信号与系统简答题汇总
信号与系统考研题3
一、 简答题(50分)1、 已知连续时间信号)4(2)3()2()1(2)(---+-+-=t u t u t u t t x δ,画出)(t x 和)21(t x -的信号波形。
2、 已知系统输入)(t x 和输出)(t y 的关系为:)](sin[)(t x t y =,试推断该系统是否为时不变系统。
3、 利用DFT 对一连续信号)(t x 进行频谱分析,抽样间隔3101.0-⨯=s T 秒,要求频率分辨率不大于10Hz 。
确定所允许处理信号)(t x 的最高频率、最少取样点数(必须为2的整数次方)和最短记录时间各是多少?4、 一个实系数差分方程描述的线性相位FIR 系统,已知)(z H 中的三个零点分别为1,0.6,0.5+j0.5,试问该系统的阶数至少是多少?5、 已知一个理想低通数字滤波器的单位脉冲响应为)(n h ,频率响应)(ωj eH ,其中⎪⎩⎪⎨⎧≤≤≤=πωππωω4,04,1)(j e H试问:)()1()(1n h n h n-=是低通、高通、带通、带阻?画出它的幅频特性)(1ωj eH的图形。
6、 已知一个LTI 系统的输入)(t x 和输出)(t y 的关系为:⎰+-+=21)(1)(21T t T t d x T T t y ττ其中1T 、2T 是非负实数,利用特征函数的概念求该系统的)((n h7、已知连续时间实信号)(t x 的FT 为)(ΩX ,证明:)()(Ω-=ΩX X 和)(arg )(arg Ω--=ΩX X8、已知某LTI 系统的频率响应为Ω+Ω-=Ωj j j H 11)(,判断系统是否为无失真传输系统,说明原因。
9、计算离散时间序列)1(2)(+-=n u n x n的离散时间傅里叶变换)(ωj eX 。
10、已知某系统的单位冲激响应)()(2t u et h t-=,输入为)2()]2()()[()(-+--=t t u t u t f t x βδ,其中f(t)为t 的任意函数。
信号与系统考研试题答案
信号与系统考研试题答案一、选择题1. 信号的傅里叶变换具有以下哪些性质?A. 线性B. 时移C. 频移D. 以上都有答案:D解析:傅里叶变换具有线性性质,即两个信号的傅里叶变换等于它们各自傅里叶变换的和;具有时移性质,即时域中的平移对应频域中的相乘以频率因子;具有频移性质,即频域中的平移对应时域中的相乘以复指数函数。
2. 下列哪个系统是线性时不变系统?A. 弹簧质量阻尼系统B. 电子滤波器C. 人体生理系统D. 经济系统答案:B解析:线性时不变系统是指系统对任何输入信号的响应可以分解为对每个单独输入分量的响应的线性组合,并且这种关系不随时间变化。
电子滤波器满足这一定义,而其他选项中的系统通常不具备这种性质。
3. 连续时间信号的拉普拉斯变换定义中,s表示什么?A. 复频域变量B. 时域变量C. 空间变量D. 频率变量答案:A解析:拉普拉斯变换是将连续时间信号从时域转换到复频域的数学工具,其中s代表复频域变量,它包含了频率和阻尼因子。
4. 在数字信号处理中,离散傅里叶变换(DFT)的主要应用是什么?A. 信号的去噪B. 信号的压缩C. 信号的频谱分析D. 信号的滤波答案:C解析:离散傅里叶变换(DFT)主要用于分析离散信号的频率成分,即信号的频谱分析。
而去噪、压缩和滤波通常是通过其他方法或变换来实现的。
二、填空题1. 一个连续时间信号若在整个时间轴上绝对可积,则其傅里叶变换存在的条件是________。
答案:该信号的傅里叶变换收敛解析:连续时间信号的傅里叶变换存在的必要条件是信号在整个时间轴上绝对可积,即其积分绝对值有限。
2. 在信号与系统中,单位脉冲函数通常用符号________表示。
答案:δ(t)解析:单位脉冲函数是一个理想化的信号,其在t=0处的值无限大,但在整个时间轴上的积分为1,通常用δ(t)表示。
三、简答题1. 简述线性系统和非线性系统的区别。
答案:线性系统满足叠加原理,即系统对多个输入信号的响应等于对每个单独输入信号响应的和。
信号与系统复习题(含答案)
试题一一.选择题(共 10 题, 20 分)j ( 2 ) n41、x[n]ej ( ) ne33,该序列是。
A.非周期序列B.周期 N 3C.周期 N 3 / 8D. 周期N 242、一连续时间系统 y(t)= x(sint) ,该系统是。
A. 因果时不变B.因果时变C.非因果时不变D.非因果时变3、一连续时间 LTI 系统的单位冲激响应 h(t) e 4tu(t2),该系统是 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定 4、若周期信号 x[n] 是实信号和奇信号,则其傅立叶级数系数 a k是 。
A. 实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇, | 2 , 则 x(t)5 、 一 信 号 x(t) 的 傅 立 叶 变 换 X ( j ) 1 | ,| 20 |为。
A. sin 2tB. sin 2tC. sin 4tD. sin 4t2tt4tt6 、 一 周 期 信 号 x(t)(t5n) , 其 傅 立 叶 变 换 X ( j)n为。
A. 2(2 k)B.5 ( 2 k552 k)k5C. 10(10 k)D.1(k)k10k107、一实信号 x[n] 的傅立叶变换为 X (e j) ,则 x[n] 奇部的傅立叶变 换为 。
A.j Re{ X (e j )}B. Re{ X (e j)}C. j Im{ X (e j )}D.Im{ X (e j )}8、一信号 x(t) 的最高频率为 500Hz ,则利用冲激串采样得到的采样信号 x(nT) 能唯一表示出原信号的最大采样周期为 。
A. 500B. 1000C. 0.05D. 0.0019、一信号 x(t) 的有理拉普拉斯共有两个极点 s=- 3 和 s=- 5,若 g(t ) e 4t x(t) , 其 傅 立 叶 变 换 G ( j ) 收 敛 , 则 x(t) 是 。
A. 左边B. 右边C. 双边D. 不确定10、一系统函数H (s) e s, 1,该系统是 。
信号与系统试题库史上最全(内含答案)
信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
信号与系统试题及答案
信号与系统试题及答案一、选择题1. 信号f(t)=cos(2πt+π/4)是()。
- A. 偶函数- B. 奇函数- C. 周期函数- D. 非周期函数答案:C2. 系统分析中,如果输入信号为x(t),输出信号为y(t),那么系统的冲激响应h(t)与输出信号y(t)的关系是()。
- A. y(t) = x(t) * h(t)- B. y(t) = ∫x(t)h(t)dt- C. y(t) = x(t) + h(t)- D. y(t) = x(t) - h(t)答案:B3. 一个线性时不变(LTI)系统,其频率响应H(ω)是输入信号X(ω)的傅里叶变换与系统冲激响应的乘积,那么该系统的逆傅里叶变换是()。
- A. X(ω) * H(ω)- B. X(ω) / H(ω)- C. 1 / (X(ω) * H(ω))- D. H(ω) / X(ω)答案:A二、简答题1. 解释什么是单位冲激函数,并说明它在信号与系统分析中的作用。
答案:单位冲激函数是一种理想化的信号,其在t=0时的值为1,其他时间的值为0。
数学上通常表示为δ(t)。
在信号与系统分析中,单位冲激函数是系统冲激响应分析的基础,它允许我们通过将输入信号分解为单位冲激函数的叠加来分析系统的响应。
单位冲激函数的傅里叶变换是常数1,这使得它在频域分析中也非常重要。
2. 描述连续时间信号的傅里叶变换及其物理意义。
答案:连续时间信号的傅里叶变换是一种数学变换,它将时域信号转换为频域信号。
对于一个连续时间信号x(t),其傅里叶变换X(ω)可以表示为:\[ X(ω) = \int_{-\infty}^{\infty} x(t) e^{-jωt} dt \] 其中,e^(-jωt)是指数形式的复指数函数。
物理意义上,傅里叶变换揭示了信号的频率成分,即信号由哪些频率的正弦波和余弦波组成。
通过分析X(ω),我们可以了解信号的频率特性,这对于信号处理和系统分析至关重要。
信号和系统试题及答案
信号和系统试题及答案一、选择题(每题4分,共20分)1. 信号的频谱分析中,傅里叶变换的物理意义是什么?A. 信号的时域表示B. 信号的频域表示C. 信号的相位信息D. 信号的幅度信息答案:B2. 在线性时不变系统中,系统的输出与输入的关系是什么?A. 线性关系B. 非线性关系C. 时变关系D. 随机关系答案:A3. 下列哪个函数不是周期函数?A. sin(t)B. cos(2t)C. e^(-t)D. cos(2πt)答案:C4. 系统稳定性的判定可以通过什么方法?A. 奈奎斯特准则B. 伯德图C. 相位裕度D. 所有以上答案:D5. 系统函数H(s)的零点和极点分别代表什么?A. 系统输入和输出B. 系统稳定性和不稳定性C. 系统增益和衰减D. 系统频率响应答案:B二、填空题(每题4分,共20分)1. 连续时间信号的傅里叶变换定义为:X(jω) = ____________。
答案:∫x(t)e^(-jωt)dt2. 如果一个系统的冲激响应h(t)是因果的,则系统的零状态响应y(t)与输入x(t)的关系为:y(t) = ____________。
答案:∫h(t-τ)x(τ)dτ3. 一个线性时不变系统的特性可以用其系统函数H(s)来描述,其中s 是复频域变量,代表的是 ____________。
答案:拉普拉斯变换4. 如果一个系统的频率响应H(jω)在ω=ω0处有极点,则在时域中对应的响应h(t)将具有 ____________。
答案:振荡特性5. 系统的因果性意味着系统的输出不会在输入之前出现,这可以用系统的冲激响应h(t)满足的条件来表示:h(t) = ____________。
答案:0,t < 0三、简答题(每题10分,共30分)1. 请简述傅里叶级数与傅里叶变换的区别。
答案:傅里叶级数适用于周期信号,是将周期信号分解为正弦和余弦函数的和,而傅里叶变换适用于非周期信号,是将信号分解为复指数函数的积分。
信号与系统试题及答案(大学期末考试题)
信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。
若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。
则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。
若x(t)为周期为T的信号,则y(t)也是周期为T的信号。
A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。
答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。
答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。
答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。
信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。
信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。
2. 请简要说明周期信号和非周期信号的区别。
答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。
非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。
...以上是关于信号与系统试题及答案的文档。
希望能对您的大学期末考试复习有所帮助。
祝您考试顺利!。
信号与系统分析试题
信号与系统分析试题一、选择题1. 下面哪个选项描述了离散时间信号的特点?A. 信号取值连续,时间离散B. 信号取值离散,时间连续C. 信号取值连续,时间连续D. 信号取值离散,时间离散2. 信号能否同时具备连续时间和离散时间的特点?A. 能B. 不能3. 如果一个信号是周期信号,那么它一定满足的条件是什么?A. 信号的幅度呈周期性变化B. 信号的频率是一个特定值C. 信号的周期是一个特定值D. 信号的相位呈周期性变化4. 傅里叶变换广泛应用于哪些领域?A. 通信工程B. 电力系统分析C. 图像处理与分析D. 所有选项都正确5. 一个系统的单位冲激响应是指什么?A. 输入为单位冲激信号时的输出B. 输入为单位阶跃信号时的输出C. 输入为正弦信号时的输出D. 输入为余弦信号时的输出二、填空题1. 一个信号的宽度可以通过它的_____________来衡量。
2. _____________是一种常用的信号处理方法,可以将信号从时域转换到频域。
3. 离散时间信号与连续时间信号之间的转换可以通过_____________和_____________实现。
4. 一个系统的单位冲激响应与其_____________密切相关。
5. Z变换的变量_____________通常表示离散时间信号。
三、简答题1. 解释什么是时域分析,频域分析和复域分析,并说明它们在信号与系统分析中的应用。
2. 为什么在信号处理过程中会使用傅里叶变换?3. 请简要介绍卷积的定义和性质。
4. 简述拉普拉斯变换的定义和主要性质。
5. 解释什么是系统的冲击响应,并说明冲击响应的重要性。
四、计算题1. 计算以下离散时间信号的宽度:x[n] = {2, 4, 6, 8, 6, 4, 2}2. 已知离散时间信号x[n]的Z变换为X(z) = (1 + z^-1)/(1 - z^-1),计算x[n]。
参考答案:一、选择题1. B2. 不能3. C4. D5. A二、填空题1. 带宽2. 傅里叶变换3. 采样和保持4. 频率响应5. z三、简答题1. 时域分析是对信号在时间上的变化进行观察和分析,频域分析是对信号的频率特性进行研究,复域分析是使用复数的方法来表示信号和系统。
信号与系统复习题(含答案)
.试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。
A.因果时不变B.因果时变C.非因果时不变D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。
A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。
A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。
A. 500B. 1000C. 0.05D. 0.001 9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是 。
A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。
信号与系统简答题
1. 简述根据数学模型的不同,列出系统常用的几种分类。
(本题5分)★答:根据数学模型的不同,系统可分为4种类型(1分)(1) 即时系统与动态系统 (1分)(2) 连续系统与离散系统 (1分)(3) 线性系统与非线性系统 (1分)(4) 时变系统与时不变系统 (1分)2.简述稳定系统的概念及连续时间系统时域稳定的充分必要条件。
☆ (本题5分)答:(1)一个系统(连续的或离散的)如果对任意的有界输入,其零状态响应也是有界的则称该系统是有界输入有界输出稳定系统。
(2分)(2)连续时间系统时域稳定的充分必要条件是()h t dt M ∞-∞≤⎰(3分)3. 简述单边拉普拉斯变换及其收敛域的定义。
(本题5分)答:信号的单边拉普拉斯正变换为:dt e t f s F st ⎰∞-=0)()((2分) 逆变换为:ds e s F jt f jw jw st ⎰+-=δδπ)(21)((1分) 收敛域为:在s 平面上,能使0)(lim =-∞→t t e t f δ满足和成立的δ的取值范围(或区域),称为)(t f 或)(s F 的收敛域。
(2分)4.简述时域取样定理的内容。
(本题5分)★答:一个频谱受限的信号)(t f ,如果频谱只占据m m w w ~-的范围,则信号)(t f 可以用等间隔的抽样值来唯一表示。
(2分) 而抽样间隔必须不大于mf 21(m m f w π2=),或者说,最低抽样频率为m f 2。
(3分)5. 简述系统的时不变性和时变性。
(本题5分)答:如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变(或非时变)系统或常参量系统,否则称为时变系统。
(3分)描述线性时不变系统的数学模型是常系数线性微分方程(或差分方程),而描述线性时变系统的数学模型是变系数线性微分(或差分)方程。
(2分)6. 简述频域取样定理。
(本题5分)★答:一个在时域区间),(m m t t -以外为零的有限时间信号)(t f 的频谱函数)(jw F ,可唯一地由其在均匀间隔)21(ms s t f f <上的样点值)(s jnw F 确定。
信号与系统复习题及答案
1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
得分( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t -=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统简答题汇总
845-《信号与系统》简答题知识点汇总参考书目:郑君里主编,信号与系统(第二版),北京:高等教育出版社,2000.1、连续时间信号与离散时间信号按照时间函数取值的连续性与离散性可将信号分为连续时间信号与离散时间信号(简称连续信号与离散信号)如果在所讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数,此信号就称为连续信号。
与连续信号对应的是离散时间信号离散时间信号在时间上是离散的,只在某些不连续的规定瞬间给出函数值,在其他时间没有定义。
连续信号的幅值可以连续,也可以是离散的(只取某些规定值)离散时间信号可以认为是一组序列值得集合,以{x(n)}表示时间和幅值都为连续的信号又称模拟信号如果离散时间信号的幅值是连续的,则又可名为抽样信号离散时间信号的幅值也被限定为某些离散值,即时间和幅度都具有离散性,这种信号又成为数字信号。
2、线性系统与非线性系统e(t)→r(t)具有叠加性与均匀性的系统称为线性系统不满足叠加性或均匀性的系统成为非线性系统所谓叠加性是指当n个激励信号同时作用于系统时,总的输出响应等于每个激励单独作用所产生的响应之和;e1(t)+e2(t)→r1(t)+r2(t)均匀性的含义是当信号乘以某常数时,响应也倍乘相同的常数;ke(t)→∫kr(t)3、狄拉克给出δ函数的定义式{∫δ(t)dt∞−∞=1δ(t)=0 (t≠0)扩展:δ(t)=limτ→01τ(u(t+τ2)−u(t−τ2))δ(t)=limk→∞(kπSa(kt))=limk→∞(sin?(kt)πt) {∫Sa(t)dt∞−∞=π∫Sa(t)dt∞=π24、能量信号与功率信号能量信号:在无限大的时间间隔内,信号的能量为有限值,功率为零;功率信号:在无限大的时间间隔内,信号的平均功率为有限值,总能量无穷大;5、冲击函数匹配法的原理冲击函数匹配法的原理是根据t=0时刻微分方程左右两端的δ(t)及其各阶导数应该平衡相等。
信号与系统试题库史上最全(内含答案)
信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
(完整版)信号与系统中(常见简答题)
信号与系统(常见简答题)1. 能量有限信号的平均功率是多少?功率有限且不为零的信号能量是什么?2.写出复指数信号的表达式,并简述复指数信号的重要特性。
3.写出冲击函数的广义函数定义。
4.某线性时不变系统的冲激响应为h(t),输入为f (t ),则零状态响应为f (t )* h(t),写出卷积积分f (t )* h(t)的定义式,并说明其物理意义?5.什么是因果系统?因果系统的冲激响应有什么特点?6.什么是动态系统?动态系统的冲激响应有什么特点?7.简述连续LTI 系统的积分特性。
8.简述卷积和运算的分配律的物理意义。
9.写出理想低通滤波器的频率响应,理想低通滤波器是物理可实现的吗?10.简述时域取样定理。
11.对于有现长序列,其Z 变换之收敛域如何?12.简述可观测可控制因果连续系统的极点位置与稳定性的关系。
13.f (t )是时间t 的实函数且是奇函数,其频率函数有何特点?14.数字信号、模拟信号、连续时间信号、离散时间信号有什么区别和联系?15.离散时间因果系统稳定的充要条件是什么?16.已知信号f (t )的最高频率为Wm ,信号飞f^2(t )的最高频率是多少?17.半波镜像周期信号的傅里叶级数展开式有什么特点?18.什么是无失真传输?无失真传输系统应满足的条件是什么?19.信号f(t)=δ(t )+δ(2t )的能量是多少?20.周期信号的频谱和非周期信号的频谱有什么区别和联系?21.已知系统函数与激励分别如下,零状态响应的初值和终值分别等于多少?H (s)=)23(4+++s s s s ,e(t)=e t -u(t) 22.一个系统完成输入序列的累加功能,给出该系统的单位响应h (k )。
23.写出Z 平面与S 平面的对应关系式,并解释其意义。
24.简述H (s )几点位置与响应函数的对应关系。
25.简述系统控制性的定义。
26.为什么周期函数的傅里叶变换中含有频域的冲激函数项。
27.如果一个连续LTI 系统的冲激响应h(t)=ε(t),该系统完成什么运算?如果输入为f (t ),写出零状态的输出表达式。
信号与系统复习套题一答案
《信号与系统》套题一参考答案一、简答题1、dtt df t f t f x e t y t)()()()0()(+⋅=- 其中x(0)是初始状态,为激励)(t f 为全响应,,)(t y 试回答该系统是否是线性的? 解:由于无法区分零输入响应和零状态响应,因而系统为非线性的。
3、 若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f +=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
解:本题目主要考查的是取样定理的条件:)2(21)2(ωj F t f ↔)3(31)3(ωj F t f ↔ 因而:)2(t f 的最高频率为40KHz ,)3(t f 的最高频率为60KHz)3()2()(2t f t f t f +=的最高频率为两个分信号最高频率,为60KHz ,若对信号)(2t f 进行抽样,奈奎斯特频率12022=≥m s f f KHz4、 设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)()(t f t y zs -=,判断该系统是否是时不变的,并说明理由。
解:设)()(01t t f t f -=,若系统为时不变的,则必有结论)(01t t y y zs zs -=。
根据题意,由)(1t f 作用于系统的零状态响应为:)()(011t t f t y zs -=,根据信号的基本运算,)()()(0011t t f t t f t y zs +-=-=,很明显,)(01t t y y zs zs -≠,因而系统为时变的。
7、 设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)1(*)()(-=k f k f k y zs ,判断该系统是否是线性的,并说明理由。
解:系统为非线性的。
因为表达式中出现了)(k f 的二次方。
信号与系统考试题及答案
信号与系统考试题及答案一、选择题1. 在信号与系统中,周期信号的傅里叶级数展开中,系数\( a_n \)表示:A. 基频的振幅B. 谐波的振幅C. 直流分量D. 相位信息答案:B2. 下列哪个不是线性时不变系统的主要特性?A. 线性B. 时不变性C. 因果性D. 可逆性答案:D二、简答题1. 简述傅里叶变换与拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号或至少是定义在实数线上的信号,而拉普拉斯变换则可以处理更广泛类型的信号,包括非周期信号和定义在复平面上的信号。
傅里叶变换是拉普拉斯变换的一个特例,当\( s = j\omega \)时,拉普拉斯变换退化为傅里叶变换。
2. 解释什么是系统的冲激响应,并举例说明。
答案:系统的冲激响应是指系统对单位冲激信号的响应。
它是系统特性的一种表征,可以用来分析系统对其他信号的响应。
例如,一个简单的RC电路的冲激响应是一个指数衰减函数。
三、计算题1. 已知连续时间信号\( x(t) = e^{-|t|} \),求其傅里叶变换\( X(f) \)。
答案:\[ X(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-|t|}e^{-j2\pi ft} dt \]\[ X(f) = \frac{1}{2\pi} \left[ \int_{-\infty}^{0} e^{t} e^{-j2\pi ft} dt + \int_{0}^{\infty} e^{-t} e^{-j2\pi ft} dt\right] \]\[ X(f) = \frac{1}{2\pi} \left[ \frac{1}{1+j2\pi f} -\frac{1}{1-j2\pi f} \right] \]\[ X(f) = \frac{1}{\pi} \frac{j2\pi f}{1 + (2\pi f)^2} \]2. 给定一个线性时不变系统的系统函数\( H(f) = \frac{1}{1+j2\pi f} \),求该系统对单位阶跃信号\( u(t) \)的响应。
信号与系统考试题及答案
信号与系统考试题及答案一、单项选择题(每题2分,共20分)1. 信号与系统中,信号的分类不包括以下哪一项?A. 确定性信号B. 随机信号C. 离散信号D. 连续信号答案:C2. 以下哪个选项不属于线性时不变系统的属性?A. 线性B. 时不变性C. 因果性D. 稳定性答案:C3. 傅里叶变换的主要应用不包括以下哪一项?A. 信号频谱分析B. 滤波器设计C. 信号压缩D. 信号加密答案:D4. 拉普拉斯变换与傅里叶变换的主要区别是什么?A. 拉普拉斯变换适用于所有信号B. 傅里叶变换适用于周期信号C. 拉普拉斯变换适用于非周期信号D. 拉普拉斯变换是傅里叶变换的特例答案:D5. 以下哪个选项不是信号与系统中的卷积定理?A. 卷积定理将时域的卷积转换为频域的乘法B. 卷积定理适用于连续信号和离散信号C. 卷积定理只适用于线性时不变系统D. 卷积定理可以简化信号处理中的计算答案:C6. 信号的采样定理是由哪位科学家提出的?A. 奈奎斯特B. 香农C. 傅里叶D. 拉普拉斯答案:A7. 以下哪个选项是信号的时域表示?A. 傅里叶级数B. 拉普拉斯变换C. 傅里叶变换D. 时域图答案:D8. 以下哪个选项是信号的频域表示?A. 时域图B. 傅里叶级数C. 傅里叶变换D. 拉普拉斯变换答案:C9. 信号的希尔伯特变换主要用于什么?A. 信号滤波B. 信号压缩C. 信号解析D. 信号调制答案:C10. 信号与系统中,系统的稳定性是指什么?A. 系统对所有输入信号都有输出B. 系统对所有输入信号都有有限输出C. 系统对所有输入信号都有零输出D. 系统对所有输入信号都有无限输出答案:B二、填空题(每题2分,共20分)1. 信号与系统中,信号可以分为______信号和______信号。
答案:确定性;随机2. 线性时不变系统的最基本属性包括线性、时不变性和______。
3. 傅里叶变换的公式为:X(f) = ∫x(t)e^(-j2πft)dt,其中j是______。
中国石油大学期末考试题(含答案)-050130信号与系统-20
《信号与系统》课程综合复习资料一、简答题1、已知信号3()sin cos 62f k k k ππ=+,判断该信号是否为周期信号,若是,请求出信号周期,并说明理由。
2、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)1(*)()(-=k f k f k y zs ,判断该系统是否是线性的,并说明理由。
3、已知描述系统的微分方程为'()sin ()()y t ty t f t +=其中()()f t y t 为激励,为响应,试判断此系统是否为线性的?4、若信号()f t 的最高频率为20KHz ,则信号(2)f t 的最高频率为___________KHz ;若对信号(2)f t 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
5、dtt df t f t f x e t y t )()()()0()(+⋅=- 其中x(0)是初始状态,为激励)(t f 为全响应,,)(t y 试回答该系统是否是线性的? 6、已知()1 1 , 0,1,20 , k f k else==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else-==⎧⎨⎩设()()()12f k f k f k =*,求()4?f =。
7、设系统的激励为()f t ,系统的零状态响应)(t y zs 与激励之间的关系为:)()(t f t y zs -=,判断该系统是否是时不变的,并说明理由。
8、已知信号()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=8sin 4cos 2ππk k k f ,判断该信号是否为周期信号,如果是,请求其周期,并说明理由。
9、 若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f +=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率s f 为 ____________KHz 。
信号与系统考试题及答案
信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。
答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。
具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
845-《信号与系统》简答题知识点汇总参考书目:郑君里主编,信号与系统(第二版),北京:高等教育出版社,2000.1、连续时间信号与离散时间信号按照时间函数取值的连续性与离散性可将信号分为连续时间信号与离散时间信号(简称连续信号与离散信号)如果在所讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数,此信号就称为连续信号。
与连续信号对应的是离散时间信号离散时间信号在时间上是离散的,只在某些不连续的规定瞬间给出函数值,在其他时间没有定义。
连续信号的幅值可以连续,也可以是离散的(只取某些规定值)离散时间信号可以认为是一组序列值得集合,以{x(n)}表示时间和幅值都为连续的信号又称模拟信号如果离散时间信号的幅值是连续的,则又可名为抽样信号离散时间信号的幅值也被限定为某些离散值,即时间和幅度都具有离散性,这种信号又成为数字信号。
2、线性系统与非线性系统e(t)→r(t)具有叠加性与均匀性的系统称为线性系统不满足叠加性或均匀性的系统成为非线性系统所谓叠加性是指当n个激励信号同时作用于系统时,总的输出响应等于每个激励单独作用所产生的响应之和;e1(t)+e2(t)→r1(t)+r2(t)均匀性的含义是当信号乘以某常数时,响应也倍乘相同的常数;ke(t) →∫kr(t)3、狄拉克给出δ函数的定义式{∫δ(t)dt∞−∞=1δ(t)=0 (t≠0)扩展:δ(t)=limτ→01τ(u(t+τ2)−u(t−τ2))δ(t)=limk→∞(kπSa(kt))=limk→∞(sin?(kt)πt) {∫Sa(t)dt∞−∞=π∫Sa(t)dt∞=π24、能量信号与功率信号能量信号:在无限大的时间间隔内,信号的能量为有限值,功率为零;功率信号:在无限大的时间间隔内,信号的平均功率为有限值,总能量无穷大;5、冲击函数匹配法的原理冲击函数匹配法的原理是根据t=0时刻微分方程左右两端的δ(t)及其各阶导数应该平衡相等。
6、卷积方法的原理卷积方法的原理是将信号分解为冲激信号之和,借助系统的冲激响应h(t),求解系统对任意激励信号的零状态响应。
7、自由响应与强迫响应自由响应rh(t)由系统本身特性决定,微分方程的齐次解决定了自由响应的全部形式;完全解中的特解称为系统的强迫响应;强迫响应rp(t)只与外加激励函数的形式有关瞬态响应与稳态响应当t→∞时,响应趋于零的那部分响应分量成为瞬态响应;当t→∞时,保留下来的那部分分量成为稳态响应;零输入响应与零状态响应零输入响应:没有外加激励信号的作用,只有起始状态(起始时刻系统储能)所产生的(t)表示;响应,以rzi零状态响应:不考虑起始时刻系统储能的作用(起始状态等于零),由系统的外加激励(t)表示;信号所产生的响应,以rzs冲激响应ℎ(t)与阶跃响应u(t)冲激响应:系统在单位冲激信号δ(t)的激励下产生的零状态响应,用h(t)表示;阶跃响应:系统在单位阶跃信号u(t)的激励下产生的零状态响应,用g(t)表示;完全响应整个系统的完全响应是由系统自身特性决定的自由响应r(t)和外加激励信号e(t)有关h(t)两部分组成;的强迫响应rp8、稳定系统的定义及其稳定的充分必要条件稳定系统的另一种定义:若系统对任意的有界输入,其零状态也是有界的,则称系统是稳定系统;对于连续时间系统来说,LTI系统稳定性的充分必要条件是:∞∫|h(t)|dt≤M 式中M为有界正值−∞即若单位冲激响应ℎ(t)绝对可积,则系统是稳定的对于离散时间系统来说,稳定系统的充分必要条件是:∞∑|h(n)|≤M 式中M为有界正值n=−∞即单位样值响应绝对可和离散线性时不变系统作为因果系统的充分必要条件是:h(n)=0 (当 n<0时) [ 或者h(n)=h(n)u(n)]频域中的稳定性若H(s)极点落于左半平面,则h(t)波形为衰减形式;若H(s)极点落于右半平面,则h(t)波形为增长;落于虚轴上的一阶极点对应的h(t)成等幅振荡或阶跃,而虚轴上的二阶极点将使h(t)呈增长形式;按照h(t)呈现衰减或增长的两种情况,将系统划分为稳定系统与非稳定系统两大类;稳定是系统自身的性质之一,系统是否稳定与激励信号的情况无关;系统的冲激响应h(t)或系统函数H(s)集中表征了系统的本性,也反映了系统是否稳定;因果系统可划分为稳定系统、不稳定系统、临界稳定系统=0, 1)稳定系统:如果H(s)全部极点落于s左半平面(不包括虚轴),则可满足limt→∞系统是稳定的;2)不稳定系统:如果H(s)的极点落于s右半平面或在虚轴上具有二阶以上的极点,则在足够长的时间以后,h(t)仍继续增长,系统是不稳定的;3)临界稳定系统:如果H(s)的极点落于虚轴上,且只有一阶,则在足够长的时间以后,h(t)趋于一个非零的数值或形成一个等幅振荡;当H(s)极点位于左半平面时,h(t)绝对可积,系统稳定;而当H(s)极点位于右半平面或在虚轴上具有二阶以上极点时,h(t)不满足绝对可积条件,系统不稳定;当H(s)极点位于虚轴且只有一阶时称为临界稳定系统,h(t)处于不满足绝对可积的临界状况;9、时域抽样定理一个频域受限的信号f(t),如果频谱只占据-wm ~+wm的范围,则信号f(t)可以用等间隔的抽样值惟一的表示,而抽样间隔必须不大于1/2fm(其中W(m)=2πf(m)),或者说最低抽样频率为2f(m).奈奎斯特频率为了保留这一频率分量的全部信息,一个周期的间隔内至少抽样两次,即必须满足Ws ≥2Wm或fs≥2fm,通常把最低允许的抽样频率fs=2fm称为奈奎斯特频率,把最大允许的抽样间隔Ts=πwm=1/2fm,成为奈奎斯特间隔。
10、在模拟滤波器设计中,有哪几种常见的逼近函数巴特沃思(Butterworth)滤波器(最平响应特性滤波器)切比雪夫(Chebyshev)I型滤波器(通带等波纹滤波器)以下两种常用于工程应用中切比雪夫(Chebyshev)II型滤波器椭圆函数型11、拉普拉斯变换收敛域的关系式limft→∞(t)e−δt=0 (δ>δ0)函数f(t)乘以因子e−δt以后,取时间t→∞的极限,若当δ>δ0时,该极限等于零,则函数f(t)e−δt在δ>δ0的全部范围内是收敛的,其积分存在,可以进行拉普拉斯变换。
12、狄利克雷条件(任一满足狄利克雷条件的周期信号f(t)(T1为周期)可展开位傅里叶级数)1)在一周期内,如果有间断点存在,则间断点的数目是有限个;2)在一周期内,极大值和极小值的数目是有限个; 3)在一周期内,信号是绝对可积的,即∫|f (t )|dt t0+T1t0等于有限值(T1为周期)13、帕塞瓦尔定理(周期信号f(t)的平均功率P 与傅里叶系数有下列关系)P =f 2(t )=1T1∫dt t0+T1t0=a02+12∑(an 2+bn 2)∞n=1=c02+12∑cn 2=∑|Fn|2∞n=−∞∞n=1 此式表明:周期信号的平均功率等于傅里叶级数展开各谐波分量有效值的平方和,也即时域和频域的能量守恒。
14、傅里叶变换存在的充分必要条件是在无限区间内满足绝对可积的条件,即要求∫f (t )dt ∞−∞< ∞15、频谱密度函数与傅里叶级数系数的关系F (w )=limw1→02πF (nw1)w1=lim T1→0F (nw1)T1 式中F (nw1)w1表示单位频带的频率值--即频谱密度的概念,因此F (w )成为原函数f(t)的频谱密度函数,或简称为频谱函数16、抽样所谓抽样就是利用抽样脉冲序列p(t)从连续信号f(t)中“抽取”一系列的离散样值,这种离散信号通常称为“抽样信号”,以fs(t)表示。
抽样过程是通过抽样脉冲序列p(t)与连续信号f(t)相乘来完成,即满足fs(t)=f(t)?p(t)17、频域抽样定理若信号f(t)是时间受限的信号,它集中在-tm ~+tm 的时间范围内,若在频域中以不大于12tm 的频率间隔对f(t)的频谱F(w)进行抽样,则抽样后的频谱F1(w)可以惟一地表示原信号。
频域抽样所谓频域抽样就是对信号f(t)的频谱函数F(w)在频率轴上每隔ws抽取一个样值,从而得到频率样值函数Fs(nw1)的过程。
18、无失真传输的系统的时频域条件是:1)时域条件设激励信号为e(t),响应信号为r(t),无失真传输的条件是r(t)=ke(t−t0)式中k是一常数,t0是滞后时间且其冲激响应为h(t)=kδ(t−t0)2)频域条件在频域中H(w)=|H(w)|e jφ(w)=ke−jwt0幅值条件:|H(w)|=k;相位条件:φ(w)=−wt0即系统无失真传输时,系统函数的幅值特性为一常数,而相位特性为过原点的直线线性失真:信号通过线性系统产生的失真成为线性失真,其特点是响应中不产生新频率,主要有幅度失真和相位失真;非线性失真:信号通过非线性电路所产生的失真,其特点是响应中产生了激励信号中没有的频率成分;幅度失真:系统对信号中各频率幅度产生不同程度的衰减,使响应各频率分量的相对幅度产生变化,引起幅度失真;相位失真:系统对各频率分量产生的相移不与频率成正比,使响应的各频率分量在时间轴上的相位位置产生变化,引起相位失真。
19、理想低通滤波器理想低通滤波器的网络函数为H (jw )={e −jwt0,−wc <w <wc 0, w 为其他值|H (jw )|={1,|w |<wc 0, w 为其他值φ(w )=−wt01) 则冲激响应为h (t )=wc πSa [wc (t −t0)] 式中t0称为群时延 2)理想低通的阶跃响应E (jw )=ℒ[u (t )]=πδ(w )+1jwR (jw )=H (jw )E (jw )r (t )=12+1πSi [wc (t −t0)] 其中符号Si (y ),Si (y )=∫sinx x dx y 0 如果定义输出由最小值到最大值所需时间为上升时间tr ,则可得到tr =2πwc =1B阶跃响应的上升时间与系统的截止频率(带宽)成反比理想低通滤波器是物理不可实现的系统20、一个物理可实现网络的冲激响应h(t)在t<0时必须为零或者说冲激响应h(t)波形的出现必须是有起因的,不能在冲激作用之前就产生响应,有时把这一要求称为“因果条件”;从频率特性来看,如果|H(jw)|满足平方可积条件,即∫|H (jw )|2dw <∞+∞−∞,则对于幅度函数|H(jw)|物理可实现的必要条件是∫|In |H (jw )||1+w 2dw <∞+∞−∞ (佩里−维纳准则) 佩里-维纳准则既不允许网络特性在一频带内为零,也限制了幅度特性的衰减速度21、调制、解调调制就是将信号频谱搬移到任何所需频率范围的过程;调制过程的实质是把各种信号的频谱搬移,使它互补重叠地占据不同的频率范围,也即信号分别托付于不同频率的载波上,接收机就可以分离出所需频率的信号,不致互相打扰。