证:(1) Cn 2C : nV n 2n 1 ;(2)c o [c n 垃丄c n 丄⑵1 1)•2 3 n 1 n 1分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证 明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式1 2C n C n C n2n.解: (1)n! n!k -k!(n k)! (k 1)!( n k)!(n 1)!(k 1)!(n k)!nc n•••左边nC:1 n c n 1nc n1n(C01 C;1 c n 1) n 2n 1右边.将等式左边各项变化的等数固定下来,从而使用二项式系数性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式, 但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求22C 10 10的结果.仔细观察可以发现该组合数的式与10 10 0 1 2 2(1 2)10的展开式接近,但要注意:(12) C W C 10 2 C 10 2从而可以得到:10 2C W28C ;O FC尹 1)•典型例题七例7利用二项式定理证明:32n 2 8n 9是64的倍数.32n 2 8n 9是82的倍数,为了使问题向二项说明:禾U 用本题的方法和技巧不仅可以用来证明整除问题, 复杂的指数式除以一个数的余数.典型例题八1 2 10 22C 20 29C ;O 210C 1012(10 2C 2O 28C 9O29C 10)式定理贴近,变形 32n2 9n1 (8 1)n 将其展开后各项含有 8k ,与82的倍数联系起来.解:•/ 32n 2 8n 9n18nn 1(8 1) 8n 8n1C n8n c n 1 82 c n8n1 C n 18n c n 1 82 8(n1) 1 8 n 98n1 c n 1 8nc n 1 82(8n18nn 1C n 1)64是64的倍数.例8展开2x3 52x 2•分析1:用二项式定理展开式. 解法1:2x 32x 2C 50(2x)5314C 5(2x)4323药C 5(2x)23 2 x 2n! n! k!(n(k k)!(n 1)! (k 1)!( n k)!1 k 1 c n 1•n 1_c n 1C n 1 n 11C 1nn 1 丄Cn1n 1说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质•••左边 n 1C 2 c :1c n 1)(2n 1 1)右边.29C 10 28C:O 27C ;OC O 29 C 10 210分析:64是8的平方,问题相当于证明而且可以用此方程求一些180 135 405243 ~x ~x^ ~8x r 32x 10分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:53 53 (4x 3) 1rc0/‘ 3、5 小1/‘ 3、4/ 小2/‘ 3、3/22x10C 5(4) C 5(4 ) ( 3) C 5(4 ) ( 3)C/(4x 3)2( 3)3 C 54(4x 3)1( 3)4 C/( 3)5]180 135 405 243f 炭 32x 10说明:记准、记熟二项式(a b )n 的展开式,是解答好与二项式定理有关问题的前提条 件•对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将(x y 1 z )展开为多项式,经过合并同类项后它的项数为(A • 11B • 33C . 55D • 66分析 :(x y 10 z )看作二项式 10[(x y) z]展开.解: 我们把xy z 看成(x y ) z ,按二项式展开,共有 11 “项”,即(x ioy z)[(x 10y) z]10k 10 k kC io (x y) z •k 0这时,由于“和”中各项 z 的指数各不相同,因此再将各个二项式 (x y )10 k 展开,不同的乘积C 10(x y )10 k z k ( k 0,1 ,,10 )展开后,都不会出现同类项.下面,再分别考虑每一个乘积 C 1'0(x y )10 k z k ( k 0,1,, 10) •其中每一个乘积展开后的项数由(x y )10 k 决定,而且各项中x 和y 的指数都不相同,也不会出现同类项•故原式展开后的总项数为11 10 9 1 66 ,•••应选D •典型例题十3Cd)2 /c ;(2x)2x 2C ;32x 5 120x 2 132x 10(1024x 15 3840x 12 5760x 9 4320x 6 1620x 3 2437)32x 5 120x 2 1例10若x -n2 的展开式的常数项为 20,求 n •2n1--- ,其通项为典型例题十二解:设连续三项是第k 、k 1、k 2项(k N 且k 1),则有C :1:。

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐教育学科教师辅导讲义学员编号:年级:高二课时数:3学员姓名:辅导科目:数学学科教师:教学内容1 •二项式定理:n On 1 n 1 r n r r n n z(a b) C n a C n a b L C n a b L C n b (n N ),2 .基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式。

②二项式系数:展开式中各项的系数C;(r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项C:a n r b r叫做二项式展开式的通项。

用T r 1 C:a n r b r表示。

3 .注意关键点:①项数:展开式中总共有(n 1)项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

(a b)n与(b a)n是不同的。

③指数:a的指数从n逐项减到0,是降幕排列。

b的指数从0逐项减到n,是升幕排列。

各项的次数和等于n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是C0 C1 C2,C n r,,C;.项的系数是a与b的系数(包括二项式系数)。

4 .常用的结论:令a 1,b x, (1 x)n C;C:x C;x2 L C;x r L C;x n(n N )n 0 1 2 2 r r 令a 1,b x, (1 x) C n C n X C n X L C n X Ln n n(1) C n X (n N )5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等, 即Cn c;,…Cn k C n k 1②二项式系数和:令a b 1,则二项式系数的和为C0 C1 C,n2L C n r L C n n2n,变形式C n C;L C n L C:2n 1。

(a (x 令X 令X nx)a) 1, C 0a n x oC 0a 0 则a o C 1a n 1x C :ax n 1 C ;a nC 2a 2x n 0 nC n a xn n 0 C n a xa oa 1xa i a 2 a s L 1,则 a o a 2 a s ②得,a a 2 a 4L a n②得,a 1a s a 5La n2a 2x 2 a 2x na n X1a n X n L ①a 1x a o1)n(a 1)n(a* (a 1)A (奇数项的系数和a n (a L a n2(a* (a {(偶数项的系数和⑤二项式系数的最大项:如果二项式的幕指数 n 是偶数时,则中间一项的二项式系数nC n 2取得最大值。

二项式定理十大典型例题配套练习

二项式定理十大典型例题配套练习

精锐教育学科教师辅导讲义学员编号: 年 级:高二 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:教学内容1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。

用1r n r rr nT C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( ) (A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=-K 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即 再令得:,即 所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 . 【答案】【解析】, 所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯K 01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。

二次项定理10大典型例题

二次项定理10大典型例题

( 1 )知识点的梳理1.二项式定理:(a b)n C n0a n C n1a n 1b L C n r a n r b r L C n n b n(n N ) ,2.基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式②二项式系数:展开式中各项的系数C n r (r 0,1,2, ,n).③项数:共(r 1)项,是关于a与b的齐次多项式1 项 C n r a n r b r叫做二项式展开式的通项。

用④通项:展开式中的第 rT r 1 C n r a n r b r表示。

3 .注意关键点:①项数:展开式中总共有(n 1)项。

②顺序:注意正确选择a,b,其顺序不能更改。

(a b)n与(b a)n是不同的。

③指数:a的指数从n逐项减到0,是降幕排列。

b的指数从0逐项减到n,是升幂排列。

各项的次数和等于 n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是c0,c;,c2, C, ,C;.项的系数是a与b的系数(包括二项式系数)。

4.常用的结论:令 a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L C n n x n (n N )令 a 1,b x, (1 x)n C n0C n1x C n2x2L C n r x r L ( 1)n C n n x n(n N )5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C n k③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令 a 1,b 1,则 C c n Cn C 3 L ( 1)n c :(1 1)n 0, 从而得到:C 0 C ; Cn Cn rC n C 3L c ;r 1- 2n 2n 1 2④ 奇数项的系数和与偶数项的系数和:(a x)n c ;a n 0 x C ;a n 1 x C ;a n ;; x L n 0 n C n a x a ° 1 a 〔x ;1 n a x L a x (x a)n 昨 0 n x C ;ax n 1 C ;a ; n ; x L C :n 0 n a x a n xL ; 1 a ;x a 〔x 令x 1,则 a o a 1 a ; a s L a n (a 1)n①令x 1,则 a o a 1 a ; a s L a n (a 1)n②① ②得,a o a ; a 4L a n (a 1)n (a ;1)r1-(奇数项的系数和) ① ②得,a 1 a s a 5 L a n (a 1)n (a ;1)n (偶数项的系数和 ) ⑤ 二项式系数的最大项:如果二项式的幕指数 n 是偶数时,则中间一项的二项式②二项式系数和 b 1 ,则二项式 系数的和为变形式C : C ; Lc n2n,c nC n : 2n1n 系数C2取得最大值。

二项式知识点+十大问题+练习1(含答案)

二项式知识点+十大问题+练习1(含答案)

1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。

②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(n+1)项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。

用1r n r rr n T C a b -+=表示。

3.注意关键点:①项数:展开式中总共有(1)n +项。

②顺序:注意正确选择a ,b ,其顺序不能更改。

()n a b +与()nb a +是不同的。

③指数:a 的指数从n 逐项减到0,是降幂排列。

b 的指数从0逐项减到n ,是升幂排列。

各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。

4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等。

②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。

③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n nn n n n n C C C C C -+-++-=-=L ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=L ④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nn n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L L L 令则①令则024135(1)(1),()2(1)(1),()2n n n n nn a a a a a a a a a a a a ----++-++++=+---+++=L L ②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。

二项式定理(习题含答案)

二项式定理(习题含答案)

二项式定理一、 求展开式中特定项1、在30+的展开式中,x 的幂指数是整数的共有( ) A .4项 B .5项 C .6项 D .7项 【答案】C 【解析】()r r rrr r xC x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C .3、若2531()x x+展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x+展开式的通项为10515r rr T C x -+=,当2r =时,常数项为2510C =,4、二项式82)x的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(2)(13)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r rx -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设2sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛⋅+ ⎝的展开式中常数项是 . 【答案】332=- 332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r r r r rr r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、 求特定项系数或系数和7、8()x 的展开式中62x y 项的系数是( )A .56B .56-C .28D .28- 【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 . 【答案】-55【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C . 10、已知dx xn 16e1⎰=,那么nx x )(3-展开式中含2x 项的系数为 . 【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r r r n T C a b -+=,可设含2x 项的项是616(3)r rr r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx 的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,r n C 取最大值,∴8n =,第4项为119(163)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++,那么017a a a +++的值等于( )(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++,得70127(12)1a a a a -=++++=-,令0x =,代入二项式7270127(12)x a a x a x a x -=++++,得70(10)1a -==,所以12711a a a ++++=-,即1272a a a +++=-,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在*3)()n n N x-∈的展开式中,所有项的系数和为32-,则1x 的系数等于 .【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270. 17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++,即01281a a a a ++++=再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n=﹣15(舍去),∴n=4. (5x ﹣)n的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r?=(﹣1)r??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r ??54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255 【解析】178a a a +++=87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-, 所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、 求参数问题20、若32nx x 的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B. 21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5B 、 6C 、8D 、10 【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n,解得6=n ;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x-,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=. 23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( ) A .10或1 B .53-或1 C .2或53- D .10± 【答案】B .【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)nx x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8 【答案】C . 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

(完整版)二项式定理(习题含答案)

(完整版)二项式定理(习题含答案)

二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。

《二项式定理》典型例题

《二项式定理》典型例题

《二项式定理》典型例题【考情分析】本节内容是二项式定理,是高考中的重点,主要涉及二项式定理及其系数的应用,考查内容主要包括:求二项展开式某项的系数、求二项展开式中特定项等,考题角度灵活、综合性较强.题型1求二项展开式某项的系数(数学运算)典例1 [分析计算能力](2020-全国卷I)(x+y 2x)(x+y)5的展开式中x3y3的系数为()A.5 B.10 C.15 D.20解析本题主要考查二项式定理及其展开式的通项公式,分析题意通过赋值法找到所求项,并转化为求所求项的系数进行计算.(x+y)5展开式的通项公式为T r+1=C5r x5−r y r(r∈N且r⩽5),所以(x+y2x)的各项与(x+y)5展开式的通项的乘积可表示为:xT r+1=xC5r x5−r y r=C5r x6−r y r和y2x T r+1=y2xC5r x5−r y r=C5r x4−r y r+2,在xT r+1=C5r x6−r y r中,令r=3,可得xT4=C53x3y3,该项中x3y3的系数为10,在y2 x T r+1=C5r x4−r y r+2中,令r=1,可得y2xT2=C51x3y3,该项中x3y3的系数为5,所以x3y3的系数为10+5=15.答案C.题型2求二项展开式中特定项(数学抽象)典例2 [概括理解能力、分析计算能力](2020-全国卷III)(x2+2x )6的展开式中常数项是__________.(用数字作答)解析本题考查对二项式定理的概括理解,利用通项公式求解计算二项展开式中的指定项,解题关键是掌握二项式展开通项公式.∵(x2+2x )6的二项式展开通项:T r+1=C6r⋅(x2)6−r⋅(2x)r=C6r⋅x12−2r2r⋅x−r=2r C6r⋅x12−3r,当12−3r=0,解得r=4,∴(x2+2x )6的展开式中常数项是:C64⋅24=C62⋅16=15×16=240.答案240.题型3用计数原理求项(逻辑推理)典例3 [推测解释能力]在(x2+2x+√y)6的展开式中,x3y2的系数为________________.(用数字作答)解析本题考查二项展开式的通项公式,通过多项相加,运用逻辑推理,对具体问题情境进行推测和解释,求出要求的项的系数.(x2+2x+√y)6=[(x2+2x)+y 12]6,它展开式中的第r+1项为T r+1=C6r(x2+2x)6−r y r2,令r2=2,则r=4,T5=C64(x2+2x)2y2=C64(x4+4x3+4x2)y2,x3y2的系数为C64×4=60.答案60.。

完整版二项式定理十大典型问题及例题

完整版二项式定理十大典型问题及例题
ห้องสมุดไป่ตู้专题一
题型一:二项式定理的逆用;
1232nn?1C?C?6?C?6?L?C?6?.例:nnnnn012233nn(1?6)?C?C?6?C?6?C?6?L?C?6与已知的有一些差距,解:nnnnn112n2n123n2n?1?6?L?6C)?C?C??C6??6??6(C??C6L??Cnnnnnnn6111nn0n122n1)(7??6)[(11)?CL?C6??C?(C?6??6????1]nnnn666123n?1nC?3C?9C?L?3C?.练:nnnn
题型三:利用通项公式求常数项;
1102)(x?的展开式中的常数项?例:求二项式x25145511?20r88rrrr210?r?C()T?8r?020?r?x)()?C()T?C(x2,令解:,所以,得10r?110109225622x216)(2x?练:求二项式的展开式中的常数项?x21133rr?6?rrr6?2rrrr620?C?T?(?1)3r?r6?2?0x1)2)?TCC((?1))()?(?(2x解:,令,得,所以6461?6r22x1n2____.?n5)x?(练:若的二项展开式中第项为常数项,则x16n?4?412n2?442n0?12?2nx)(x)C?TC?(.,令解:,得nn5x题型四:利用通项公式,再讨论而确定有理数项;
93x?)x(展开式中的有理项?例:求二项式
3
127?r127?rrrr9?rrx1)CT?C(x)x)?(?(?0?r?9r?3或r?9Z?632,,( ),令得解:9r?19627?r3443C?1)T?(x??84xr?34?时,所以当,,946r27?3339C??x1)T?(?x9r?3?,。当时,9106题型五:奇数项的二项式系数和=偶数项的二项式系数和;

高考数学精品试题:二项式定理

高考数学精品试题:二项式定理

专题内容:二项式定理一、典型例题例1、已知()()511ax x ++的展开式中3x 的系数为15,则a 的值为( ) A .34 B .13 C .12 D .1 例2、已知二项式()*12N n x n x ⎛⎫-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2:5,则展开式的常数项为( )A .14B .240C .60D .240- 例3、设()5234512345612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= 。

二、课堂练习1、91x ⎫⎪⎭展开式中的常数项为( ) A .84 B .84- C .28D .28- 2、在()n x y -的展开式中,第3项与第8项的二项式系数相等,则展开式中系数最大的项是( )A .第6项B .第5项C .第5,6项D .第4,5项 3、若312n x x ⎛⎫+ ⎪⎝⎭的展开式中所有项系数和为81,则该展开式的常数项为( ) A .10 B .8 C .6 D .44、()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为( ) A.5 B.10 C.15 D.205、若多项式()()()910210019101...11x x a a x a x a x +=+++++++,则9a = ( )A. 9B. 10C. -9D. -10【布置作业】1、的展开式中的中间项为( ) A . B . C . D .2、的展开式中各项的二项式系数之和为32,且各项系数和为243,则展开式中的系数为( ) A .20B .30C .40D .80 3、使()的展开式中含有常数项的最小的( ) A .4B .5C .6D .7 4、二项式的展开式中有理项的个数为( ) A .5 B .6C .7D .8 5、已知,设,则( )A .1023B .1024C .1025D .1026 6、在的展开式中,只有第7项的二项式系数最大,则展开式常数项是( ) A . B . C . D .287、的展开式中的常数项是__________. 8、的展开式中第四项的系数为120,所有奇数项的二项式系数之和为512,则实数a 的值为______.9、的展开式中项的系数为___________(用数字表示).10、已知的展开式中,的系数是240,则实数的值为______. 11、的展开式中所有二项式系数的最大值是_____(用数字作答). 12、已知的展开式中第4项与第8项的二项式系数相等,且展开式的各项系数之和为1024,则该展开式中系数最大的项为_________. 13、若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为第_______项 14、若二项式的展开式中第项与第项的系数相同,则其常数项是___________. 8312x x ⎛⎫- ⎪⎝⎭35883358x -7-437x --3()n a x x+3x 13n x x x -⎛⎫+ ⎪⎝⎭n +∈N n 102x x ⎛⎫+ ⎪⎝⎭46n n C C =()()()()201234111n n n x a a x a x a x -=+-+-++-12n a a a +++=31()2n x x -552552-28-()51212x x ⎛⎫+- ⎪⎝⎭4n a x x ⎛⎫+ ⎪⎝⎭25(1()2)x x +-4x ()61ax -2x a ()61x +21(0)nax a x ⎛⎫-< ⎪⎝⎭1()n x x +1n x x ⎛⎫+ ⎪⎝⎭()*n ∈N 5615、设a∈Z,且0≤a≤16,若42021+a能被17整除,则a的值为_____.。

二项式定理基础题精选全文

二项式定理基础题精选全文

精选全文完整版(可编辑修改)
二项式定理典型习题
【例4】已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:
(1)a 1+a 2+…+a 7;
(2)a 1+a 3+a 5+a 7;
(3)a 0+a 2+a 4+a 6;
(4)|a 0|+|a 1|+|a 2|+…+|a 7|.
()()()n n x 216123【例】已知在的展开式中,第项为常数项.求;求含的项的系数;
求展开式中所有的有理项.
n 若展开式中前三项系数成等
差数列.求:182【例】求
展开式中的常数项.)
21().()()()n n x
x n x x 22331992212【例】已知的展开式的二项式系数和比-的展开式的二项式系数和大求-的展开式中:二项式系数最大的项;
系数的绝对值最大的项.
1227272727()(*)()n n S ⋯∈⋯251511222N 312C C C 9-【例】求证:++++能被整除;求=+++除以的余数.
在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。

金无足赤,人无完人,在教学工作中难免有缺陷,例如,课堂语言平缓,语言不够生动,理论知识不够,教学经验不足,组织教学能力还有待提高。

在今后的工
作中,我将更严格要求自己,努力工作,发扬优点,改正缺点。

(完整word版)二项式定理典型例题

(完整word版)二项式定理典型例题

(完整word版)二项式定理典型例题二项式定理典型例题--典型例题一例1 在二项式nx x ??? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项.分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决.解:二项式的展开式的通项公式为:4324121C 21)(C rn r r n rr n r n r x x x T --+=??=前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,123121-=====n n t n t t n n ,由已知:)1(8112312-+=+=n n n t t t ,∴8=n 通项公式为1431681,82,1,021C +-+==r rr r r T r x T Λ为有理项,故r 316-是4的倍数,∴.8,4,0=r依次得到有理项为228889448541256121C ,83521C ,x x T x x T x T =====-.说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有17页系数和为n 3.典型例题四例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++xx 展开式中的常数项.分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式.解:(1)103)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5510C x ;用3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;用3)1(x -中的2x 乘以10)1(x +展开式中的3x 可得到531033102C 3C 3x x x =?;用 3)1(x -中的3x 项乘以10)1(x +展开式中的2x 项可得到521022103C C 3x x x -=?-,合并同类项得5x 项为: 5521031041051063)C C 3C C (x x -=-+-.(2)2121???? ??+=++x x x x 1251)21(+=++x x x x .由121?+x x 展开式的通项公式rr rr r r x x T --+=??? ??=61212121C 1)2(C ,可得展开式的常数项为924C 612=.说明:问题(2)中将非二项式通过因式分解转化为二项式解决.这时我们还可以通过合并项转化为二项式展开的问题来解决.典型例题五例5 求62)1(x x -+展开式中5x 的系数.分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开.解:方法一:[]6262)1()1(x x x x -+=-+Λ-+++-+=44256)1(15)1(6)1(x x x x x其中含5x 的项为55145355566C 15C 6C x x x x =+-.含5x 项的系数为6.方法二:[]6262)(1)1(x x x x -+=-+62524232222)()(6)(15)(20)(15)(61x x x x x x x x x x x x -+-+-+-+-+-+=其中含5x 的项为555566)4(15)3(20x x x x =+-+-.∴5x 项的系数为6.方法3:本题还可通过把62)1(x x -+看成6个21x x -+相乘,每个因式各取一项相乘可得到乘积的一项,5x 项可由下列几种可能得到.5个因式中取x ,一个取1得到556C x .3个因式中取x ,一个取2x -,两个取1得到)(C C 231336x x -??. 1个因式中取x ,两个取2x -,三个取1得到2 22516)(C C x x -??.合并同类项为5525161336566)C C C C (C x x =+-,5x 项的系数为6.典型例题六例6 求证:(1)1212C C 2C -?=+++n n n n n n n Λ;(2))12(11C 11C 31C 21C 1210-+=++++++n n n n n n n n Λ.分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质nn n n n n 2C C C C 210=++++Λ.解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-?=k n kn n k n k n n k n k n k n k n k k Θ∴左边111101C C C ----+++=n n n n n n n Λ=?=+++=-----11111012)C C C (n n n n n n n Λ右边.(2))!()!1(!)!(!!11C 11k n k n k n k n k k k n--=-?+=+ 11C 11)!()!1()!1(11+++=-++?+=k n n k n k n n .∴左边112111C 11C 11C 11++++++++++=n n n n n n n Λ =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n Λ右边.说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的性质求解.此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求10C 2C 2C 2C 22108107910810109+++++Λ的结果.仔细观察可以发现该组合数的式与10)21(+的展开式接近,但要注意:10101099102210110010102C 2C 2C 2C C )21(?+?++?+?+=+Λ 10101091092102C 2C 2C 21021++++?+=Λ )C 2C 2C 210(2110 1099108210+++++=Λ从而可以得到:)13(21C 2C 2C 21010101099108210-=++++Λ.典型例题七例7 利用二项式定理证明:98322--+n n 是64的倍数.分析:64是8的平方,问题相当于证明98322--+n n 是28的倍数,为了使问题向二项式定理贴近,变形1122)18(93++++==n n n ,将其展开后各项含有k 8,与28的倍数联系起来.解:∵98322--+n n98)18(98911--+=--=++n n n n9818C 8C 8C 81211111--+?+?++?+=+-+++n nn n n n n n Λ 981)1(88C 8C 8211111--+++?++?+=-+++n n n n n n n Λ 2111118C 8C 8?++?+=-+++n n n n n Λ64)C 8C 8(112111?++?+=-+-++n n n n n Λ是64的倍数.说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数.典型例题八例8 展开52232??? ?-x x .分析1:用二项式定理展开式.解法1:52232??? ?-x x223252415025523)2(23)2(23)2(??-+??? ??-+??? ??-=x x C x x C x x C52554245322352323)2(23)2(??? ??-+??? ??-+??? ??-+x C x x C x x C10742532243840513518012032x x x x x x -+-+-= 分析2:对较繁杂的式子,先化简再用二项式定理展开.解法2:10535232)34(232x x x x -=??- 233254315530510)3()4()3()4()4([321-+-+=x C x C x C x])3()3()4()3()4(5554134532335-+-+-+C x C x C)243716204320576038401024(321369121510-+-+-=x x x x x x10742532243840513518012032x x x x x x -+-+-=.说明:记准、记熟二项式nb a )(+的展开式,是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便.典型例题九例9 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为(). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开.解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即∑=-?+=++=++10010101010)(])[()(k k k kz y x C z y x z y x .这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式ky x -+10)(展开,不同的乘积k kk z y x C ?+-1010)((10,,1,0Λ=k )展开后,都不会出现同类项.下面,再分别考虑每一个乘积k kk z y x C ?+-1010)((10,,1,0Λ=k ).其中每一个乘积展开后的项数由ky x -+10)(决定,而且各项中x 和y 的指数都不相同,也不会出现同类项.故原式展开后的总项数为66191011=++++Λ,∴应选D .典型例题十例10 若nx x ??-+21的展开式的常数项为20-,求n .分析:题中0≠x ,当0>x 时,把三项式nx x ?-+21转化为nnx x x x 2121??? ??-=??? ??-+;当0<="">n nx x x x 21)1(21??? ?----= ??-+.然后写出通项,令含x 的幂指数为零,进而解出n .解:当0>x 时nnx x x x 2121??? ?-=??? ??-+,其通项为rn r n r r rn r n r x C xx C T 222221)()1()1()(--+-=-=,令022=-r n ,得r n =,∴展开式的常数项为nn n C 2)1(-;当0<="">n n x x x x 21)1(21??? ?----=??? ??-+,同理可得,展开式的常数项为nn n C 2)1(-.无论哪一种情况,常数项均为nn n C 2)1(-.令20)1(2-=-nn n C ,以Λ,3,2,1=n ,逐个代入,得3=n .典型例题十一例11 1031??? ?+x x 的展开式的第3项小于第4项,则x 的取值范围是______________.分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设列出不等式即可.解:使1031??+x x 有意义,必须0>x ;依题意,有43T T <,即3373102382101)(1)(??31123891012910xx x ).解得5648980<<="" .=""><<5648980x x .∴应填:5648980<<="" .="">例12 已知n xx)1(2log +的展开式中有连续三项的系数之比为321∶∶,这三项是第几项?若展开式的倒数第二项为112,求x 的值.解:设连续三项是第k 、1+k 、2+k 项(+∈N k 且1>k ),则有32111∶∶∶∶=+-k n k n k n C C C ,即321!)1)(1(!!)()1)(1(!∶∶∶∶=--+-+--k n k n k n k n k n k n .∴321)1(1)(1)1)((1∶∶∶∶=+-+--k k k n k k n k n .∴=-+=+-=-+=+---32)()1(21132)()1(21)1)(()(k n k k n k k n k k k k n k n k n k 14=?n ,5=k 所求连续三项为第5、6、7三项.又由已知,1122log 1314=xxC .即82log =x x .两边取以2为底的对数,3)(log 22=x ,3log 2±=x ,∴32=x ,或32-=x .说明:当题目中已知二项展开式的某些项或某几项之间的关系时,常利用二项式通项,根据已知条件列出某些等式或不等式进行求解.典型例题十三例13 nx )21(+的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性;确定二项式系数最大的项.解:556)2(x C T n =,667)2(x C T n =,依题意有 8226655=?=n C C n n .∴8)21(x +的展开式中,二项式系数最大的项为444851120)2(x x C T ==.设第1+r 项系数最大,则有65222211881188≤≤≥??≥?++--r C C C C r r r r r r r r .∴5=r 或6=r (∵{}8,,2,1,0Λ∈r ).∴系娄最大的项为:561792x T =,671792x T =.说明:(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式,解不等式的方法求得.典型例题十四例14 设nm x x x f )1()1()(+++=(+∈N n m ,),若其展开式中关于x 的一次项的系数和为11,问n m ,为何值时,含2x 项的系数取最小值?并求这个最小值.分析:根据已知条件得到2x 的系数关于n 的二次表达式,然后利用二次函数性质探讨最小值问题.解:1111=+=+m n C C n m .211)(21222222-+=-+-=+n m n n m m C C nm499)211(55112211022+-=+-=-=n n n mn .∵+∈N n ,∴5=n 或6,6=m 或5时,2x 项系数最小,最小值为25.说明:二次函数499)211(2+-=x y 的对称轴方程为211=x ,即5.5=x ,由于5、6距5.5等距离,且对+∈N n ,5、6距5.5最近,所以499)211(2+-n 的最小值在5=n 或6=n 处取得.典型例题十五例15 若0166777)13(a x a x a x a x ++++=-Λ,求(1) 721a a a +++Λ;(2) 7531a a a a +++;(3) 6420a a a a +++.解:(1)令0=x ,则10-=a ,令1=x ,则128270167==++++a a a a Λ.①∴129721=+++a a a Λ.(2)令1-=x ,则701234567)4(-=+-+-+-+-a a a a a a a a ②由2②①-得:8256]4128[2177531=--=+++)(a a a a (3)由2②①+得: 6420a a a a +++][210123456701234567)()(a a a a a a a a a a a a a a a a +-+-+-+-++++++++=8128])4(128[217-=-+=.说明:(1)本解法根据问题恒等式特点来用“特殊值”法.这是一种重要的方法,它适用于恒等式.(2)一般地,对于多项式nn n x a x a x a a q px x g ++++=+=Λ2210)()(,)(x g 的各项的系数和为)1(g :)(x g 的奇数项的系数和为)]1()1([21-+g g .)(x g 的偶数项的系数和为)]1()1([21--g g .典型例题十六例16 填空:(1) 3230-除以7的余数_____________;(2) 155555+除以8的余数是________________.分析(1):将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.解:3230-3)2(103-=3)8(10-= 3)17(10-+=37771010910911010010-++++=C C C C Λ 2]77[791081109010-+++?=C C C Λ又∵余数不能为负数,需转化为正数∴3230-除以7的余数为5 ∴应填:5分析(2):将5555写成55)156(-,然后利用二项式定理展开.解:155555+15)156(55+-=15565656555554555415555055+-++-=C C C C Λ容易看出该式只有14155555=+-C 不能被8整除,因此155555 +除以8的余数,即14除以8的余数,故余数为6.∴应填:6.典型例题十七例17 求证:对于+∈N n ,111111+?++证明:nn ??+11展开式的通项rr n r r nr nr p n C T !11=?=+r r r n n n n r )1()2)(1(!1+---=Λ)11()21)(11(!1nr n n r ----=Λ. 1111+??++n n 展开式的通项rr n r r n r n r A n CT)1(!)1(11'1+=+?=++ )111()121)(111(!1+--+-+-=n r n n r Λ.由二项式展开式的通项明显看出'11++<="">所以111111+?++说明:本题的两个二项式中的两项为正项,且有一项相同,证明时,根据题设特点,采用比较通项大小的方法完成本题证明.典型例题十八例18 在52)23(++x x 的展开式中x 的系数为().A .160B .240C .360D .800分析:本题考查二项式定理的通项公式的运用.应想办法将三项式转化为二项式求解.解法1:由5252]2)3[()23(++=++x x x x ,得k kk k x x C T 2)3(5251?+=-+ k k k x x C -+??=525)3(2.再一次使用通项公式得,rk r r k k k r x C C T ---+=21055132,这里50≤≤k ,k r -≤≤50.令1210=--r k ,即92=+r k .所以1=r ,4=k ,由此得到x 的系数为24032445=??C .解法2:由5552)2()1()23(++=++x x x x ,知5)1(+x 的展开式中x 的系数为45C ,常数项为1,5)2(+x 的展开式中x 的系数为4452?C ,常数项为52.因此原式中x 的系数为24022445545=?+?C C .解法3:将52)23(++x x 看作5个三项式相乘,展开式中x 的系数就是从其中一个三项式中取x 3的系数3,从另外4个三项式中取常数项相乘所得的积,即2402344415=C C .∴应选B .典型例题十九例19 已知92-x x a 的展开式中3x 的系数为49,常数a 的值为___________.分析:利用二项式的通项公式.解:在92-x x a 的展开式中,通项公式为=-??=-+rrr r x x a C T 299192329921)1(---r r r r r x a C .根据题设,3923=-r ,所以8=r .代入通项公式,得39169ax T =.根据题意,49169=a ,所以4=a .∴应填:4.典型例题二十例20 (1)求证:nn n n n n C C C )2(3)1(333133221-=-++?-?+-Λ(2)若443322104)32(x a x a x a x a a x ++++=+,求2312420)()(a a a a a +-++的值.分析:(1)注意观察nn n n n n x C x C x C x ++++=+Λ2211)1(的系数、指数特征,即可通过赋值法得到证明.(2)注意到)()()(432102312420a a a a a a a a a a ++++=+-++)(43210a a a a a +-+-?,再用赋值法求之.解:(1)在公式nn n n n n x C x C x C x ++++=+Λ2211)1(中令3-=x ,即有 n n n n n n C C C )3()3()3(1)31(2211-++-+-+=-Λn n n n C C 3)1(331221?-+-?+?-=Λ∴等式得证.(2)在展开式443322104)32(x a x a x a x a a x ++++=+中,令1=x ,得443210)32(+=++++x a a a a a ;令1-=x ,得443210)32(+-=+-+-a a a a a .∴原式)()(4321043210a a a a a a aa a a +-+-?++++=1)32()32(44=+-?+=.说明:注意“赋值法”在证明或求值中的应用.赋值法的模式是,在某二项展开式,如n n n x a x a x a a bx a ++++=+Λ2210)(或b a C a C b a n n n n n 110)(-+=+222b a C n n -+ n n n b C ++Λ中,对任意的A x ∈(A b a ∈,)该式恒成立,那么对A 中的特殊值,该工也一定成立.特殊值x 如何选取,没有一成不变的规律,需视具体情况而定,其灵活性较强.一般取1,1,0-=x 较多.一般地,多项式)(x f 的各项系数和为)1(f ,奇数项系数和为)]1()1([21--f f ,偶次项系数和为)]1()1([21-+f f .二项式系数的性质n nn n n n C C C C 2210=++++Λ及15314202-=+++=+++n n n n n n nC C C C C C ΛΛ的证明就是赋值法应用的范例.典型例题二十一例21 若+∈N n ,求证明:3724332+-+n n 能被64整除.分析:考虑先将323+n 拆成与8的倍数有关的和式,再用二项式定理展开.解:3724332+-+n n37243322+-?=+n n 3724931+-?=+n n 3724)18(31+-+?=+n n3724]8888[311112111101+-+?++?+?+??=+++-++++n C C C C C n n n n n n n n n n Λ 3724]18)1(888[3121111+-+?+++?+?+?=-+++n n C C n n n n n Λ 3724)]98(8888[3211121111+-++?++?+?+?=-+-+++n n C C C n n n n n n n Λ3724)98(3]888[831132121112+-+?+++?+?+?=-+-+-+-n n C C C n n n n n n n Λ 64]888[6433212111++?+?+?=-+-+-Λn n n n n C C ,∵18-n ,2118-+?n n C ,3218-+?n n C ,…均为自然数,∴上式各项均为64的整数倍.∴原式能被64整除.说明:用二项式定理证明整除问题,大体上就是这一模式,先将某项凑成与除数有关的和式,再展开证之.该类题也可用数学归纳法证明,但不如用二项式定理证明简捷.典型例题二十二例22 已知nx x )3(232+的展开式各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.分析:先由条件列方程求出n .(1)需考虑二项式系数的性质;(2)需列不等式确定r .解:令1=x 得展开式的各项系数之和为n n 22)31(=+,而展开式的二项式系数的和为n n n n n n C C C C 2210=++++Λ,∴有992222=-n n.∴5=n .(1)∵5=n ,故展开式共有6,其中二项式系数最大的项为第三、第四两项.∴62233225390)3()(x x x C T =?=,32232232354270)3()(x x x C T =?=.(2)设展开式中第1+r 项的系数最大.341052532513)3()(r rr rrr r xC x x C T +-+??=??=,故有≥??≥?++--115511553333r r r r r r r r C C C C即+≥--≥.1351,613r r r r解得2927≤≤r .∵N r ∈,∴4=r ,即展开式中第5项的系数最大.32642132455405)3()(x x x C T =??=说明:展开式中二项式系数最大的项与系数最大的项是两个不同的概念,因此其求法亦不同.前者用二项式系数的性质直接得出,后者要列不等式组;解不等式组时可能会求出几个r ,这时还必须算出相应项的系数后再比较大小.典型例题二十三例23 求证:(1) pn m m p n p m n p m n C C C C C C C +-=+++0110Λ;(2) 1144220242333--+?=++++n n n n n n n n C C C C Λ(K n 2=,*N n ∈)分析:(1)注意到两列二项式两乘后系数的特征,可构造一个函数;也可用构造一个组合问题的两种不同解法找到思路.(2)同上构造函数,赋值.证明:(1)(法1)∵n m nm x x x )1()1()1(+?+=++,∴)1()1()1(221221nn n n n m m m m m nm x C x C x C x C x C x C x ++++?++++=++ΛΛ.∴此式左右两边展开式中Px 的系数必相等.左边P x 的系数是p n m C +,右边Px 的系数是22110m p n p m n p m n p m n C C C C C C C C ?++?+?+?--Λ,∴pn m m p n p m n p m n p m n C C C C C C C C C +--=?++?+?+?022110Λ.等式成立.(法2)设想有下面一个问题:要从n m +个不同元素中取出P 个元素,共有多少种取法?该问题可有两种解法.一种解法是明显的,即直接由组合数公式可得出结论:有pn m C +种不同取法.第二种解法,可将n m +个元素分成两组,第一组有m 个元素,第二组有n 个元素,则从n m +个元素中取出P 个元素,可看成由这两组元素中分别取出的元素组成,取法可分成1+P 类:从第一组取P 个,第二组不取,有0n p m C C ?种取法;从第一组取1-P 个,从第二组取1个,有1 1n p m C C ?-种取法,…,第一组不取,从第二组取P 个.因此取法总数是p n m n p m n p m n p m C C C C C C C C ?++?+?+?--022110Λ.而该问题的这两种解法答案应是一致的,故有pn m m p n p m n p m n p m n C C C C C C C C C +--=?++?+?+?022110Λ.(2)∵n 为偶数,∴nn n n n n n C C C C 333)31(2210++++=+Λ;nn n n n n n C C C C 333)31(2210+-+-=-Λ.两式相加得)333(22444220nn n n n n n n C C C C ++++=+Λ,∴1144220242333--+?=++++n n n n n n n n C C C C Λ.说明:构造函数赋值法,构造问题双解法,拆项法、倒序相加法都是证明一些组合数恒等式(或求和)的常用方法.。

二项式定理十大典型问题及例题

二项式定理十大典型问题及例题

學科教師輔導講義學員編號: 年 級:高二 課 時 數: 3 學員姓名: 輔導科目:數學 學科教師:教學內容1.二項式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二項式展開式:右邊の多項式叫做()n a b +の二項展開式。

②二項式係數:展開式中各項の係數rnC (0,1,2,,)r n =⋅⋅⋅. ③項數:共(1)r +項,是關於a 與b の齊次多項式④通項:展開式中の第1r +項r n r rn C a b -叫做二項式展開式の通項。

用1r n r r r nT C a b -+=表示。

3.注意關鍵點:①項數:展開式中總共有(1)n +項。

②順序:注意正確選擇a ,b ,其順序不能更改。

()n a b +與()nb a +是不同の。

③指數:a の指數從n 逐項減到0,是降冪排列。

b の指數從0逐項減到n ,是升冪排列。

各項の次數和等於n .④係數:注意正確區分二項式係數與項の係數,二項式係數依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅項の係數是a 與b の係數(包括二項式係數)。

4.常用の結論:令1,,a b x == 0122(1)()n r rn nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性質:①二項式係數の對稱性:與首末兩端“對距離”の兩個二項式係數相等,即0n n n C C =, (1)k k n n C C -= ②二項式係數和:令1a b ==,則二項式係數の和為0122rnn n n n n n C C C C C ++++++=,變形式1221rnn n n n n C C C C +++++=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科教师辅导讲义学员编号:学员姓名:年级:高二辅导科目:数学课时数:学科教师:3 教学内容1.二项式定理:(a b) n C n0a n C n1a n 1b L C n r a n r b r L C n n b n (n N ) ,2.基本概念:①二项式展开式:右边的多项式叫做(a b)n的二项展开式。

②二项式系数 :展开式中各项的系数C n r (r 0,1,2, , n) .③项数:共 (r 1) 项,是关于 a 与b的齐次多项式④通项:展开式中的第r 1 项 C n r a n r b r叫做二项式展开式的通项。

用 T r 1 C n r a n r b r表示。

3.注意关键点:①项数:展开式中总共有( n 1) 项。

②顺序:注意正确选择 a ,b,其顺序不能更改。

(a b)n与 (b a) n是不同的。

③指数: a 的指数从 n 逐项减到0,是降幂排列。

b 的指数从 0 逐项减到n,是升幂排列。

各项的次数和等于n.④系数:注意正确区分二项式系数与项的系数,二项式系数依次是C n0 ,C n1 ,C n2 , ,C n r , ,C n n . 项的系数是 a 与b的系数(包括二项式系数)。

4.常用的结论:令 a 1,b x, (1 x) n C n0 C n1 x C n2 x2 L C n r x r L C n n x n ( n N )令 a 1,b x, (1 x)n C n0 C n1x C n2 x2 L C n r x r L ( 1)n C n n x n (n N )5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即C n0 C n n,··· C n k C n k 1②二项式系数和:令 a b 1 ,则二项式系数的和为 C n0 C n1 C n2 L C n r L C n n 2n,变形式 C n1 C n2 L C n r L C n n 2n 1 。

③奇数项的二项式系数和 =偶数项的二项式系数和:在二项式定理中,令 a 1,b 1,则 C n 0 C n 1 C n 2 C n 3 L( 1)n C n n(1 1)n 0 ,从而得到: C n 0C n 2 C n 4C n 2rC n 1 C n 3LC n 2r 11 2n 2n 12④奇数项的系数和与偶数项的系数和:(a x)nC 0a n x 0C 1a n 1x C 2 a n 2 x 2L C n a 0 x n a0 a x 1 a x 2L a x nnnnn12n( x a)n C n 0a 0 x n C n 1ax n 1C n 2 a 2 x n 2 L C n n a n x 0a n x nL a 2 x 2 a 1x 1 a 0 令 x 1, 则 a 0 a 1 a 2 a 3 L a n(a 1)n① 令 x1,则 a 0 a 1 a 2 a 3 La n (a 1)n②① ②得 , a 0 a 2 a 4 La n( a 1)n( a 1) n(奇数项的系数和 )2① ②得 , a 1 a 3 a 5 La n( a 1)n(a 1)n (偶数项的系数和 )2n⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数C n 2 取得最大值。

n 1n 1如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数C n 2 , C n 2 同时取得最大值。

⑥系数的最大项:求 (a bx) n 展开式中最大的项,一般采用待定系数法。

设展开式中各项系数分别为 A 1, A 2,, A n 1 ,设第 r A r 1A r r 来。

1 项系数最大,应有A r,从而解出Ar 12专题一题型一:二项式定理的逆用;例: C n 1 C n 2 6 C n 3 62 L C n n 6n 1.解: (1 6) n C n 0 C n 16 C n 2 62 C n 3 63L C n n 6n 与已知的有一些差距,C n 1 C n 2 6 C n 3 62 L C n n 6n 11(C n 1 6 C n 2 62L C n n 6n )1(C n 061[(1 6) n1 (7 nC n 1 6 C n 2 62 L C n n 6n 1)1] 1)66 6练: C n 1 3C n 2 9C n 3L 3n 1C n n.解:设 S nC n 1 3C n 2 9C n 3 L 3n 1C n n ,则3S n C n 1 3 C n 2 32 C n 3 33 L C n n 3nC n 0 C n 1 3 C n 2 32 C n 3 33 L C n n 3n 1 (1 3)n 1S n (1 3)n 14n 13 3题型二:利用通项公式求x n 的系数;例:在二项式 ( 413x 2 ) n 的展开式中倒数第 3 项的系数为 45 ,求含有 x 3 的项的系数x解:由条件知 C n n 245 ,即 C n 2 45 , n 2 n90 0 ,解得 n9(舍去 )或 n 10 ,由Tr 1C 10r (x 12C 10r x10 r 2 r10 r2 r4 )10 r ( x 3 ) r43,由题意3, 解得 r 6 ,43则含有 x 3 的项是第 7项T 6 1C 106 x 3210 x 3 ,系数为 210 。

练:求 ( x 21 )9 展开式中 x 9 的系数2x解: T r 1C 9r( x 2 )9 r( 1 ) rC 9rx18 2r (1)r x rC 9r (1)r x 18 3r ,令 18 3r 9 ,则 r 32x22故 x 9 的系数为 C 93 ( 1 )321 。

22题型三:利用通项公式求常数项;例:求二项式 ( x 21 x )10 的展开式中的常数项2C 10r (x 2 )10r( 1 )rC 10r( 1) r20 5 r5 r8 ,所以 T 9 C 108(1)845解: T r 1x2,令 200 ,得 r2 x222 256练:求二项式 (2 x1 ) 6 的展开式中的常数项2x 1)r(1r ( 1 )r解:T r 1 C 6r(2 x)6 r( ) r ( 1)r C 6r 26 x 6 2r ,令 6 2r,得 r 3 ,所以 T 4 ( 1)3 C 63202x 2练:若 ( x21)n 的二项展开式中第 5 项为常数项,则 n ____.x解: T 5 C n 4(x 2 )n 4( 1)4C n 4 x 2 n 12 ,令 2n 12 0 ,得 n 6 .x题型四:利用通项公式,再讨论而确定有理数项;例:求二项式 (x3x)9 展开式中的有理项r19 r 1 rrr 27 r27 r解: T r 1( x 236Z ,( 0 r 9 )得 r3或 r9 ,C 9) ( x)( 1) C 9 x,令6所以当 r3时,27r4,T 4( 1)3 C 93 x 4 84 x 4 ,6当 r9 时,27 r3,T 10( 1)3 C 99 x 3x 3 。

6题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若 ( x 21 ) n 展开式中偶数项系数和为256,求 n .3x 2解:设 ( x 21 ) n 展开式中各项系数依次设为 a 0 , a 1, a n ,3x 2令 x1 ,则有 a 0 a 1a n0, ①, 令 x 1,则有 a 0 a 1a 2 a 3( 1)n a n 2n , ②将① -②得: 2( a 1 a 3 a 5 )2n , a 1a 3 a 52n 1 ,有题意得,2n 125628 , n 9 。

练:若( 3 151 n 的展开式中,所有的奇数项的系数和为1024,求它的中间项。

xx 2 )解: Q C n 0 C n 2C n 4C n 2rC n 1 C n 3 LC n 2 r12n 1 , 2n11024 ,解得 n 11C n 5 ( 3 1 )6 ( 5 12 )54,T 6161所以中间两个项分别为n 6, n7, T 5 1462 x462 x 15xx题型六:最大系数,最大项;例:已知 (12x) n ,若展开式中第 5 项,第 6 项与第 7 项的二项式系数成等差数列,求展开式中二项式系数最大项2的系数是多少解: Q C n 4 C n 62C n 5 , n 221n 98 0, 解出 n 7或n 14,当 n 7 时,展开式中二项式系数最大的项是T 4和 T 5 T 4的系数C 73( 1)4 2335, , T 5的系数C 74(1)3 24 70, 当 n 14 时,展开式中二项式系数最大222的项是 T 8 , T 8的系数 C 147( 1)7 273432 。

2练:在 (ab)2 n 的展开式中,二项式系数最大的项是多少解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即T2 n T n1 ,也就是第 n 1项。

2 1练:在 (x1) n 的展开式中,只有第 5 项的二项式最大,则展开式中的常数项是多少23x解:只有第5 项的二项式最大,则n1 5 ,即 n8 ,6 12C 8 () 72所以展开式中常数项为第七项等于2练:写出在 ( a b) 7的展开式中,系数最大的项系数最小的项解:因为二项式的幂指数7 是奇数,所以中间两项 (第 4,5 项 )的二项式系数相等,且同时取得最大值,从而有T 4C 73a 4b 3 的系数最小, T 5 C 74 a 3b 4 系数最大。

练:若展开式前三项的二项式系数和等于79,求 (12 x) n 的展开式中系数最大的项211解:由 C n 0 C n 1 C n 279, 解出n 12 ,假设r 1 项最大,2x) 1212(1 4x) 12TQ (( )22Ar 1A rC 12r 4r C 12r 1 4r 1r 10.4,又 Q 0 r 12 , r 10 ,展开式中系数最C 12r 4r,化简得到 9.4Ar 1Ar 2C 12r 1 4 r 1大的项为 T 11 ,有 T 11( 1 )12 C 1210 410 x 10 16896 x 102练:在 (1 2 x)10的展开式中系数最大的项是多少解:假设 T r 1 项最大, Q T r1C 10r 2r x rA r 1 A rC 10r 2 rC 10r 1 2 r 12(11 r )r,化简得到6.3 k7.3 ,又Q0r 10 ,C 10r 2 rC 10r 1 2r 解得A r 1 A r21 ,r 1 2(10 r )r 7 ,展开式中系数最大的项为 T 8 C 107 27 x 7 15360 x 7 .题型七:含有三项变两项 ;例:求当 ( x 2 3x2)5 的展开式中 x 的一次项的系数解法①: ( x 2 3x 2) 5[( x 2 2) 3x]5 , T r 1 C 5r ( x 2 2) 5 r (3 x)r ,当且仅当 r 1 时, T r 1 的展开式中才有 x的一次项,此时 T r1T 2 C 51 ( x 2 2) 4 3x ,所以 x 得一次项为 C 51C 44 243x它的系数为 C 51C 44 243 240 。

相关文档
最新文档