2016上海长宁区初三数学一模试题

合集下载

2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案

2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案

2016年奉贤区调研测试九年级数学2016.01(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.用一个4倍放大镜照△ABC ,下列说法错误的是(▲) A .△ABC 放大后,∠B 是原来的4倍; B .△ABC 放大后,边AB 是原来的4倍; C .△ABC 放大后,周长是原来的4倍; D .△ABC 放大后,面积是原来的16倍2.抛物线()212y x =-+的对称轴是(▲)A .直线2x =;B .直线2x =-;C .直线1x =;D .直线1x =-.3.抛物线223y x x =--与x 轴的交点个数是(▲) A . 0个 ; B .1个; C . 2个 ; D . 3个.4.在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且有12AD AE DB EC ==,BC =18,那么DE 的值为(▲)A .3 ;B .6 ;C .9 ;D .12. 5.已知△ABC 中,∠C =90°,BC =3,AB =4,那么下列说法正确的是(▲) A .3sin 5B =; B . 3cos 4B = ; C .4tan 3B =; D .3cot 4B =6.下列关于圆的说法,正确的是(▲) A .相等的圆心角所对的弦相等;B .过圆心且平分弦的直线一定垂直于该弦;C .经过半径的端点且垂直于该半径的直线是圆的切线;D .相交两圆的连心线一定垂直且平分公共弦.二.填空题:(本大题共12题,每题4分,满分48分) 7.已知3x =2y ,那么xy=▲; . 8.二次函数342+=x y 的顶点坐标为▲;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比i =▲;10.如果抛物线k x k y -+=2)2(的开口向下,那么k 的取值范围是▲;11.从观测点A 处观察到楼顶B 的仰角为35°,那么从楼顶B 观察观测点A 的俯角为▲; 12.在以O 为坐标原点的直角坐标平面内有一点A (-1,3),如果AO 与y 轴正半轴的夹角为α,那么角α的余弦值为▲;13.如图,△ABC 中,BE 平分∠ABC ,DE//BC ,若DE =2AD ,AE=2,那么EC =▲; 14.线段AB 长10cm ,点P 在线段AB 上,且满足BP APAP AB=,那么AP 的长为▲cm ;. 15.⊙O 1的半径11r =,⊙O 2的半径22r =,若此两圆有且仅有一个交点,那么这两圆的圆心距d =▲;16.已知抛物线(4)y ax x =+,经过点A (5,9)和点B (m,9),那么m =▲;17.如图,△ABC 中,AB =4,AC =6,点D 在BC 边上,∠DAC =∠B ,且有AD =3,那么BD的长为▲;18.如图,已知平行四边形ABCD 中,AB=AD =6,cotB =21,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ’(点B ’不与点B 重合),那么 sin ∠CAB ’=▲. 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:︒+︒--︒+︒60sin 260tan 2130cos 45sin 422.第13题图BA DC E第17题图B ADC第18题图B20.(本题满分10分,每小题5分)如图,已知AB//CD//EF ,AB:CD:EF=2:3:5,=. (1)=BD (用a 来表示);(2)求作向量AE 在AB 、BF 方向上的分向量. (不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分,每小题5分)为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB 进行改造,在斜坡中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡角为36°,则平台DE 的长约为多少米?(2)在距离坡角A 点27米远的G 处是商场主楼,小明在D 点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin 36°=0.6,cos 36°=22.(本题满分10分,每小题5分)如图,在⊙O 中,AB 为直径,点B 为CD 的中点,CD =AE =5. (1)求⊙O 半径r 的值;(2)点F 在直径AB 上,联结CF ,当∠FCD =∠DOB 时,求AF 的长.E AB F第20题图CD第21题图F E ABOCD23.(本题满分12分,第(1)小题6分,第(2)小题6分) 已知:在梯形ABCD 中,AD //BC ,AB ⊥BC ,∠AEB =∠ADC . (1)求证:△ADE ∽△DBC ;(2)联结EC,若2CD AD BC =⋅,求证:∠DCE =∠ADB .24.(本题满分12分,第(1)小题4分,第(2)小题8分)如图,二次函数2y x bx c =++图像经过原点和点A (2,0),直线AB 与抛物线交于点B , 且∠BAO =45°.(1)求二次函数解析式及其顶点C 的坐标; (2)在直线AB 上是否存在点D ,使得△BCD为直角三角形.若存在,求出点D 的坐标, 若不存在,说明理由.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图,Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,垂足为点C ,联结DE ,使得∠EDC =∠A ,联结BE . (1)求证:AC BE BC AD ⋅=⋅;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式及x 的取值范围; (3)当ABC BDE S S ∆=41△时,求tan ∠BCE 的值.EA B第20题图CDAE第25题备用图A2016学年九年级第一学期期末测试参考答案与评分标准 2016.01一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.C ; 3.C ; 4.B ; 5.B ; 6.D . 二、填空题:(本大题共12题,每题4分,满分48分)7.23; 8.(0,3);9.2k <-; 10.1 11.35°; 12.10103; 13.4; 14.5; 15.1或3; 16.-9; 17.72; 18.1010或2.三、解答题:(本大题共7题,满分78分)19.(1)原式=2+24222⎛⨯ ⎝⎭...................................(4分)=(13+244-+(4分) = -1 .......................(2分) 20.解:(1)13a …………………………………………………(5分)(2)向量AE 在AB 、BF 方向上的分向量分别为GE 、AG.图形准确……………………………………………(3分) 结论正确……………………………………………(2分)21.解:(1)由题意得,AB =60米,∠BAC =30°,∠BEF =36°,FM//CG∵点D 是AB 的中点 ∴BD =AD =12AB =30................................................(1分) ∵DF//AC 交BC 、HG 分别于点F 、M , ∴∠BDF =∠A=30°,∠BFE =∠C=90° 在Rt △BFD 中,∠BFD =90°,cos BDF DF BD ∠=,30DF =, 25.5DF =≈............(1分) sin BF BDF BD∠=1230BF =. 15BF =…………………………(1分)在Rt △BFE 中,∠BFE =90°,tan BEF BFEF ∠=,0.715EF =,EF =21.4………(1分) ∴DE=DF-EF =25.5-21.4=4.1≈4(米)答:平台DE 的长约为4米. ………………………………………………………(1分)(2)由题意得,∠HDM =30°,AG =27米,过点D 作DN ⊥AC 于点N在Rt △DNA 中,∠DNA =90°cos DAC AN AD ∠=30AN =AN =(1分)sin DN DAN AD∠= 1230DN = 15DN =...................(1分)∴27DM NG AN AG ==+=……………………………………(1分)在Rt △HMD 中,∠HMD =90° tan HDM HMDM ∠=15HM =+453930153915≈+=++=+=MG HM HG 米…(1分)答:主楼GH 的高约为45米………………………………………………………(1分) 22.解:(1) ∵OB 是半径,点B 是CD 的中点∴OB ⊥CD ,CE=DE =12CD =…(2分)∴222ODED OE =+ ∴()()2225-5r r =+ 解得 r =3…………(3分)(2) ∵OB ⊥CD ∴∠OEC=∠OED =90°……………………………………………(1分) 又∵∠FCE=∠DOE ∴△FCE ∽△DOE ∴EF CEED OE=…………………………(2分)= 得52EF =……………………………………………………(1分)∴ 52AF AE EF =-=……………………………………………………………(1分) 23.(1)证明:∵AD ∥BC ∴∠ADB =∠DBC ………………………………………(2分) ∵ ∠ADC+∠C=180° ∠AEB+∠AED=180°又∵∠AEB =∠ADC ∴∠C =∠AED …………………………………………(2分) ∴△ADE ∽△DBC ……………………………………………………………(2分) (2) ∵△ADE ∽△DBC∴AD DBDE BC =∴AD BC DB DE ⋅=⋅…………………………………………(1分) ∵2CD AD BC =⋅ ∴2CD DB DE =⋅∴CD DEDB CD =………………………………………………………………………(1分) ∵∠CDB =∠CDE∴△CDE ∽△BDC ………………………………………………………………(2分) ∴ ∠DCE =∠DBC ………………………………………………………………(1分) ∵∠ADB =∠DBC∴∠DCE =∠ADB ………………………………………………………………(1分)24.解:(1)将原点(0,0)和点A (2,0)代入2y x bx c =++中0042cb c=⎧⎨=++⎩ 解得20b c =-⎧⎨=⎩ 22y x x =-………………………(3分)∴顶点C 的坐标为(1,﹣1(2)过点B 作BG ⊥x 轴,垂足为点G ∵∠BGA =90°,∠A =45° ∴∠GBA=45° 设点A (x ,22x x -) 则22x x -=2-x ∴点B (-1,3设直线AB : 0y kx b k =+≠() 将点A (2,0)、B (-1,3)代入203k b k b +=⎧⎨-+=⎩解得12k b =-⎧⎨=⎩ 直线AB :y =设点D (x ,2x -+)则BC =CD =BD 若△BCD 为直角三角形①∠BCD =90° ∴222BC CD BD += 即(222+= 解得73x =∴7133D ⎛⎫⎪⎝⎭点,-……………………………………………(2分)② ∠BDC =90°∴222BDCD BC += 即(222+=解得 1221x x ==-,(舍去) ∴点D (2,0)…………………(2分)综上所述:()712,033D ⎛⎫ ⎪⎝⎭点,-或25.解:(1)∵CE ⊥CD ∴∠DCE =∠BCA =90︒∵∠EDC =∠A ∴△EDC ∽△BAC ∴EC BCDC AC=……………(2分) ∵∠DCE =∠BCA ∴∠DCE -∠BCD =∠BCA -∠BCD 即∠BCE=∠DCA ……(1分)∵ECBCDC AC = ∴△BCE ∽△ACD ………………………………(1分)∴BCACBEAD= 即AC BE BC AD ⋅=⋅………………………………………(1分) (2)∵△BCE ∽△ACD ∴∠CBE =∠A ∵∠BCA=90° ∴4AC ,∠ABC+∠A=90°∴∠CBE+∠ABC=90°即∠DBE=90°……………………(1分)∴DE ==∵BC AC BE AD =,34BE x = ∴ 3=4BE x ()2113153==52248BDE x x S BD BE x x ∆-⋅-⋅=……………………………………(1分) ∵ △CDE ∽△CAB ∴22121165CDE ABC S DE x x S AB ∆∆⎛⎫==-+ ⎪⎝⎭ ∵11==43=622ABC S BC AC ∆⋅⨯⨯ ∴2312=685CDE S x x ∆-+……………………(1分) 即()21=S 60540BDE CDE S S x x ∆∆+=-<<……………………………(2分) (3)11==43=622ABC S BC AC ∆⋅⨯⨯ 由14ABC S S ∆=得 21531684x x -=⨯ ∴2540x x -+=1214x x ==,…………………………(1分)过点D 作DF ⊥AC 于点F ∴∠DFA=∠BCA =90°∴ DF ∥BC ∴DF AD AFBC AB AC == 当x =1时,3455DF AF ==,,165CF AC AF =-=………………………………(1分) 在Rt △DFC 中,∠DFC =90° t a n 3DF DCF ==∠∵∠BCE=∠DCA ∴3an 16t BCE =∠当x =4时,得121655DF AF ==, CF =3tan DCF DFCF∠==,即tan ∠∴综上所述:6an 331t BCE =∠或.2016浦东一模一. 选择题1. 如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2; B. 1:4; C. 1:8; D. 1:16;2. 在Rt △ABC 中,90C ︒∠=,若5AB =,4BC =,则sin A 的值为( )A.34; B. 35; C. 45; D. 43; 3. 如图,点D 、E 分别在AB 、AC 上,以下能推得DE ∥BC 的条件是( ) A. ::AD AB DE BC =; B. ::AD DB DE BC =; C. ::AD DB AE EC =; D. ::AE AC AD DB =;4. 已知二次函数2y ax bx c =++的图像如图所示,那么a 、b 、c 的符号为( ) A. 0a <,0b <,0c >; B. 0a <,0b <,0c <; C. 0a >,0b >,0c >; D. 0a >,0b >,0c <;5. 如图,Rt △ABC 中,90ACB ︒∠=,CD AB ⊥于点D ,下列结论中错误的是( )A. 2AC AD AB =⋅;B. 2CD CA CB =⋅; C. 2CD AD DB =⋅; D. 2BC BD BA =⋅; 6. 下列命题是真命题的是( )A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似;二. 填空题7. 已知13x y =,那么x x y =+ ; 8. 计算:123()3a ab -+=;9. 上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图 上距离约 厘米;10. 某滑雪运动员沿着坡比为100米,则运动员下降的垂直高度为 米;11. 将抛物线2(1)y x =+向下平移2个单位,得到新抛物线的函数解析式是 ; 12. 二次函数2y ax bx c =++的图像如图所示,对称轴为直线2x =,若此抛物线与x 轴的 一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 ;13. 如图,已知AD 是△ABC 的中线,点G 是△ABC 的重心,AD a = ,那么用向量a表示向量AG为 ;14. 如图,△ABC 中,6AC =,9BC =,D 是△ABC 的边BC 上的点,且CAD B ∠=∠, 那么CD 的长是 ;15. 如图,直线1AA ∥1BB ∥1CC ,如果13AB BC =,12AA =,16CC =,那么线段1BB 的 长是 ;16. 如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处 水平放置一平面镜,一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的 顶端C 处;已知AB BD ⊥,CD BD ⊥,且测得15AB =米,20BP =米,32PD =米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米;17. 若抛物线2y ax c =+与x 轴交于点(,0)A m 、(,0)B n ,与y 轴交于点(0,)C c ,则称 △ABC 为“抛物三角形”;特别地,当0mnc <时,称△ABC 为“正抛物三角形”;当0mnc > 时,称△ABC 为“倒抛物三角形”;那么,当△ABC 为“倒抛物三角形”时,a 、c 应分 别满足条件 ;18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上的 一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;三. 解答题19. 456tan302cos30︒︒︒+-;20. 二次函数2y ax bx c =++的变量x 与变量y 的部分对应值如下表:(1)求此二次函数的解析式; (2)写出抛物线顶点坐标和对称轴;21. 如图,梯形ABCD 中,AD ∥BC ,点E 是边AD 的中点,联结BE 并延长交CD 的延 长线于点F ,交AC 于点G ;(1)若2FD =,13ED BC =,求线段DC 的长; (2)求证:EF GB BF GE ⋅=⋅;22. 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上 由西向东匀速行驶,依次经过点A 、B 、C ,P 是一个观测点,PC l ⊥,PC =60米,4tan 3APC ∠=,45BPC ︒∠=,测得该车从点A 行驶到点B 所用时间为1秒; (1)求A 、B 两点间的距离;(2)试说明该车是否超过限速;23. 如图,在△ABC 中,D 是BC 边的中点,DE BC ⊥交AB 于点E ,AD AC =,EC 交AD 于点F ;(1)求证:△ABC ∽△FCD ; (2)求证:3FC EF =;24. 如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧), 与y 轴交于点(0,3)C -,抛物线的顶点为M ;(1)求a 、c 的值; (2)求tan MAC ∠的值;(3)若点P 是线段AC 上一个动点,联结OP ; 问是否存在点P ,使得以点O 、C 、P 为顶点的 三角形与△ABC 相似?若存在,求出P 点坐标; 若不存在,请说明理由;25. 如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),45EBM ︒∠=,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M ;(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)联结EG ,如图2,设AE x =,EG y =,求y 关于x 的函数解析式,并写出定义域; (3)当M 为边DC 的三等分点时,求EGF S 的面积;21、22、23、24、25、2016青浦、静安一模一. 选择题 1.的相反数是( )A.B. C.2; D. 2-; 2. 下列方程中,有实数解的是( )A. 210x x -+=; B. 1x =-;C.210x x x -=-; D. 211xx x-=-; 3. 化简11(1)x ---的结果是( ) A.1x x -; B. 1xx -; C. 1x -; D. 1x -; 4. 如果点(2,)A m 在抛物线2y x =上,将此抛物线向右平移3个单位后,点A 同时平移到 点A ',那么A '坐标为( )A. (2,1);B. (2,7);C. (5,4);D. (1,4)-;5. 在Rt △ABC 中,90C ∠=︒,CD 是高,如果AD m =,A α∠=,那么BC 的长为( )A. tan cos m αα⋅⋅;B. cot cos m αα⋅⋅;C.tan cos m αα⋅; D. tan sin m αα⋅;6. 如图,在△ABC 与△ADE 中,BAC D ∠=∠,要使△ABC 与△ADE 相似,还需满 足下列条件中的( )A. AC AB AD AE =;B. AC BC AD DE =;C. AC AB AD DE =;D. AC BCAD AE=;二. 填空题7. 计算:23(2)a -= ; 8. 函数3()2x f x x -=+的定义域为 ;9. 1x =-的根为 ;10. 如果函数(3)1y m x m =-+-的图像经过第二、三、四象限,那么常数m 的取值范围为 ;11. 二次函数261y x x =-+的图像的顶点坐标是 ;12. 如果抛物线225y ax ax =-+与y 轴交于点A ,那么点A 关于此抛物线对称轴的对称点坐标是 ;13. 如图,已知D 、E 分别是△ABC 的边AB 和AC 上的点,DE ∥BC ,BE 与CD 相交于点F ,如果1AE =,2CE =,那么:EF BF 等于 ;14. 在Rt △ABC 中,90C ∠=︒,点G 是重心,如果1sin 3A =,2BC =,那么GC 的长 等于 ;15. 已知在梯形ABCD 中,AD ∥BC ,2BC AD =,设AB a = ,BC b = ,那么CD =(用向量a 、b的式子表示);16. 在△ABC 中,点D 、E 分别在边AB 、AC 上,AED B ∠=∠,6AB =,5BC =,4AC =,如果四边形DBCE 的周长为10,那么AD 的长等于 ;17. 如图,在平行四边形ABCD 中,AE BC ⊥,垂足为E ,如果5AB =,8BC =,4sin 5B =,那么tan CDE ∠= ; 18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落到C ',且点C '、B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ;三. 解答题19. 化简:222266942x x x x x x x---++--,并求当123x =时的值;20. 用配方法解方程:22330x x --=;21. 如图,直线43y x =与反比例函数的图像交于点(3,)A a ,第一象限内的点B 在这个反比 例函数图像上,OB 与x 轴正半轴的夹角为α,且1tan 3α=:(1)求点B 的坐标;(2)求OAB ∆的面积;22. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是26.6°,向 前走30米到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是45°和33.7°,求该电 线杆PQ 的高度(结果精确到1米);(备用数据:sin 26.60.45︒=,cos 26.60.89︒=,tan 26.60.50︒=,cot 26.6 2.00︒=,sin 33.70.55︒=,cos33.70.83︒=,tan 33.70.67︒=,cot 33.7 1.50︒=)23. 已知,如图,在△ABC 中,点D 、E 分别在边BC 、AB 上,BD AD AC ==,AD 与CE 相交于点F ,2AE EF EC =⋅; (1)求证:ADC DCE EAF ∠=∠+∠;(2)求证:AF AD AB EF ⋅=⋅;2124. 如图,直线112y x =+与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相 交于点C ,与直线112y x =+相交于点A 、D ,CD ∥x 轴,CDA OCA ∠=∠;(1)求点C 的坐标;(2)求这个二次函数的解析式;25. 已知:在梯形ABCD 中,AD ∥BC ,10AC BC ==,4cos 5ACB ∠=,点E 在对角 线AC 上,且CE AD =,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G ,设AD x =,△AEF 的面积为y ;(1)求证:DCA EBC ∠=∠;(2)如图,当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积;22静安区2015学年第一学期期末教学质量调研 九年级数学试卷参考答案及评分说明2016.1一、选择题:1.D ; 2.D ; 3.A ; 4.C ; 5.C ; 6.C . 二、填空题:7.68a -; 8.2-≠x ; 9.4=x ; 10.31<<m ; 11.(3, -8); 12.(2, 5); 13.31; 14.2; 15.b a 21--; 16.2; 17.21; 18.135. 三、解答题:19.解:原式= )2()3()2)(2()3)(2(2--÷-+-+x x x x x x x ············································································ (4分) =)3()2()2)(2()3)(2(--⋅-+-+x x x x x x x ··············································································· (1分) =3-x x. ········································································································ (2分) 当3321==x时,原式=231311333+-=-=-. ································· (3分) 20.解:023232=--x x , ····································································································· (1分) 23232=-x x , ············································································································ (1分) 16923)43(2322+=+-x x , ······················································································· (2分) 1633)43(2=-x , ·········································································································· (2分) 43343±=-x , ········································································································· (2分)433231+=x ,433232-=x . ·············································································· (2分)2321.解:(1)∵直线x y 34=与反比例函数的图像交于点A (3,a ), ∴334⨯=a =4,∴点的坐标A (3,4). ······························································ (1分) 设反比例函数解析式为xky =, ············································································· (1分)∴12,34==k k ,∴反比例函数解析式为xy 12=. ··········································· (1分)过点B 作BH ⊥x 轴,垂足为H , 由31tan ==OB BH α,设BH =m ,则OB =m 3,∴B (m 3,m ) ························ (1分) ∴mm 312=,2±=m (负值舍去), ······································································ (1分) ∴点B 的坐标为(6,2). ······················································································ (1分)(1) ····································· 过点A 作AE ⊥x 轴,垂足为E ,OBH AEHB OAE OAB S S S S ∆∆∆-+=梯形············································································ (1分) =BH OH EH BH AE OE AE ⋅-⋅++⋅21)(2121 ··············································· (1分) ==⨯⨯-⨯++⨯⨯26213)24(2143219. ······················································ (2分)22.解:延长PQ 交直线AB 于点H ,由题意得.由题意,得PH ⊥AB ,AB =30,∠PAH =26 .6°,∠PBH =45°,∠Q BH =33.7°, 在Rt △QBH 中,50.1cot ==∠QHBHQBH ,设QH =x ,BH =x 5.1, ···················· (2分) 在Rt △PBH 中,∵∠PBH =45°,∴PH = BH =x 5.1,··············································· (2分) 在Rt △PAH 中,00.2cot ==∠PHAHPAH ,AH =2PH =x 3, ··································· (2分) ∵AH –BH =AB ,∴305.13=-x x ,20=x . ························································· (2分) ∴PQ =PH –QH =105.05.1==-x x x . ····································································· (1分) 答:该电线杆PQ 的高度为10米. ················································································· (1分)2423.证明:(1)∵EC EF AE ⋅=2,∴AEECEF AE =. ·························································· (1分) 又∵∠AEF =∠CEA ,∴△AEF ∽△CEA . ······················································· (2分) ∴∠EAF =∠ECA , ··························································································· (1分) ∵AD =AC ,∴∠ADC =∠ACD , ······································································· (1分) ∵∠ACD =∠DCE +∠ECA =∠DCE +∠EAF . ····················································· (1分)(2)∵△AEF ∽△CEA ,∴∠AEC =∠ACB . ······························································· (1分)∵DA =DB ,∴∠EAF =∠B . ················································································ (1分) ∴△EAF ∽△CBA . ····························································································· (1分)∴ACEFBA AF =. ··································································································· (1分) ∵AC =AD ,∴ADEFBA AF =. ················································································ (1分) ∴EF AB AD AF ⋅=⋅. ···················································································· (1分)24.解:(1)∵直线121+=x y 与x 轴、y 轴分别相交于点A 、B , ∴A (–2,0)、B (0,1).∴OA =2,OB =1. ······················································ (2分) ∵CD //x 轴,∴∠OAB =∠CDA ,∵∠CDA =∠OCA ,∴∠OAB =∠OCA . ············· (1分) ∴tan ∠OAB =tan ∠OCA , ························································································· (1分) ∴OCOA OA OB =,∴OC 221=, ·················································································· (1分) ∴4=OC ,∴点C 的坐标为(0,4). ································································ (1分) (2)∵CD //x 轴,∴BOBCAO CD =. ················································································· (1分) ∵BC =OC –OB=4–1=3,∴132=CD ,∴CD =6,∴点D (6,4). ························ (1分) 设二次函数的解析式为42++=bx ax y , ···························································· (1分)⎩⎨⎧++=+-=,46364,4240b a b a ………………(1分) ⎪⎩⎪⎨⎧=-=.23,41b a ········································· (1分) ∴这个二次函数的解析式是423412++-=x x y . ················································· (1分)25.解:(1)∵AD ∥BC ,∴∠DAC =∠ECB . ········································································ (1分)又∵AD =CE ,AC =CB ,∴△DAC ≌△ECB . ······························································ (2分) ∴∠DCA =∠EBC . ··································································································· (1分) (2)过点E 作EH ⊥BC ,垂足为H .AE =AC –CE =x -10.。

长宁初三数学模拟考试卷

长宁初三数学模拟考试卷

长宁区初三教课质量检测数学试卷(满分150 分 ,考试时间100 分钟)一、填空题(本大题共12 题 ,满分 36 分)[只要求直接写出结果, 每个空格填对得 3 分 , 不然得零分]1.分解因式: x2y2.2.已知 f ( x)x 2,那么f (9).3.12.计算:124.已知正比率函数的图像经过点(1,1),则此函数的分析式为 y=.5.当a _____ 3时,等式(a 3)23a 成立.6.如图 1,①、②、③的图形中能必定12 的序号是.7.据有关部门统计,2006 年上海市产生废污水亿立方米,用科学计数法表示为______立方米 .8.已知方程:23(x23x) 2 ,那么x23x.x3x9.已知方程:①x y 0 ;② x2y26x 80 ;③x2y2 4 y 50 .此中联立方程组有解的两个方程的序号是.10.如图 2,把腰长为 4 的等腰直角三角形折叠两次后,获得一个小三角形的周长是.图 211.如图 3,以ABC的三边分别向外作正方形 ,他们的面积分别是S1, S2,S3 ,假如S3S1S2,那么ABC 是三角形.AS3 S1C OBS 2l图 3图 412. 如图 4,点 O 到直线l的距离为 3,假如以点 O 为圆心的圆上只有两点到直线l 的距离为1,则该圆的半径r的取值范围是.二、选择题(本大题共4题 ,满分 16 分)[以下各题的四个结论中, 有且只有一个结论是正确的, 把正确的结论的代号写在题后的括号内, 选对得 4 分; 不选、选错或多项选择得零分]13.在正方形网格中的地点如图5 所示 ,那么sin应当用哪些点连结成的线段的比值表示┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈()BE AE AD BD(A)(B)(C)(D)BC AC AC BCABCD E图 5c b O a图 614.已知实数 a 、b、 c 在数轴上的对应点如图5所示则以下式子中正确的选项是┈┈(),(A)cb ab (B) ac ab (C) cb ab (D) c b a b15.以下命题中正确的选项是┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈()(A)有一个内角是 95 的两个等腰三角形相似;(B)对角线相互垂直且相等的四边形是正方形;(C)假如一条直线上有两点到另一条直线上的距离相等,那么这两条直线相互平行 ;(D) 假如半径分别为 3 和 1 的两圆相切 ,那么两圆的圆心距必定是 4.16.如图 7,边长为 1 和 2 的两个正方形,其一边在同一水平线上,小正方形自左向右匀速穿过大正方形,设穿过的时间为t,暗影部分面积为S,那么 S 与 t 的函数图像大体是┈()图 7S (A)(B)S (C)S (D)SO t O t O tO t三、(本大题共 5 题 ,满分 48 分)17. (本题满分9 分)先化简 ,再求值:x x 4x x 2x 2,此中 x 23 .2 x18. (本题满分 9 分) 已知: ax 1,b x 2 ,假如 a 不小于 21 b ,求满足条件的实数 x 的取值范围 ,并在数轴上表示出来 .3-8-6 -4 -2 019.如图 8,已知 B C 90 ,E 在 BC 边上,AD AE AB BC .求证: CD CE .ADBEC图 820. (本题满分 10 分)已知函数 f ( x) (k 2) x 2kx1 .( 1)假如 f (x) 的图像经过点( 4,3) ,求 f ( x) 得图像的极点的坐标以及与 x 轴的两交点的横坐标之积 ;( 2)假如 f (x) 的图像与 x 轴只有一个交点 ,务实数 k 的值 .21. (本题满分 10 分)如图 9,半径为 30km的圆 A 是环保部分划定的生态保护区,B 、C 是位于保护区周边相距 100km 的两城市 .假如在 B 、C 两城之间修一条笔挺的公路,经丈量 ABC45 ,ACB 30 .问:此公路能否会穿过保护区,请说明原由 .AAEFBCBC图 9图 10四、(本大题共 4 题 ,满分 50 分)22. (本题满分 12 分 ,第 (1)题 4 分 , 第 (2)题 8 分)如图 10,已知ABC 中 , CE AB 于点 E, BFAC 于点 F,假如 S ABC 2400 , S AEF 600 .(1) 求证: AEC ~ AFB(2) 求角 A 的正弦值 .23. (本题满分 12 分 ,第 (1)题 4 分 , 第 (2)题 6 分, 第 (3)题 2 分)气象部门用空气污介入数反响空气质量.表 1 空气污介入数 0-50 51-100101-200 空气质量等级I II III(情况)(优)(良)(轻度污染(1) 2007 年 3 月 8 日上海市部分城区空气污介入数预告.表)2201-300 IV(中度污染)>300 V(重度污染)城区卢湾徐汇长宁静安崇明空气污介入数6672676449这五个区的空气污介入数的均匀值是_______( 结果保留 2 位有效数字),此中长宁区的空气质量情况是__________;(2) 图 11 是从写出相应的天数2007 年 1 月 1 日起连续65 天的上海市空气污介入数统计图,请将空气质量III 级的部分补画完好_____天 ,并计算出现空气质量III 级的天数的百分率是_____(结果保留 2 位有效数字 );(2),(3)能否用(2) 中这65 天的空气质量III 级的天数的百分率,预计2007 年一年出现空气质量III 级的天数的百分率答: _____.24.(本题满分 12 分 ,第 (1)题 2 分 , 第(2)题 4 分 , 第 (3)题 6 分)如图 12,直角坐标平面中 ,等腰梯形ABCD的对称轴l与x轴垂直 ,垂足 M(3,0), 四边形ABEF 是梯形 ABCD 在对称轴左侧的部分 ,且 A(1,2), B(0,1).(1)请补画出梯形 ABCD 在对称轴右侧的部分(保留作图印迹 ,不写作法 );(2)写出 C、 D 两点的坐标 ;(3)假如经过 A 、 B 两点的直线的函数表达式为y x 1,那么线段AB的函数表达式为y x 1(0 x 1) .试根据 C、D 两点的坐标求出线段CD 的函数表达式.ylA FBEO x图 1225.(本题满分 12 分,第(1)题 4 分, 第(2) 题 6 分, 第(3)题 4 分)已知ABC ,AB AC2,A90,取含45角的直角三角尺,将45的极点放在BC中点O 处 ,并绕点O 处顺时针旋转三角尺,当45角的两边分别与AB 、AC交于点E、 F是 ,如图13,设CF x, BE y .(1)求 y 与x的函数分析式,并写出x的范围;(2)三角尺绕点 O 旋转过程中 , OEF能否成为等腰三角形 .假如能 ,求出相应的x值 ;假如不可以 ,请说明原由 ;(3)假如以 O 为圆心的圆与 AB 相切 ,研究三角尺绕点 O 旋转的过程中 ,EF 与圆 O 的地点关系 .AAFE图 13COBCOB2007 初三教课质量检测数学试卷评分参照2007. 4. 19一、填空题12 3 4 5 6 789 10 11 12(x y)( xy) 51 x③ 1.414 1091,-3① 4 2 2直角2 r 4②③二、选择题三 17.解 :原式 = xx 2x 24x 当 x23 时2)( x 2) (x 2)( x 2)2 x( x= xx 2x 22 x原式 =1( x 2)( x 2) ( x 2)( x 2)4x23 2x4(x 2)=4 3( x 2)( x 2)4x3)(4 3)(44x(x2)143( x 2)( x 2)4xx 2=1318. 解 :据题意得 a12 b ,即 x 3 1 x 2 2去分母得2( x 1) 3( x 2)解得x 8所以 x 的取值范围是x 8数轴上的表示正确19. 证明 :延长 CD 至 F,使 CF=AB, 连结 AF.B C 90 AB //CF ,又 AB CF四边形 ABCF 是平行四边形且B 90 , AB BC 四边形 ABCF 是正方形AB AFA FDBE C在 Rt ABE 和 Rt AFD 中AF AB, AD AE Rt ABE Rt AFDBE FD CE CD20. 解 :(1)把点 (4,3) 代入 f ( x) 得 16(k2) 4k 13 解得 kf (x)123 1321极点坐标 3,12 x2x1 =2 (x 2 )82 8设方程 f ( x) 0 的两根 x 1, x 2 , x 1 x 2 2(2) 当 k2 时,一次函数 f (x) 2x 1 与 x 轴只有一个交点3 2当 k2 且 0 时二次函数 f (x) 与 x 轴只有一个交点即k2解得 k2 2 32 4(k 2)k 0所以当 k2 或 2 23 时,函数 f ( x) 与 x 轴只有一个交点.21. 解:过 A 作 ADBC 交 BC 于 D.AAD 就是点 A 到 BC 的距离 .设 AD=x(km).Rt ABD 中 BDRt ACD 中 CDAD x x (或 BD AD ctg45 B DC)tg ABC tg 45AD x 3x (或 CDAD ctg 30 )tg ACB tg 30BCBDCD100 x 3x 解得 x 50( 31)50(3 1)30 即 A 到 BC 的距离大于保护区的半径所以此公路不会穿过保护区 .四、 22.( 1)证明: CE ABAEC90 同理 AFB90在AEC 和 AFB 中AA, AECAFBAAEC ∽ AFBFE ( 2)解:由( 1)知AEC ∽ AFBCAE AC AE AFBAFAB即ACAB在AEF 和 ABC 中AA且 AE AF AEF ∽ ACBACABS AEF 600 1 AE AF 1SACB24004ACAB2在 Rt AEC 中,设 AE a(a0), AC2a ,则 ECAC 2 AE 23asinEC3AAC23角 A 的正弦值为223.(1)64; II 也许良(只要填出一个即可得分)(2) 8; 12%;图示正确(3) 不可以24.解: (1)图示正确得(2) C(6,1)D(5,2)(3)设线段CD 的函数表达式y kx b(5 x6)把 (5,2),(6,1) 带入得5k b2解得k1 6k b1b7y x7(5x6)线段 CD 的函数表达式是y x 7(5x 6)A25.解 :(1)在ABC 中AB AC B C EF又A90B C451在FOC 中12180C135C4B2 344532180413513O在CFO 和BOE 中C B 且13CFO ∽ BOECF COBO BE在 Rt ABC 中 AB AC2BCAB2AC 2 2 2BOCF x, BE y x2整理得 y22y xy x2 (1x2)(2) 当CF BE 时即 x y ,代入y2得 x 2 时x在CFO 和BOE 中BO CO ,B C, CF BECFO BOE OF OE OFE 是等腰三角形当点 E与A重合时即 CF x1在 Rt ABC 中AB AC 且 BO COAO 是BAC 的均分线FEO 45FEOFOEOFE 是等腰三角形当点 F与 A 重合时即CF x 2 同理可得OFE 是等腰三角形(3) 由( 1)知CFO ∽BOEAE OF CO又BO CO FOE BECOF BOEOF45OOE BE且BBEO ∽ OEFBEO OEFEO 是BEF 的均分线点O到EF和BE的距离相等当认为圆心的圆AB 与相切时也与EF 相切CO2AFECBOA (E)FCBOB。

上海市长宁区中考数学一模试卷及答案(word解析版)

上海市长宁区中考数学一模试卷及答案(word解析版)

上海市长宁区中考数学一模试卷一.选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是符合题目要求的,请把符合题目要求的选项的代号填涂在答题纸的相应位置上.】1.(4分)(•长宁区一模)已知△ABC中,∠C=90°,则cosA等于()A.B.C.D.考点:锐角三角函数的定义.分析:根据余弦等于邻边比斜边列式即可得解.解答:解:如图,cosA=.故选D.点评:本题考查了锐角三角函数的定义,是基础题,作出图形更形象直观.2.(4分)(•长宁区一模)如图,在平行四边形ABCD中,如果,,那么等于()A.B.C.D.考点:*平面向量.专题:压轴题.分析:由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,则可得,然后由三角形法则,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵,∴,∵,∴=+=.故选B.点此题考查了平面向量的知识与平行四边形的性质.此题难度不大,注意掌握三角形评:法则的应用,注意数形结合思想的应用.3.(4分)(•长宁区一模)如图,圆O的弦AB垂直平分半径OC,则四边形OACB一定是()A.正方形B.长方形C.菱形D.梯形考点:垂径定理;菱形的判定.专题:探究型.分析:先根据垂径定理得出AD=BD,AC=BC,再根据全等三角形的判定定理得出△AOD≌△BCD,故可得出OA=BC,即OA=OB=BC=AC,由此即可得出结论.解答:解:∵弦AB垂直平分半径OC,∴AD=BD,AC=BC,OD=CD,∵在△AOD与△BCD中,,∴△AOD≌△BCD,∴OA=BC,∴OA=OB=BC=AC,∴四边形OACB是菱形.故选C.点评:本题考查的是垂径定理及菱形的判定定理,全等三角形的判定与性质等知识,熟知“平分弦的直径平分这条弦,并且平分弦所对的两条弧”是解答此题的关键.4.(4分)(•长宁区一模)对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)考点:二次函数的性质.分析:二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a >0时开口向上,当a<0时开口向下.解答:解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选A.点评:本题主要是对抛物线一般形式中对称轴,顶点坐标,开口方向的考查,是中考中经常出现的问题.5.(4分)(•茂名)如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A.B.C.D.考点:相似三角形的判定与性质;等边三角形的性质.专题:压轴题.分析:根据题意,易证△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG面积比,再求出S△ABC.解答:解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC 故选C.点评:本题的关键是利用三等分点求得各相似三角形的相似比.从而求出面积比计算阴影部分的面积.6.(4分)(•长宁区一模)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:压轴题.分本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的析:确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).解答:解:当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选D.点评:主要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题.二.填空题:(本大题共12题,每题4分,满分48分)7.(4分)(•长宁区一模)已知实数x、y满足,则=2.考点:比例的性质.分析:先用y表示出x,然后代入比例式进行计算即可得解.解答:姐:∵ =,∴x=y,∴==2.故答案为:2.点评:本题考查了比例的性质,根据两內项之积等于两外项之积用y表示出x是解题的关键.8.(4分)(•长宁区一模)已知,两个相似的△ABC与△DEF的最短边的长度之比是3:1,若△ABC的周长是27,则△DEF的周长为9.考点:相似三角形的性质.分析:由两个相似的△ABC与△DEF的最短边的长度之比是3:1,得出相似比为3:1,即可得其周长为3:1,又由△ABC的周长为27,即可求得△DEF的周长.解答:解:∵两个相似的△ABC与△DEF的最短边的长度之比是3:1,∴周长比为3:1,∵△ABC的周长为27,∴=3,∴△DEF的周长为9.故答案为:9.点评:此题考查了相似三角形的性质.注意掌握相似三角形周长的比等于相似比.9.(4分)(•长宁区一模)已知△ABC中,G是△ABC的重心,则=.考点:三角形的重心.分析:设△ABC边AB上的高为h,根据三角形的重心到顶点的距离等于到对边中点的距离的2倍可得△ABG边AB上的高线为h,再根据三角形的面积公式计算即可得解.解答:解:设△ABC边AB上的高为h,∵G是△ABC的重心,∴△ABG边AB上的高为h,∴==.故答案为:.点评:本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键,本知识点在很多教材上已经不做要求.10.(4分)(•长宁区一模)在直角坐标平面内,抛物线y=﹣x2+2x+2沿y轴方向向下平移3个单位后,得到新的抛物线解析式为y=﹣x2+2x﹣1.考点:二次函数图象与几何变换.分析:根据“上加下减”的原则进行解答即可.解答:解:根据“上加下减”的原则可知,把抛物线y=﹣x2+2x+2沿y轴方向向下平移3个单位后所得到的抛物线解析式y=﹣x2+2x+2﹣3=﹣x2+2x﹣1.故答案为:y=﹣x2+2x﹣1.点评:本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.11.(4分)(•长宁区一模)在直角坐标平面内,抛物线y=﹣x2+c在y轴左侧图象上升(填“左”或“右”).考点:二次函数的性质.分析:由于a=﹣1<0,且抛物线的对称轴为y轴,根据二次函数的性质得到抛物线y=﹣x2+c的开口向下,在对称轴左侧y随x的增大而增大.解答:解:∵a=﹣1<0,∴抛物线y=﹣x2+c的开口向下,且抛物线的对称轴为y轴,∴抛物线y=﹣x2+c在对称轴轴左侧图象上升,y随x的增大而增大.故答案为左.点评:本题考查了二次函数的图象的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上,在对称轴左侧,y随x的增大而减小,在对称轴有侧,y 随x的增大而增大;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.12.(4分)(•长宁区一模)正八边形绕其中心至少要旋转45度能与原图形重合.考点:旋转对称图形.专题:常规题型.分析:根据正八边形的性质,求出每一条边所对的中心角,就是所要旋转的度数.解答:解:360°÷8=45°.故答案为:45.点评:本题考查了旋转变换图形,求出每一条边所对的中心角即可,比较简单.13.(4分)(•长宁区一模)已知圆⊙O的直径为10,弦AB的长度为8,M是弦AB上一动点,设线段OM=d,则d的取值范围是3≤d≤5.考点:垂径定理;勾股定理.专题:探究型.分析:首先过点O作OC⊥AB于C,连接OA,根据垂径定理的即可求得AC的长,又由⊙O的直径为10,求得⊙O的半径OA的长,然后在Rt△OAC中,利用勾股定理即可求得OC的长,继而求得线段OM长度的取值范围.解答:解:过点O作OC⊥AB于C,连接OA,∴AC=AB=×8=4,∵⊙O的直径为10,∴OA=5,在Rt△OAC中,OC===3,∴当M与A或B重合时,OM最长为5,当M与C重合时,OM最短为3,∴线段OP长度的取值范围是:3≤d≤5.故答案为:3≤d≤5.点评:本题考查的是垂径定理及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.14.(4分)(•长宁区一模)如图,某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是5:12.考点:解直角三角形的应用-坡度坡角问题.分析:首先根据勾股定理求得滑行的水平距离,然后根据坡比的定义即可求解.解答:解:滑行的水平距离是:=120(米),故坡道的坡比是:50:120=5:12.故答案是:5:12.点评:本题考查了勾股定理,以及坡比的定义,正确求得滑行的水平距离是关键.15.(4分)(•长宁区一模)两圆相切,圆心距为2cm,一圆半径为6cm,则另一圆的半径为4或8cm.考点:圆与圆的位置关系.分析:分两圆外切和两圆内切情况讨论,很明显根据圆心距为2cm与一圆的半径为6cm不可能外切;而内切时,要分6cm为较长半径和较短半径两种情况考虑.解答:解:设另一圆的半径为r,∵两圆相切,∴两圆可能外切,也有可能内切,∴当两圆外切时,2=6+r,则r=﹣4(舍去);当两圆内切时,2=6﹣r或2=r﹣6,则r=4cm或8cm,∴两圆内切,另一圆的半径为4cm或8cm.点评:本题用到的知识点为:两圆外切,圆心距=两圆半径之和.两圆内切,圆心距=两圆半径之差.16.(4分)(•长宁区一模)已知△ABC中,AB=6,AC=9,D、E分别是直线AC和AB 上的点,若且AD=3,则BE=4或8.考点:相似三角形的判定与性质.分析:先将AB=6,AC=9,AD=3代入,求出AE=2.由于D、E分别是直线AC和AB上的点,则∠DAE=∠BAC,所以若,根据两边对应成比例且夹角相等的两三角形相似得到△ADE∽△ABC,所以分两种情况进行讨论:①D、E分别在线段AC和AB上;②D、E分别在线段AC和AB的反向延长线上.解答:解:将AB=6,AC=9,AD=3代入,得=,解得AE=2.①D、E分别在线段AC和AB上时,∵AE=2,AB=6,∴BE=AB﹣AE=6﹣2=4;②D、E分别在线段AC和AB的反向延长线上时,∵AE=2,AB=6,∴BE=AB+AE=6+2=8.综上可知BE的长为4或8.故答案为4或8.点评:本题考查了相似三角形的判定与性质,直线的性质,进行分类讨论是解题的关键.17.(4分)(•长宁区一模)如图,已知Rt△ABC,∠ACB=90°,∠B=30°,D是AB边上一点,△ACD沿CD翻折,A点恰好落在BC边上的E点处,则cot∠EDB=.考点:翻折变换(折叠问题);特殊角的三角函数值.分析:先根据三角形内角和定理得出∠A=60°,再由轴对称的性质证明出△CED≌△CAD,则∠CED=60°,根据三角形外角的性质求出∠EDB=30°,然后根据特殊角的三角函数值求解.解答:解:在Rt△ABC中,∵∠ACB=90°,∠B=30°,∴∠A=180°﹣∠ACB﹣∠B=60°.∵△ACD沿CD翻折,A点恰好落在BC边上的E点处,∴△CED≌△CAD,∴∠CED=∠A=60°,∴∠EDB=∠CED﹣∠B=30°,∴cot∠EDB=cot30°=.故答案为.点评:本题考查了翻折变换(折叠问题),三角形外角的性质,特殊角的三角函数值,根据轴对称的性质证明出△CED≌△CAD是解题的关键.18.(4分)(•长宁区一模)已知,二次函数f(x)=ax2+bx+c的部分对应值如下表,则f (﹣3)=12.x ﹣2 ﹣1 0 1 2 3 4 5y 5 0 ﹣3 ﹣4 ﹣3 0 5 12考点:二次函数的性质.专题:压轴题.分析:根据二次函数的对称性结合图表数据可知,x=﹣3时的函数值与x=5时的函数值相同.解答:解:由图可知,f(﹣3)=f(5)=12.故答案为:12.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,理解图表并准确获取信息是解题的关键.三、解答题:(本大题共7题,第19--22题,每题10分;第23、24题,每题12分;25题14分;满分78分)19.(10分)(•长宁区一模)计算:.考点:特殊角的三角函数值.分析:将tan45°=1,sin45°=,tan30°=分别代入即可得出答案.解答:解:原式=+﹣×==.点评:本题考查了特殊角的三角函数值的知识,属于基础题,记忆一些特殊角的三角函数值是关键.20.(10分)(•长宁区一模)如图,在正方形网格中,每一个小正方形的边长都是1,已知向量和的起点、终点都是小正方形的顶点.请完成下列问题:(1)设;.判断向量是否平行,说明理由;(2)在正方形网格中画出向量:4﹣,并写出4﹣的模.(不需写出做法,只要写出哪个向量是所求向量).考点:*平面向量.分析:(1)先将向量化简,然后根据向量平行的定义即可作出判断;(2)分别画出4及﹣,然后可得出4﹣,继而在格点三角形中可求出4﹣的模.解答:解:(1),,则,故可得向量平行.(2)所画图形如下:则.点评:本题考查了向量的知识,注意掌握向量平行的判断方法及向量摸的定义.21.(10分)(•长宁区一模)如图,等腰梯形ABCD中,AD∥BC,AB=CD,AD=3,BC=7,∠B=45°,P在BC边上,E在CD边上,∠B=∠APE.(1)求等腰梯形的高;(2)求证:△ABP∽△PCE.考点:等腰梯形的性质;全等三角形的判定与性质;相似三角形的判定.分析:(1)作AF⊥BC于F,作DG⊥BC于G,首先证明△ABF≌△DCG,得到BF=CG,再证明AFGD是平行四边形,根据平行四边形的性质求出等腰梯形的高即可;(2)利用等腰梯形的性质和相似三角形的判定方法证明:△ABP∽△PCE即可.解答:解:(1)作AF⊥BC于F,作DG⊥BC于G,∴∠AFB=∠DGC=90°且 AF∥DG,在△ABF和△DCG中,∴△ABF≌△DCG,∴BF=CG,∵AD∥BC且 AF∥DG,∴AFGD是平行四边形,∴AD=FG,∵AD=3,BC=7,∴BF=2在Rt△ABF中,∠B=45°,∴∠BAF=45°,∴AF=BF=2,∴等腰梯形的高为2;(2)∵四边形ABCD是等腰梯形,∴∠B=∠C,∵∠APC=∠APE+∠EPC=∠B+∠BAP,又∵∠B=∠APE∴∠BAP=∠EPC,在△ABP和△PCE中,∴△ABP∽△PCE.点评:本题题主要考查了等腰梯形的性质、全等三角形的判定和性质、平行四边形的判定和性质以及相似三角形的性质与判定,相似三角形的判定是初中阶段考查的重点同学们应重点掌握.22.(10分)(•长宁区一模)由于连日暴雨导致某路段积水,有一辆卡车驶入该积水路段.如图所示,已知这辆卡车的车轮外直径(包含轮胎厚度)为120cm,车轮入水部分的弧长约为其周长的,试计算该路段积水深度(假设路面水平).考点:垂径定理的应用;勾股定理.专题:探究型.分析:设车轮与地面相切于点E,连接OE与CD交于点F,连接OC.设∠COD=n°,过点O作OE垂直路面于点E,交CD于点F,根据弧CD等于⊙O周长的,故可得出n 的值,再根据OE⊥CD 且OE=OC=OD=AB可得出OE的长,故OF是∠COD的平分线,所以∠FOD=∠COD=n,再根据∠FOD+∠ODF=90°,可得出∠ODF的度数,在Rt△OFD中由直角三角形的性质可得出OF的长,再根据FE=OE﹣OF即可得出结论.解答:解:设车轮与地面相切于点E,连接OE与CD交于点F,连接OC.设∠COD=n°,过点O作OE垂直路面于点E,交CD于点F,∵弧CD等于⊙O周长的,即=πd,∴n=120°,∵OE⊥CD 且OE=OC=OD=AB=60cm,∴OF是∠COD的平分线,∴∠FOD=∠COD=n=60°,∵∠FOD+∠ODF=90°,∴∠ODF=30°∴在Rt△OFD中,OF=OD=30cm,∴FE=OE﹣OF=30cm,∴积水深度30cm.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用直角三角形的性质求解是解答此题的关键.23.(12分)(•长宁区一模)如图,已知Rt△ABC中,∠ACB=90°,⊙O 是Rt△ABC的内切圆,其半径为1,E、D是切点,∠BOC=105°.求AE的长.考点:三角形的内切圆与内心.分析:首先根据切线长的性质以及切线的性质得出BD的长,进而得出BC的长以及AB的长,即可得出AE的长.解答:解:连接OD、OE.则OD=OE=1,∵O是△ABC的内切圆圆心∴OB、OC分别是∠ABC、∠ACB的角平分线,即且又∵∠ACB=90°,∴,∵OD、OE是过切点的半径,∴OD⊥BC 且OE⊥AB,∴∠OCD+∠COD=90°,∴∠COD=∠OCD=45°,∴OD=CD=1,∵∠COB=105°,∴∠DOB=∠COB﹣∠COD=60°,在Rt△OBD中,,∴,∠OBD+∠BOD=90°,∴∠OBD=30°,∵,∴∠ABC=60°,∴BC=BD+CD=1+在Rt△ABC中,AB=2+2,在Rt△OBE中,∵OE=1,∠OBE=30°,∴BE==,∴AE=2+.点评:此题主要考查了切线的性质以及锐角三角函数的应用,正确得出∠ABC的度数以及BC的长是解题关键.24.(12分)(•长宁区一模)在直角坐标平面中,已知点A(10,0)和点D(8,0).点C、B在以OA为直径的⊙M上,且四边形OCBD为平行四边形.(1)求C点坐标;(2)求过O、C、B三点的抛物线解析式,并用配方法求出该抛物线的顶点坐标和对称轴;(3)判断:(2)中抛物线的顶点与⊙M的位置关系,说明理由.考点:二次函数综合题.分析:(1)作MN⊥BC于点N,连接MC,利用垂径定理求得线段MN后即可确定点C 的坐标;(2)用同样的方法确定点D的坐标后利用待定系数法确定二次函数的解析式,然后配方后即可确定抛物线的顶点坐标及对称轴;(3)根据抛物线的顶点坐标和点M的坐标确定两点之间的距离,然后根据半径与两点之间的线段的大小关系即可确定顶点与圆的位置关系.解答:解:(1)如图,作MN⊥BC于点N,连接MC,∵A(10,0)和点D(8,0).∴点M(5,0),∵点C、B在以OA为直径的⊙M上,且四边形OCBD为平行四边形,∴⊙M的半径为5,BC=OD=8,∴在Rt△MNC中,MC=5,NC=BC=4,∴MN=3,∴点C的坐标为(1,3);(2)∵点C的坐标为(1,3),∴点B的坐标为(9,3),设过O、C、B三点的抛物线解析式为y=ax2+bx,∴解得:∴解析式为:y=﹣x2+x,∴y=﹣x2+x=﹣(x﹣5)2+,∴对称轴为x=5,顶点坐标为(5,);(3)∵顶点坐标为(5,),点M的坐标为(5,0),∴顶点到点M的距离为,∵>5∴抛物线的顶点在⊙M外.点评:本题考查了二次函数的综合知识,还考查了点与圆的位置关系,本题难度不大,但综合性比较强.25.(14分)(•长宁区一模)如图,已知Rt△ABC,⊥,AB=8cm,BC=6cm,点P从A 点出发,以1cm/秒的速度沿AB向B点匀速运动,点Q从A点出发,以x cm/秒的速度沿AC向C点匀速运动,且P、Q两点同时从A点出发,设运动时间为t 秒(),连接PQ.解答下列问题:(1)当P点运动到AB的中点时,若恰好PQ∥BC,求此时x的值;(2)求当x为何值时,△ABC∽△APQ;(3)当△ABC∽△APQ时,将△APQ沿PQ翻折,A点落在A′,设△A′PQ与△ABC重叠部分的面积为S,写出S关于t的函数解析式及定义域.考点:相似形综合题.分析:(1)PQ∥BC,P是AB的中点,则Q一定是AC的中点,求得AQ的长,则速度x 即可求得;(2)△ABC∽△APQ,则一定有PQ∥BC,即与(1)相同,即可求得x的值;(3)分0<t≤4和4<t<8两种情况进行讨论,当0<t≤4时重合部分就是△A′PQ;当4<t<8时,重合部分是直角梯形,根据梯形的面积公式即可求解.解答:解:(1)设AP=t AQ=xt (0≤t≤8)∵AB=8 AP=AB=4 即t=4∵Rt△ABC,∠B=90°,AB=8 cm,BC=6 cm∴AC=10 cm∵PQ∥BC∴即解得:(2)①若∠APQ=∠ABC,则BC∥PQ,此时与(1)相同,x=;若∠APQ=∠C,则=,即=,解得;x=.综上可得当x=或时,△ABC∽△APQ.(3)∵BC∥PQ,∴=,∴PQ===t,则当0<t≤4时,重叠部分的面积为S=S△A′PQ=S△APQ=AP•PQ=t•t=t2;当4<t≤8时,如图1所示,则A′P=AP=t,PQ=t,∴BP=AB﹣AP=8﹣t,则A′P=t﹣(8﹣t)=2t﹣8,∵BD∥PQ,∴=∴BD==(t﹣4),∴S=S四边形BDQP=(BD+PQ)•BP= [(t﹣4)+t]•(8﹣t)=(t﹣4)2.则函数解析式是:.点本题考查了相似三角形的判定与性质,正确分情况讨论,因求得x的值是关键.评:。

2016学年长宁、金山区初三数学一模试卷

2016学年长宁、金山区初三数学一模试卷

2016学年长宁、金山区调研测试九年级数学2017.1(满分150分,考试时间100分钟)考生注意:1 .本试卷含三个大题,共25题,答题时,考生务必按答题要求在答题纸规定位置上作答,在草稿纸、 本试卷上大题一律无效。

2 .除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写生证明或计算的主要步 骤。

一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线 y X 1 22的顶点坐标是( B. (1, 2) C. (2,-1) D. (2, 1)C 90 , AB 5, BC 4 3B. 一C. 一353.如图,下列能判断BC// ED 的条件是(ED ADA. ----- -----BC AB AD AEC. 1——1 1——1AB AC4.已知「O 与 O 的半径分别是2和6,若.O 与n O 相交,那么圆心距OO 的取值范围是( 12121 2 A. 2<OO <41 2D.4<OO <101 25 .已知非零向量a 与b,那么下列说法正确的是( )A.如果a| b L 那么a b ;B.如果ab ,那么a // b C.如果a//b,那么算|b ;D.如果ab,那么3 -b |6 .已知等腰三角形的腰长为 6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心 5cm 为半径画圆,那么该圆耳底边的位置关系反()---一A.相离B.相切C.相交D.不能确定二、填空题(本大题共12题,每题4分,满分48分) 7 .如果3x 4y x 0 ,那么—= yA. (-1, 2) 2.在ABC 中,3A.一44,那么 A 的正弦值是(4D.一5)ED AEB. ---- -----BC AC AD ACB.2<OO <61 2C.4<OO <81 28.已知二次函数y x22x 1,那么该二次函数的图像的对称轴是.9.已知抛物线y 3x2 x c与y轴的交点坐标是(0,-3),那么c=.11 .设是锐角,如果tan 2 ,那么cot12 .在直角坐标平面中,将抛物线 y 2x 2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是.13 .已知厂A 的半径是2,如果8是「A外一点,那么线段 AB 长度的取值范围是 那么GE =.15.如图,在地面上离旗杆 BC 底部18米的A 处,用测角仪测得旗杆顶端 C 的仰角为30° ,已知测角仪三、解答题(本大题共7题,满分78分)1 10.已知抛物线y 2x 23x 经过点(-2, m ),那么m =LL _______ I ____ _ LL _ ___ .一14.如图,点G 是ABC 的重心,联结AG 并延长交BC 于点D ,GE// AB 交 BC 与 E ,若 AB 6,AD 的高度为1.5米, 那么旗杆BC 的高度为 米.Oi第15题图 第16题图16 .如图,门O 与口 O1 :•相交于A 、B 两点,2弦AB 的长为.17 .如图,在梯形ABCD 中,上,如果 SAOD:SABE =1:3,18 .如图,在ABC 中, CO2门O 与口 O 的半径分别是1和J3 1 2叩2=2,那么两圆公共AD//BC, AC 与BD 交于O 点,DO : BO 1: 2 ,点E 在CB 的延长线那么BC : BE = 90 , AC 8,沿DE 翻折,使得点A 落在点A '处,当A 'EBC 6, D 是AB 的中点,点E 在边AC 上,将ADE AC 时,A 'B =.第14题图|1.rGB E DA第17题图1 cos60 cot 303 tan45 sin24519 .(本题满分10分)计算:sin 30 tan3020.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在ABC中,D是AB中点,联结CD.(1)若AB 10且ACD B,求AC的长.(2)过D点作BC的平行线交AC于点E ,设DE a, DC b ,请用向量a、b表示AC和AB (直接写生结果)B C第20题图21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)1 如图,ABC中,CD AB于点D, . D经过点B,与BC交于点E ,与AB交与点F .已知tan A —2 cot ABC 3, AD 8.4求(1) D的半径;(2)CE的长.B第21题图22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD , AB II CD ,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30° ,坝底宽AB为(8+2出)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.23 .(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知正方形ABCD,点E 在CB 的延长线上,联结AE 、DE , DE 与边AB 交于点F , 且与AE 交于点G.(1)求证:GF=BF .(2)在BC 边上取点M ,使得BM BE ,联结AM 交DE 于点O .求证:FO ED OD24 .(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线 y x 2 2bx c 与X 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2, 0)(1)当B (-4, 0)时,求抛物线的解析式;(2) O 为坐标原点,抛物线的顶点为 P,当tan OAP 3时,求此抛物线的解析式;1(3) O 为坐标原点,以A为圆心O A长为半径回「A,以C 为圆心,一OC 长为半径画圆门 C ,当 A2与「C 外切时,求此抛物线的解析式.10yFG II BEEF第22题图第23题图----- 1----- J ------ 1 ----- 1----- 1------ 1—O 1 2 3 4 5 6 x-5 -4 -3 -2 -1-1 -2 -3第24题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC , AB AC 5, BC 8, PDQ的顶点D在BC边上,DP交AB边于点E , DQ交AB边于点O且交CA的延长线于点F (点F与点A不重合),设PDQ B , BD 3.(1)求证:BDEs CFD ;(2)设BE x, OA y,求y关于x的函数关系式,并写由定义域;(3)当AOF是等腰三角形时,求BE的长.20 (1) 5 <2⑵AC 2a 2b , AB 4a 2b参考答案:1-6: BDCCDA47、3 8、直线 X 19、-310、4 12、y 2 x 12 113、AB 2 14、219、2第25题图第25题备用图16、17、2: 118、7石或92111、2 15、6 /3 1.521 (1)22 (1)23、略24 (1)25 (1) 1:1 (2)x22x10 4 -37米8(2)y x22xy 75_25x o(2) 24 5x8⑶122 2y x2=x3112(3)3■或石5。

2016年上海长宁区初三一模数学试卷答案

2016年上海长宁区初三一模数学试卷答案


答 案 a⩽b
解析
∵x = 3时,y = 0,即a = 0 , 而 , 2
y = (x − 3) ⩾ 0
∴b ⩾ 0, ∴a ⩽ b . 故答案为a ⩽ b .
编辑
11. 圆是轴对称图形,它的对称轴是

答 案 圆是轴对称图形,它的对称轴是过圆心的直线.
解析
圆是轴对称图形,它的对称轴是过圆心的直线. 2018/12/04
答案
y = x2 + x
解析
把 , 和 , 代入 x = −1 y = 0 x = 1 y = 2
y = ax2 + bx
得 , a − b = 0 { a+b=2
解得a = 1 ,b = 1,
所以y与x的函数关系式是y
=
2 x
+
x

故答案为y
=
2 x
+
x

10. 已知二次函数y = (x − 3)2图象上的两点A(3, 和 a) B(x, b),则a和b的大小关系是
答案 B
解 析 ∵函数y = x2的图像沿x轴向左平移2个单位长度,
得 , 2 y = (x + 2)
然后y轴向下平移1个单位长度,
得 , 2 y = (x + 2) − 1
故y
=
2 x
经过B操作后得到y
=
(x
+
2)
2

1

填空题.(本大题共12小题,每题4分,满分48分)
7.
抛物线y
=
2 x
+
1的顶点坐标是
A. AD : AB = 2 : 3

长宁区初三数学一模卷

长宁区初三数学一模卷
⊙E 相切时,求 R 的值。
22.(本题满分 10 分)
第 21 题图
为了开发利用海洋资源,需要测量某岛屿两端 A、B 的距离.如图,勘测飞机在距海平面
垂直高度为 100 米的点 C 处测得点 A 的俯角为 60°,然后沿着平行于 AB 的方向飞行了
500 米至 D 处,在 D 处测得点 B 的俯角为 45°.求岛屿两端 A、B 的距离.(结果精确到
CE=6,BD=3,则 BF 等于 ▲ .
9.将二次函数 y 2x2 4x 配方成 y ax m2 k 的形式,配方后的解析式为 ▲ .
10.如图,王大伯屋后有一块长 12 米,宽 8 米的矩形空地 ABCD,他在以较长边 BC 为直径 的半圆形内种菜,他家养的羊平时拴在 A 处的一棵树上,为了不让羊吃到菜,栓羊的绳 长应小于 ▲ .
C.先向右平移 2 个单位,再向下平移 3 个单位;
D.先向右平移 2 个单位,再向上平移 3 个单位.
5.在△ABC 中,∠ACB=90°,CD⊥AB 于 D,下列各组边的比
不.能.表示 sinB 的( )
A. AC ; B. DC ;
AB
AC
C. DC ; BC
D. AD . AC
6.如图,P 是平行四边形 ABCD 的对称中心,以 P 为圆心作圆,
1.下列说法中,结论错误的是( ) A.直径相等的两个圆是等圆; B.长度相等的两条弧是等弧; C.圆中最长的弦是直径; D.一条弦把圆分成两条弧,这两条弧可能是等弧.
2.已知非零向量 a,b,c ,下列条件中,不.能.判定 a // b 的是( )
A. a b ; B. a b ; C. a // c,b // c ; D. a 2c, b 4c .

2016年上海市各区县中考数学一模压轴题图文解析第24、25题

2016年上海市各区县中考数学一模压轴题图文解析第24、25题

2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得1m=±P(1+.图2 图3如图1,已知矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点(不与B 、C 重合),过点E 作EF ⊥AE 交AC 、CD 于点M 、F ,过点B 作BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)求证:△ABH ∽△ECM ; (2)设BE =x ,EHEM=y ,求y 关于x 的函数解析式,并写出定义域; (3)当△BHE 为等腰三角形时,求BE 的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E 在BC 上运动,可以体验到,有三个时刻,△BHE 可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC 的余角,所以∠1=∠2. 又因为∠BAH 和∠CEM 都是∠AEB 的余角,所以∠BAH =∠CEM . 所以△ABH ∽△ECM .图2 图3(2)如图3,延长BG 交AD 于N .在Rt △ABC 中,AB =6,BC =8,所以AC =10. 在Rt △ABN 中,AB =6,所以AN =AB tan ∠1=34AB =92,BN =152. 如图2,由AD //BC ,得92AH AN EH BE x ==. 由△ABH ∽△ECM ,得68AH AB EM EC x ==-. 所以y =EHEM=AH AH EM EH ÷=6982x x ÷-=12729x x -. 定义域是0<x <8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,联结DE ,使得∠EDC =∠A ,联结BE .(1)求证:AC ·BE =BC ·AD ;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式,并写出定义域;(3)当S △BDE =14S △ABC 时,求tan ∠BCE 的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E 在AD 边上运动,可以体验到,△ABC 与△DEC 保持相似,△ACD 与△BCE 保持相似,△BDE 是直角三角形.满分解答(1)如图2,在Rt △BAC 和Rt △EDC 中,由tan ∠A =tan ∠EDC ,得BC ECAC DC=. 如图3,已知∠ACB =∠DCE =90°,所以∠1=∠2. 所以△ACD ∽△BCE .所以AC BCAD BE=.因此AC ·BE =BC ·AD .图2 图3(2)在Rt △ABC 中,AB =5,BC =3,所以AC =4.所以S △ABC =6.如图3,由于△ABC 与△ADC 是同高三角形,所以S △ADC ∶S △ABC =AD ∶AB =x ∶5. 所以S △ADC =65x .所以S △BDC =665x -. 由△ADC ∽△BEC ,得S △ADC ∶S △BEC =AC 2∶BC 2=16∶9.所以S △BEC =916S △ADC =96165x ⨯=2740x . 所以S =S 四边形BDCE =S △BDC +S △BEC =6276540x x -+=21640x -+.定义域是0<x <5.(3)如图3,由△ACD ∽△BCE ,得AC BCAD BE=,∠A =∠CBE . 由43x BE =,得BE =34x . 由∠A =∠CBE ,∠A 与∠ABC 互余,得∠ABE =90°(如图4).所以S △BDE =1133(5)(5)2248BD BE x x x x ⋅=-⨯=--. 当S △BDE =14S △ABC =13642⨯=时,解方程33(5)82x x --=,得x =1,或x =4.图4 图5 图6作DH ⊥AC 于H .①如图5,当x =AD =1时,在Rt △ADH 中,DH =35AD =35,AH =45AD =45. 在Rt △CDH 中,CH =AC -AH =416455-=,所以tan ∠HCD =DHCH =316.②如图6,当x =AD =4时,在Rt △ADH 中,DH =35AD =125,AH =45AD =165.在Rt △CDH 中,CH =AC -AH =164455-=,所以tan ∠HCD =DHCH=3. 综合①、②,当S △BDE =14S △ABC 时, tan ∠BCE 的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积; (3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3. 由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==. (1)当x =1时,求AG ∶AB 的值; (2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点. 因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN当S△DON DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =BC =AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==因此sin ∠ACB =BH BC .(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得m =图2所以点P 的横坐标m .如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值; (2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值; ②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DCCA=. (2)①如图4,由△DBC ∽△DAB ,得∠1=∠2. 当BF ⊥CA 时,∠1=∠3,所以∠2=∠3.因为13DC CA =,当CE =3BC 时,得DC BCCA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x≤5. 定义域中x=5的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y =x 2+bx +c 的图像与x 轴交于A 、B 两点,点B 的坐标为(3, 0),与y 轴交于点C (0,-3),点P 是直线BC 下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,如果四边形POP ′C 为菱形,求点P 的坐标;(3)如果点P 在运动过程中,使得以P 、C 、B 为顶点的三角形与△AOC 相似,请求出此时点P 的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P 在直线BC 下方的抛物线上运动,可以体验到,当四边形POP ′C 为菱形时,PP ′垂直平分OC .还可以体验到,当点P 与抛物线的顶点重合时,或者点P 落在以BC 为直径的圆上时,△PCB 是直角三角形.满分解答(1)将B (3, 0)、C (0,-3)分别代入y =x 2+bx +c ,得930,3.b c c ++=⎧⎨=-⎩.解得b =-2,c =-3.所以二次函数的解析式为y =x 2-2x -3.(2)如图2,如果四边形POP ′C 为菱形,那么PP ′垂直平分OC ,所以y P =32-.解方程23232x x --=-,得22x =.所以点P 的坐标为23()22-.图2 图3 图4(3)由y =x 2-2x -3=(x +1)(x -3)=(x -1)2-4,得A (-1, 0),顶点M (1,-4). 在Rt △AOC 中,OA ∶OC =1∶3.分两种情况讨论△PCB 与△AOC 相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD 中,AB //CD ,∠ABC =90°,对角线AC 、BD 交于点G ,已知AB =BC =3,tan ∠BDC =12,点E 是射线BC 上任意一点,过点B 作BF ⊥DE ,垂足为F ,交射线AC 于点M ,交射线DC 于点H .(1)当点F 是线段BH 的中点时,求线段CH 的长;(2)当点E 在线段BC 上时(点E 不与B 、C 重合),设BE =x ,CM =y ,求y 关于x 的函数解析式,并指出x 的取值范围;(3)联结GF ,如果线段GF 与直角梯形ABCD 中的一条边(AD 除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E 在射线BC 上运动,可以体验到,点G 是BD 的一个三等分点,CH 始终都有CE 的一半.还可以体验到,GF 可以与BC 垂直,也可以与DC 垂直.满分解答(1)在Rt △BCD 中,BC =3,tan ∠BDC =BC DC =12,所以DC =6,DB =.如图2,当点F 是线段BH 的中点时,DF 垂直平分BH ,所以DH =DB =.此时CH =DB -DC =6.图2 图3(2)如图3,因为∠CBH 与∠CDE 都是∠BHD 的余角,所以∠CBH =∠CDE . 由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即3CH =.因此36x -=.整理,得)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-. 由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x---=-. 整理,得242450x x -+=.解得21x =±21BE =- ②如图6,如果GF ⊥DC 于Q ,那么GF //BE . 所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-. 由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得x =34BE +=.图4 图5 图6如图1,抛物线y =ax 2+2ax +c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点C (0,-3),抛物线的顶点为M .(1)求a 、c 的值; (2)求tan ∠MAC 的值;(3)若点P 是线段AC 上的一个动点,联结OP .问:是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P 在线段AC 上运动,可以体验到,△COP 与△ABC 相似存在两种情况.满分解答(1)将A (-3,0)、C (0,-3)分别代入y =ax 2+2ax +c ,得960,3.a a c c -+=⎧⎨=-⎩解得a =1,c =-3.(2)由y =x 2+2x -3=(x +1)2-4,得顶点M 的坐标为(-1,-4). 如图2,作MN ⊥y 轴于N .由A (-3,0)、C (0,-3)、M (-1,-4),可得OA =OC =3,NC =NM =1.所以∠ACO =∠MCN =45°,AC =MC . 所以∠ACM =90°.因此tan ∠MAC =MC AC=13. (3)由y =x 2+2x -3=(x +3)(x -1),得B (1, 0).所以AB =4.如图3,在△COP 与△ABC 中,∠OCP =∠BAC =45°,分两种情况讨论它们相似:当CP ABCO AC =时,3CP =CP =P 的坐标为(-2,-1).当CP AC CO AB =时,3CP =CP =.此时点P 的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此DE DBCG CB==图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE所以y =EG =2BE . 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGFEF x S EB +=⨯△. 由(1)知,DE,所以 x =AE =AD -DE=6.①如图6,当13CM CD =时,13CG CM AG AB ==.所以1144CG CA ==⨯此时x =AE=6-=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2255CG CA ==⨯=此时x =AE=6-=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面2GB CB EB DB ==,另一方面cos 452HB GB =︒=,所以GB HBEB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =ENx . 又因为CG)x -,所以GN =AC -AN -CG=所以y=EG.如图10,第(2)题如果构造Rt△EGQ和Rt△CGP,也可以求斜边EG=y:由于CG)x-,所以CP=GP=1(6)2x-=132x-.所以GQ=PD=16(3)2x--=132x+,EQ=16(3)2x x---=132x-.所以y=EG.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CAx PD CP===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP ==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321xx x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC 中,BA ,cos ∠ABC BC =81x x -.①如图4,当BA =BC 81x x =-,得1x = ②如图5,当AB =AC 时,BC =2BH .解方程821xx x =-,得x =5.③如图6,当CA =CB 时,由cos ∠ABC ,得12AB =.解方程1821x x =-,得135x =.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1).如图4,当CD BCCB BA =4=92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD 中,AD //BC ,∠B =∠BCD =45°,AD =3,BC =9,点P 是对角线AC 上的一个动点,且∠APE =∠B ,PE 分别交射线AD 和射线CD 于点E 和点G .(1)如图1,当点E 、D 重合时,求AP 的长;(2)如图2,当点E 在AD 的延长线上时,设AP =x ,DE =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)当线段DG 时,求AE 的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P 在AC 上运动,可以体验到,DGDE 也存在两种情况.满分解答(1)如图3,作AM ⊥BC ,DN ⊥BC ,垂足分别为M 、N ,那么MN =AD =3.在Rt △ABM 中,BM =3,∠B =45°,所以AM =3,AB =在Rt △AMC 中,AM =3,MC =6,所以CA = 如图4,由AD //BC ,得∠1=∠2.又因为∠APE =∠B ,当E 、D 重合时,△APD ∽△CBA .所以AP CBAD CA =.因此3AP =AP =5. (2)如图5,设(1)中E 、D 重合时点P 的对应点为F . 因为∠AFD =∠APE =45°,所以FD //PE .所以AF AD AP AE =33y=+.因此33y x =-.定义域是5<x ≤.图3 图4 图5(3)如图6,因为CA =AF =,所以FC =.由DF //PE ,得13FP DG FC DC ===.所以FP =.由DF //PE ,9552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB=抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB=B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO=,BA =BCBD=如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )1322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似:①当BE BCBO BD ==BE =1322x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4).②当BE BDBO BC ==BE =1322x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD 中,∠C =60°,AB =AD =5,CB =CD =8,点P 、Q 分别是边AD 、BC 上的动点,AQ 与BP 交于点E ,且∠BEQ =90°-12∠BAD .设A 、P 两点间的距离为x .(1)求∠BEQ 的正切值; (2)设AEPE=y ,求y 关于x 的函数解析式及定义域; (3)当△AEP 是等腰三角形时,求B 、Q 两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P 在AD 边上运动,可以体验到, ∠AEP =∠BEQ =∠ABH =∠ADH ,△ABF ∽△BEF ∽△BDP ,△AEP ∽△ADF .满分解答(1)如图2,联结BD 、AC 交于点H .因为AB =AD ,CB =CD ,所以A 、C 在BD 的垂直平分线上. 所以AC 垂直平分BD .因此∠BAH =12∠BAD . 因为∠BEQ =90°-12∠BAD , 所以∠BEQ =90°-∠BAH =∠ABH .在Rt △ABH 中,AB =5,BH =4,所以AH =3. 所以tan ∠BEQ =tan ∠ABH =34. 图2 (2)如图3,由于∠BEQ =∠ABH ,∠BEQ =∠AEP ,∠ABH =∠ADH , 所以∠AEP =∠BEQ =∠ABH =∠ADH .图3 图4 图5如图3,因为∠BF A 是公共角,所以△BEF ∽△ABF . 如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF . 所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5. (3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,QM =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HF A =3,所以QM =3FM .13(3)2m =-,得BQ =m=9- ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =P A 的情况,因为∠P AE >∠P AH >∠AEP .图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM ABCO AC =时,4CM =CM =M (-3, 1)(如图3).②当CM AC CO AB =时,46CM =CM =M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得x =F .图2 图3 图4。

2015-2016年上海九年级数学一模汇总包含答案

2015-2016年上海九年级数学一模汇总包含答案

DBE FD B ECA 2015-2016学年第一学期徐汇区学习能力诊断卷数学一、选择题1. 下列两个图形一定相似的是( )A.两个菱形;B.两个矩形;C.两个正方形;D.两个等腰梯形.2. 如图1,如果AB ∥CD ∥EF ,那么下列结论正确的是( )A.;B.;C.;D..3. 将抛物线向右平移2个单位,再向上平移2个单位后所得的抛物线的表达式是() A.;B.;C.;D.4. 点G 是△ABC 的重心,如果AB=AC=5,BC=8,那么AG 的长是()A.1;B.2;C.3;D.4.5. 如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向;B.南偏西60°方向;C.南偏东30°方向;D.南偏东60°方向.6. 如图2,梯形ABCD 中,AD ∥BC ,∠DAC =90°,AB=AC ,点E 是边AB 上一点,∠ECD =45°,那么下列结论错误的是( )A.∠AED=∠ECB ;B. ∠ADE=∠ACE ;C.BE=AD ;D.BC=CE.一、 填空题7. 计算:=______________; 8. 如果,那么=__________;9. 已知二次函数,如果y 随x 的增大而增大,那么x 的取值范围是_________; 10. 如果两个相似三角形的面积比是4:9,那么它们对应高的比是_____________; 11. 如图3所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是_______米;12. 已知点M (1,4)在抛物线上,如果点N 和点M 关于该抛物线的对称轴对称,那么点N 的坐标是__________;图1图2图3FECDABEADABA E DFE DED 13. 点D 在△ABC 的边AB 上,AC=3,AB =4,∠ACD=∠B ,那么AD 的长是__________; 14. 如图4,在平行四边形ABCD 中,AB=6,AD =4,∠BAD 的平分线AE 分别交BD 、CD 于F 、E ,那么=________;15. 如图5,在△ABC 中,AH ⊥BC 于H ,正方形DEFG 内接于△ABC ,点D 、E 分别在边AB 、AC 上,点G 、F 在边BC 上,如果BC=20,正方形DEFG 的面积为25,那么AH 的长是________;16. 如图6,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,tan ∠ACD =,AB=5,那么CD 的长是_________; 17. 如图7,在梯形ABCD 中,AD ∥BC ,BC=2AD ,点E 是CD 的中点,AC 和BE 交于点F ,那么△ABF 和△CEF的面积比是___________;18. 如图8,在Rt △ABC 中,∠BAC=90°,AB=3,cosB=,将△ABC 绕着点A 旋转得△ADE ,点B 的对应点D落在边BC 上,联结CE ,那么CE 的长是________. 二、 解答题19. 计算:4sin45°-2tan30°cos30°+ 20. 抛物线经过点(2,1). (1) 求抛物线的顶点坐标;(2) 将抛物线沿y 轴向下平移后,所得新抛物线和x 轴交于A 、B 两点,如果AB =2,求新抛物线的表达式。

长宁区上海市九年级数学一模卷

长宁区上海市九年级数学一模卷

上海市长宁区第一学期初三数学一模试卷(测试时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分) 1.在等腰直角三角形中,一个锐角的正切值是( ▼ ) A .22B .1C .3D .332.下列计算中错误的是( ▼ ) A .︒=︒-︒30sin 30sin 60sin B .145cos 45sin 22=︒+︒ C .︒︒=︒30sin 60sin 60tanD .︒︒=︒60cos 30cos 30cot3.抛物线12231+-=x x y 的开口方向、对称轴、顶点坐标分别是(▼) A .向上 直线3=x (3,-8) B .向下 直线3-=x (-3,-8) C .向上 直线3=x (3,-2)D .向下 直线3-=x (-3,-2)4.已知点P 是⊙O 所在平面内一点,P 与圆上所有点的距离中,最长距离是9 cm ,最短距离是4 cm ,则⊙O 的直径是( ▼ )A .2.5 cmB .6.5 cmC .2.5 cm 或6.5 cmD .5 cm 或13 cm5.在同一直角坐标系中,函数m mx y +=和222++-=x mx y (m 是常数,且0≠m )的图像可能是( ▼ )6.已知下列命题: ①圆是轴对称图形,直径就是它的对称轴;②平分弦的直径垂直于弦;③长度相等的弧是等弧;④两圆相切,圆心距等于两圆半径之和。

其中假命题的个数是( ▼ ) A .1个B .2个C .3个D .4个二、填空题:(本大题共12题,每题4分,满分48分) 7.在等边三角形中,边长与高的比值是▼。

8.化简:()b a b a 42)2(3+-+= ▼ 。

Oy xOyxO yxOyxA B CD9.已知两个相似三角形的相似比为1:3,若较小的三角形面积为6,则较大的三角形面积是▼ 。

10.如图,在直角坐标系中,α∠的顶点与坐标原点O 重合,一边在x 轴正半轴上,另一边是射线OM ,已知cot α=3,若OM 上一点P 的横坐标是3,则点P 的纵坐标是 ▼ 。

2016年上海长宁、金山区初三中考二模数学、语文、英语试卷及答案

2016年上海长宁、金山区初三中考二模数学、语文、英语试卷及答案
24.在平面直角坐标系 xOy 中,抛物线 y x2 bx c 与 x 轴相交于点 A 和点 B ,已知点 A 的坐标为
1,0,与 y 轴相交于点 C0,3,抛物线的顶点为 P 。
(1)求这条抛物线的解析式,并写出顶点 P 的坐标; (2)如果点 D 在此抛物线上, DF x 轴于点 F , DF 与直线 PB 相交于点 E ,设点 D 的横坐标为 t(t 3) , 且 DE : EF 2 :1,求点 D 的坐标; (3)在第(2)小题的条件下,求证: DPE BDE .
(结果保留根号).
23.如图,BD 是 ABC 的角平分线,点 E 、F 分别在边 BC 、 AB 上,且 DE // AB ,,DEF A. (1)求证: BE AF ; (2)设 BD 与 EF 交于点 M ,联结 AE 交 BD 于点 N ,
求证: BN MD BD ND .
在讲到房屋政策时提到“四位一体”,并解释是指“廉租住房、经济适用房、公共租赁住房和动迁
安置房”四种形式全面推进,以建设新的住房保障体系。这种表述就比较好,以后倘有类似的文件
和报告,不妨附一些解释备用。
⑤至于那些局部使用的缺乏普遍性的简称和缩略语,就不应到社会上去推广。不久前听说世博
会工作人员用“5+2”“白+黑”,来指工作日、双休日,以及天黑都不歇工,这就令外人费解了。
15.(1)根据“比喻稀少而可贵的人或事物”这一意思,为第①段横线处选择一个合适的成语( )
(2 分)
A.屈指可数 B.凤毛麟角 C.寥寥无几 D.百里挑一
(2)把第⑥段画线句改成陈述句:
(2 分)
16.下列引号的作用不.同.于.其它三项的一项是( )(3 分) A.务工者认为这是念书人的事,念书人却又感到“不搭界”。

上海市长宁区中考一模(即期末)(全科5套)上海市长宁区中考一模(即期末)数学试题

上海市长宁区中考一模(即期末)(全科5套)上海市长宁区中考一模(即期末)数学试题

长宁区2015届第一学期初三数学教学质量检测试卷(考试时间100分钟,满分150分) 2015.1考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、单项选择题:(本大题共6题,每题4分,满分24分) 1、如果两个相似三角形的面积比是1:6,则它们的相似比( ) A .1:36 ; B .1:6 ; C .1:3 ; D .1:.2、在Rt △ABC 中,已知∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于( ) A .; B . ; C . ; D ..3、如图,点A B C D E F G H K ,,,,,,,,都是7×8方格纸 中的格点,为使 (点D 和A 对应, 点E 和B 对应),则点应是四点中的( ) A.; B.; C.; D..4、已知两圆半径分别是3和4,若两圆内切,则两圆的圆心距为( ) A . 1或7; B. 1; C . 7; D . 2.5、抛物线y =2x 2,y =﹣2x 2,共有的性质是( ) A .开口向下; B .对称轴是y 轴;C .都有最低点; D. y 的值随x 的值的增大而减小.6、如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A . ;B . ;C . ;D . .二、填空题:(本大题共12题,每题4分,满分48分)7、已知线段a =2 cm ,c=8 cm ,则线段a 、c 的比例中项是 ▲ cm . 8、计算: 3(→a -→b )-3→a = ▲.9、已知⊙P 在直角坐标平面内,它的半径是5, 圆心P (-3,4),则坐标原点O 与⊙P 的位置关系第6题图是 ▲ .10、如果圆心O 到直线l 的距离等于⊙O 的半径,那么直线l 和⊙O 的公共点有 ▲ 个. 11、抛物线的顶点坐标是 ▲ .12、将抛物线向左移动3个单位后所得抛物线的解析式是 ▲ . 13.已知二次函数的一个函数值是8,那么对应的自变量x 的值是 ▲ .14、已知二次函数,当x >1时,y 的值随x 的值的增大而增大,当x <1时,y 的值随x 的值的增大而减小,则实数a 的值为 ▲ .15、某企业今年第一月新产品的研发资金为100万元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年第三月新产品的研发资金y (万元)关于x 的函数关系式为 y = ▲ . 16、如图所示,铁路的路基横断面是等腰梯形,斜坡的坡度为,斜坡的水平宽度=m ,则斜坡= ▲ m .17、如图,已知AD 是△ABC 的中线,G 是△ABC 的重心,联结BG 并延长交AC 于点E ,联结DE .则的值为 ▲ . 18、如图,正方形ABCD 绕点A 逆时针旋转,得到正方形.当两正方形重叠部分的 面积是原正方形面积的时, = ▲ . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:()()245tan 201530sin 60cos 60sin 1︒-︒︒-+︒-- 20.(本题满分10分)如图,已知O 为△ABC 内的一点,点D 、E 分别在边AB 、AC 上,且,.设,,试用表示. 21.(本题满分10分)如图,AB 是⊙O 的弦,点C 、D 在弦AB 上,且AD =BC ,联结OC 、OD . 求证:△OCD 是等腰三角形.22.(本题满分10分)如图,在△ABC 中,AD 是BC 边上的高,点G 在AD 上,过G 作BC 的平行线分别与AB 、AC 交于P 、Q 两点,过点P 作PE ⊥BC 于点E ,过点Q 作QF ⊥BC 于点F .设AD =80,BC =120,当四边形PEFQ 为正方形时,试求此正方形的边长.23.(本题满分12分)如图, A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A-C-B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果保留根号)24.(本题满分12分)如图,已知直角坐标平面上的△ABC ,AC=CB ,∠ACB =90°,且A (-1,0),B (m ,n ),C (3,0)。

2019上海市各区县初三一模数学试题及答案

2019上海市各区县初三一模数学试题及答案

2016上海长宁区初三数学一模试题一、 (满分150分) 选择题。

(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ). :2 :4 :2 :12、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ). A.AD:AB=2:3 :AC=2:5 :DB=2:3 :AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ). A.22 B.23 C.21 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ). A.直角三角形 B.等腰三角形 C.钝角三角形 D.锐角三角形 5、已知⊙O 1的半径r 为3cm ,⊙O2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位 二、填空题。

(本大题共12小题,每题4分,满分48分) 7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( ) 9、已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B (x ,b ),则a 和b 的大小关系是a ( )b.11、圆是轴对称图形,它的对称轴是( ).12、已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径是( )cm.13、如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC=1,BC=22,那么sin ∠ACD 的值是( ).14、王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处( )m.15、已知△ABC 中,AD 是中线,G 是重心,设m AD =,那么用m 表示AG =( ). 16、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边与较长边的比值为215-的矩形称作黄金矩形。

上海各区初三数学一模卷

上海各区初三数学一模卷

2016学年上海市杨浦区初三一模数学试卷一. 选择题(本大题共6题,每题4分,共24分)1. 如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C. 3:1 D. 3:22. 在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( )A. 100tan αB. 100cot αC. 100sin αD. 100cos α3. 将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( )A. 22(1)5y x =-+B. 22(1)1y x =-+C. 22(1)3y x =++D. 22(3)3y x =-+4. 在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FD AC FE=,那么B ∠的度数是( )A. 40︒B. 60︒C. 80︒D. 100︒二. 填空题(本大题共12题,每题4分,共48分)7. 线段3cm 和4cm 的比例中项是 cm8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm14. 如果3a b c +=,2a b c -=,那么a = (用b 表示)15. 已知α为锐角,tan 2cos30α︒=,那么α= 度16. 如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是1:i =17. 用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:那么该二次函数在0x =时,y =18. 如图,△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19. 如图,已知△ABC 中,点F 在边AB 上,且25AF AB =,过A 作AG ∥BC 交CF 的延长线于点G ;(1)设AB a =,AC b =,试用向量a 和b 表示向量AG ;(2)在图中求作向量AG 与AB 的和向量;(不要求写作法,但要指出所作图中表示结论的向量)20. 已知抛物线2y x bx c =-++经过点(1,0)B -和点(2,3)C ;(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(2,1)--,试确定平移的方向和平移的距离.21. 已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC∠的正弦值为23;(1)求对角线BD 的长;(2)求梯形ABCD 的面积. 22. 如图,某客轮以每小时10海里的速度向正东方向航行,到A 处时向位于南偏西30°方向且相距12海里的B 处的货轮发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C 处恰好与客轮相逢,试求货轮从出发到与客轮相逢所用的时间.23. 已知,如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,ACD B ∠=∠,AG 与CD相交于点F ;(1)求证:2AC AD AB =⋅;(2)若AD DF AC CG=,求证:2CG DF BG =⋅; 24. 在直角坐标系xOy 中,抛物线2443y ax ax a =-++(0)a <的顶点为D ,它的对称轴与x轴交点为M ;(1)求点D 、点M 的坐标;(2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,求a的值;25. 在Rt △ABC 中,90ACB ︒∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ;(1)如图,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域;(3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似?若是,请证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;参考答案一. 选择题1. D2. B3. D4. C5. C6. B二. 填空题7. (4,0)- 9. 减小 10.32x = 11. 23 12. 1213. 20 14. 45b 15. 60 16. 2.4 17. 3 18. 12三. 解答题19.(1)2233AG a b =-;(2)略; 20.(1)223y x x =-++;(2)向上平移4个单位;21.(1)6BD =;(2)26;22.2t =;23.(1)略;(2)略;24.(1)(2,3)D 、(2,0)M ;(2)32a =-或12a =-; 25.(1)13;(2)344x x y -=(02)x <<;(3)相似;2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分)1.如果y x 32=,那么下列各式中正确的是( )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( )(A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( )(A )2)3(22--=x y ; (B )2)3(22+-=x y ;(C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在A B C ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCAC DE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( )(A )6000米; (B )31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( )(A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b _____.8.点C 是线段AB 延长线上的点,已知AB a =,B =b ,那么=____.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD ____.10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是_____.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:____(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是______.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ______.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ______.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是______.16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是______.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是______.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP 的值是______. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒. 20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点D C B 、、坐标;(2)BCD ∆的面积. 21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =,=b .求:(1)向量(用向量a 、b 表示);(2)B tan 的值.22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处. (1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号);(2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到0.1小时).(参考数据:41.12≈,73.13≈). 23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12图F A B C D E 图2 A B C D A BCD EF图1 图4 A B C D E F如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足 CE AD CD AE ⋅=⋅.(1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.24.(本题共3小题,每题4分,满分12分) 如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值; (3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =y AP =. (1)求y 关于x 的函数解析式及定义域;(2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.BA C 备用图 图8 QPD B A CE图6 AB C E2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷 2017.1(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.如果y x 32=,那么下列各式中正确的是( B )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D )(A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是 2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ;(C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在A B C ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCAC DE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A )(A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =,B =b ,那么=__b a -__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___. 14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP 的值是___13392___. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分; 满分78分)19.(本题满分10分)解:原式123113232-+--⨯=232133-++-=332--= 20.(本题共2小题,每题5分,满分10分)解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ;∴点B 坐标是)0,5(.(2)过点D 作y DA ⊥轴,垂足为A .图F A B C D E 图2 A BC D A BC D E F 图1∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=. 21.(本题共2小题,每题5分,满分10分) 解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥;∴CF AF =;∴CE BE =. ∵BC AD //,AB DE //,∴四边形ABED 是平行四边形;∴AB DE =; ∴=DE a AB =,=EC b BC 2121=;∴b a DC 21+=. (2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ;又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC ,∴52462222=-=-=AB BC AC ; ∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCD ACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BC CD BCD =∠cos ; ∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里); ∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里;它从B 处到达小岛C 的航行时间约为3.7小时.23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDAD CE AE =;∵B DAB ∠=∠,∴BD AD =; ∴CDBD CE AE =;∴AB DE //. (2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2;又BD AD =,∴AB DF AD ⋅=2;∴ADAB DF AD =; ∵AB DE //,∴BAD ADF ∠=∠;∴ADF ∆∽DBA ∆;∴1==BD AD DF AF ;∴AF DF =.24.(本题共3小题,每题4分,满分12分)解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ;∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBC AO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠;又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ;当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--. 25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F . ∴21==QE DQ PE DF ;又BC DE //,∴1==AB AC BD EC ; ∴x BD EC ==;y x PE --=3; ∵AC DF //,∴AB BD AP DF =;即323x y y x =--,∴3239+-=x x y ;定义域为:30<<x .(2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; Q PD BA CE F︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =,∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠;又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB AD BC DE =;即33223x x -=; 解得 7324254-=x . 2016学年上海市长宁区、金山区初三一模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线()212y x =--+的顶点坐标是( )A. (-1,2)B. (1,2)C. (2,-1)D. (2,1)2.在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( ) A. 34 B.43 C. 35 D. 45 3.如图,下列能判断BC ED ∥的条件是( ) A. ED AD BC AB = B. ED AE BC AC = C. AD AE AB AC = D. AD AC AB AE= 4.已知1O 与2O 的半径分别是2和6,若1O 与2O 相交,那么圆心距12O O 的取值范围是( )A. 2<12O O <4B.2<12O O <6C. 4<12O O <8D. 4<12O O <105.已知非零向量a 与b ,那么下列说法正确的是( )A. 如果a b =,那么a b =;B. 如果a b =-,那么a b ∥第3题图D E ABCC. 如果a b ∥,那么a b =;D. 如果a b =-,那么a b =6.已知等腰三角形的腰长为6cm ,底边长为4cm ,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是( )A. 相离B. 相切C. 相交D.不能确定二、填空题(本大题共12题,每题4分,满分48分)7. 如果()340x y x =≠,那么x y=__________. 8. 已知二次函数221y x x =-+,那么该二次函数的图像的对称轴是__________.9. 已知抛物线23y x x c =++于y 轴的交点坐标是(0,-3),那么c =__________.10. 已知抛物线2132y x x =--经过点(-2,m ),那么m =___________. 11. 设α是锐角,如果tan 2α=,那么cot α=___________.12. 在直角坐标平面中,将抛物线22y x =先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是__________. 13. 已知A 的半径是2,如果B 是A 外一点,那么线段AB 长度的取值范围是__________. 14. 如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交BC 与E ,若6AB =,那么GE =___________.15. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为1.5米,那么旗杆BC 的高度为_________米.16. 如图,1O 与2O 相交于A B 、两点,1O 与2O 的半径分别是1,12O O =2,那么两圆公共弦AB 的长为___________.17. 如图,在梯形ABCD 中,AD BC ∥,AC 与BD 交于O 点,:1:2DO BO =,点E 在CB 的延长线上,如果:=1:3AOD ABE S S ∆∆,那么:BC BE =_________.18. 如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.三、解答题(本大题共7题,满分78分) 19 . (本题满分10分)计算:21tan 45sin 30tan 30cos60cot 303sin 45︒︒⋅︒-︒⋅︒+︒20.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在ABC ∆中,D 是AB 中点,联结CD .(1)若10AB =且ACD B ∠=∠,求AC 的长.(2)过D 点作BC 的平行线交AC 于点E ,设DE a =,DC b =,请用向量a 、b 表示AC 和AB (直接写出结果)21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,ABC ∆中,CD AB ⊥于点D ,D 经过点B ,与BC 交于点E ,与AB 交与点F .已知1tan 2A =,3cot 4ABC ∠=,8AD =.求(1)D 的半径;(2)CE 的长. 22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD ,AB CD ∥,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC 的坡角为30°,坝底宽AB 为(.(1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG BE ∥且与AE 交于点G.(1)求证:=GF BF .(2)在BC 边上取点M ,使得BM BE =,联结AM 交DE 于点O .求证:FO ED OD EF ⋅=⋅24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线22y x bx c =-++与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2,0)(1)当B (-4,0)时,求抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当tan 3OAP ∠=时,求此抛物线的解析式;(3)O 为坐标原点,以A 为圆心OA 长为半径画A ,以C 为圆心,12OC 长为半径画圆C ,当A 与C 外切时,求此抛物线的解析式.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =.(1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域;(3)当AOF ∆是等腰三角形时,求BE 的长.2017年崇明县初三数学一模试卷一、选择题:1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( )2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( )4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BC AB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( )6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )二、填空题 7.如果)b -a 2(3b a =+,用a 表示b ,那么b =8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53AB DF BC ==,那么DE 的长为11.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 在一条直线上,且直线PS 与河垂直,在过点S 且与直线PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60m ,ST =120m ,QR =80m ,那么PQ 为 m .12.如果两圆的半径分别为2cm 和6cm ,圆心距为3cm ,那么两圆的位置关系是 ;13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为 ;14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为 ;15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离为 m.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O ∠)为60,A ,B ,C 都在格点上,那么tan ABC ∠的值是 ;17.如图,O 的半径是4,ABC ∆是O 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF 为 ;18.如图,已知 ABC ∆中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算: 2sin 30cot 602sin 45⋅+20.(本题10分,第一小题6分,第二小题4分) 如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =,DC b =. (1)请用a 、b 来表示DE ; (2)在原图中求作向量DE 在a 、b 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积. 23. (本题满分12分,其中每小题各6分)如图,在Rt ABC 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E .求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.24.(本题满分12分,其中每小题各4分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求EDF ∠cot 的值;(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分) 在ABC ∆中,︒=∠90ACB ,23cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE 于点F,联结BD .(1)求证:BC CE CD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.参考答案1.B2.B3.D4.C5.C6..A7.53a 8.1:2 9.2 10.3 11.120 12.内含 13.614.()221y x =-- .15.19.56 20(1).2133DE a b =+23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝⎭ 25.(1)略(2)24(04)2x x y x +=<≤ (3)4或4 2017年上海市宝山区初三数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是( )A .sinA=B .cosA=C .tanA=D .cotA=2.如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB=1,那么AC 的长度为( )A .B .C .D .3.二次函数y=x 2+2x+3的定义域为( )A .x >0B .x 为一切实数C .y >2D .y 为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是( )A .的模为3B .与的模之比为﹣3:1C .与平行且方向相同D .与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A .南偏西30°方向B .南偏西60°方向C .南偏东30°方向D .南偏东60°方向6.二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b ,则= .8.如果两个相似三角形的相似比为1:4,那么它们的面积比为 .9.如图,D 为△ABC 的边AB 上一点,如果∠ACD=∠ABC 时,那么图中 是AD 和AB 的比例中项.第9题图 第10题图 第12题图10.如图,△ABC 中∠C=90°,若CD ⊥AB 于D ,且BD=4,AD=9,则tanA= .11.计算:2(+3)﹣5= .12.如图,G 为△ABC 的重心,如果AB=AC=13,BC=10,那么AG 的长为 .13.二次函数y=5(x ﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是 .14.如果点A (1,2)和点B (3,2)都在抛物线y=ax 2+bx+c 的图象上,那么抛物线y=ax 2+bx+c 的对称轴是直线 .15.已知A (2,y 1)、B (3,y 2)是抛物线y=﹣(x ﹣1)2+的图象上两点,则y 1 y 2.(填不等号) 16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i= .17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax 2+bx+c 的抛物线的形状、大小、开口方向、位置等特征的系数a 、b 、c 称为该抛物线的特征数,记作:特征数{a 、b 、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为 .18.如图,D 为直角△ABC 的斜边AB 上一点,DE ⊥AB 交AC 于E ,如果△AED 沿DE 翻折,A恰好与B 重合,联结CD 交BE 于F ,如果AC ═8,tanA ═,那么CF :DF ═ .三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果DE ∥BC ,且DE=BC .(1)如果AC=6,求CE 的长;(2)设=, =,求向量(用向量、表示).21.如图,AB 、CD 分别表示两幢相距36米的大楼,高兴同学站在CD 大楼的P 处窗口观察AB 大楼的底部B 点的俯角为45°,观察AB 大楼的顶部A 点的仰角为30°,求大楼AB 的高.22.直线l :y=﹣x+6交y 轴于点A ,与x 轴交于点B ,过A 、B 两点的抛物线m 与x 轴的另一个交点为C ,(C 在B 的左边),如果BC=5,求抛物线m 的解析式,并根据函数图象指出当m 的函数值大于0的函数值时x 的取值范围.23.如图,点E 是正方形ABCD 的对角线AC 上的一个动点(不与A 、C 重合),作EF ⊥AC 交边BC 于点F ,联结AF 、BE 交于点G .(1)求证:△CAF ∽△CBE ;(2)若AE :EC=2:1,求tan ∠BEF 的值.24.如图,二次函数y=ax 2﹣x+2(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF 中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA= B.cosA= C.tanA= D.cotA=故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A .南偏西30°方向B .南偏西60°方向C .南偏东30°方向D .南偏东60°方向故选:A .6.二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限故选C .二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b ,则= . 8.如果两个相似三角形的相似比为1:4,那么它们的面积比为 1:16 .9.如图,D 为△ABC 的边AB 上一点,如果∠ACD=∠ABC 时,那么图中 AC 是AD 和AB 的比例中项.10.如图,△ABC 中∠C=90°,若CD ⊥AB 于D ,且BD=4,AD=9,则tanA= .11.计算:2(+3)﹣5= 2+ .12.如图,G 为△ABC 的重心,如果AB=AC=13,BC=10,那么AG 的长为 8 .13.二次函数y=5(x ﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是 y=5(x ﹣2)2+2 .14.如果点A (1,2)和点B (3,2)都在抛物线y=ax 2+bx+c 的图象上,那么抛物线y=ax 2+bx+c 的对称轴是直线 x=2 .15.已知A (2,y 1)、B (3,y 2)是抛物线y=﹣(x ﹣1)2+的图象上两点,则y 1 > y 2.(填不等号) 16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i= 1:2.4 .17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax 2+bx+c 的抛物线的形状、大小、开口方向、位置等特征的系数a 、b 、c 称为该抛物线的特征数,记作:特征数{a 、b 、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为 (2,﹣1) .18.如图,D 为直角△ABC 的斜边AB 上一点,DE ⊥AB 交AC 于E ,如果△AED 沿DE 翻折,A恰好与B 重合,联结CD 交BE 于F ,如果AC ═8,tanA ═,那么CF :DF ═ 6:5 .解:∵DE ⊥AB ,tanA ═,∴DE=AD ,∵Rt △ABC 中,AC ═8,tanA ═,。

长宁区中考一模数学试卷及答案

长宁区中考一模数学试卷及答案

汇贤测试 2016.10.1一、选择题:(本大题共6小题,每题4分,满分24分)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是( )A.1:2 B.1:4 C. 1:2 D.2:12.如图,在△ABC 中,∠ADE=∠B,DE:BC=2:3,则下列正确的结论是( )A. AD:AB=2:3;B. AE:AC=2:5;C. AD:DB=2:3;D. CE:AE=3:2.3.在Rt△A BC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ) A.22 B.23 C.21 D.2.4.在△ABC 中,若cosA=22 ,tanB=3 ,则这个三角形一定是( ) A. 直角三角形; B. 等腰三角形; C. 钝角三角形; D. 锐角三角形.5.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )A. 相交;B. 内含;C. 内切;D.外切.6.二次函数y=(x+2)2-1的图像可以由二次函数y=x 2的图像平移而得到,下列平移正确的是( )A. 先向左平移2个单位,再向上平移1个单位;B. 先向左平移2个单位,再向下平移1个单位;C. 先向右平移2个单位,再向上平移1个单位;D. 先向右平移2个单位,再向下平移1个单位;二、填空题:(本大题共12小题,每题4分,满分48分)7.已知抛物线y=x 2+1的顶点坐标是 .8.已知抛物线y=x 2+bx+3的对称轴为直线x=1,则实数b 的值为 .9. 已知二次函数y=x 2+bx ,阅读右侧表格信息:由此可知y 与x 之间的函数关系式是 .10.已知二次函数y=(x-3)2图像上的两点A (3,a ),B (x ,b ),则a 和b 的大小关系是a b (填>、≥、<或≤).11.圆是轴对称图形,它的对称轴是 .12.已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径为 cm. 13.如图,AB 是⊙O 的直径,弦CD⊥AB,已知AC=1,BC= 22,那么sin∠ACD 的值是 . 14.王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方向走20m到C 处,此时遥控汽车离A 处 m.15.已知在△ABC 中,AD 是中线,G 是重心,设, 那么用表示 = .16.如图,已知AB⊥BD,ED⊥BD,C 是线段BD 的中点,且AC⊥CE,ED=1,BD=4,那么AB= .17.如果把两条邻边中较短边与较长边的比值为215 的矩形称作黄金矩形.现将长度为20cm 的 铁丝折成一个黄金矩形,这个黄金较短的边长是 cm. 18.如图,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,如果tan∠AEN=31 ,DC+CE=10,那么△ANE 的面积为 . 三、解答题:(本大题共7题,第19-22题,每题10分;第23、24题每题12分;25题14分;满分78分)19.如图,在正方形网格中,每一个小正方形的边长都是1,已知向量 和 的起点、终点都是小正方形的顶点.如果,求作并写出的模(不必写出作法,只要指明所求向量).m a b c c c=3a -13b DA EM20.计算:tan 2 30°-(cos75°-cot10°)0+2cos60°-2tan45°21.已知△ABC 中,∠CAB=60°,P 为△ABC 内一点且∠APB=∠APC=120°求证:AP 2=BP ·CP22.如图,点C 在⊙O 的直径BA 的延长线上,AB=2AC ,CD 切⊙O 于点D ,联结CD 、OD.(1)求∠C 的正切值;(2)若⊙O 的半径r=2,求BD 的长度.23.靠校园一侧围墙的体育看台侧面,如图阴影部分所示,看台的二级台阶高度相等,宽度相同.现要用钢管做护栏扶手ACG 及三根与水平地面PQ 垂直的护栏支架CD 、EF和GH (底端D 、F 、H 分别在每级台阶的中点处),已知看台高为1.2米,护栏支架CD=GH=0.8米,∠DCG=66.5°.(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)(1)点D 与点H 的高度差是 米.(2)试求制作护栏扶手和护栏支架的钢管总长度l ,即AC+CG+CD+EF+GH 的长度.(结果精确到0.1米)24.如图,直角坐标平面内的梯形OABC ,OA 在x 轴上,OC 在y 轴上,OA//BC ,点E 在对角线OB 上,点D 在OC 上,直线DE 与x 轴交于点F ,已知OE=2EB ,CB=3,OA=6,BA= ,OD=5.(1)求经过A 、B 、C 三点的抛物线解析式;(2)求证:△ODE ∽△OBC;(3)在y轴上找一点G ,使得△OFG ∽△ODE ,直接写出G 点的坐标.35B C B25.如图,平行四边形ABCD 中,AB=5,BC=10,sin ∠B= ,E 为BC 边上的一个动点(不与B 、C 重 合),过E 作直线AB 的垂线,垂足为F. FE 与DC 的延长线相交于点G ,联结DE ,DF.(1)当△ABE 恰为直角三角形时,求BF:CG 的值;(2)当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之和是否是常数,请说明理由;(3)设BE=x ,△DEF 的面积为y ,试求出y 关于x 的函数关系式,并写出定义域.45G点评:整套试卷难度偏低,计算量较低11题:需要注意一下细节问题,圆的对称轴按教材上来说是任意一条直径所在的直线18题:今年的第一道翻折题,但是是一道很老的图形,甚至在2010-2011学年的重庆沙坪坝区月考中找到了原题(一模一样)24题:二次函数背景下的相似存在性问题,第一问求点的坐标需利用梯形高,第二问相似两边一夹角(前两问无动点也挺震撼的),第三问中虽然是相似符号,但也需要进行分类讨论,这是我们反复强调过的.25题:相似模型的八字型及三角比计算,第一问就需要进行分类讨论,毕竟第一问,也不难,第二问求周长,都是3:4:5的三角形,也难不了谁,第三问面积反复确认了一下,的确是底乘高,难度陡降。

上海2016年预初数学第二学期长宁区统考卷

上海2016年预初数学第二学期长宁区统考卷

2016年预初第二学期长宁区统考卷一、选择题1.下列结论中,正确的是( )(A )一个数的相反数一定是负数 (B )一个数的绝对值一定是正数(C )一个有理数的偶数次幂一定是正数 (D )一个负数的奇数次幂一定是负数2.下列方程中,属于二元一次方程组的是( )(A )⎩⎨⎧=+=+23z x y x (B )⎩⎨⎧==+23y y x (C )⎩⎨⎧=-=+232y x y x (D )⎩⎨⎧==+23xy y x 3.甲、乙两工程队,甲队人数是乙队人数的1.2倍,现从甲队中抽出24人到乙队,这样乙队人数就是甲队人数的1.5倍,求乙队原来有多少人?若设乙队原来有x 人,则下列方程中正确的是( )(A )1.2x -24=x +24 (B )1.5(1.2x -24)=x (C )1.5(1.2x -24)=x +24 (D)1.2x -24=1.5x4.以下说法正确的个数为( )①两点之间线段最短;②如果'3853︒=∠α,那么α∠余角的度数为'2237︒;③互补的两个角一个是锐角一个是钝角;④一个锐角的余角比这个角的补角小90°.(A)1个 (B )2个 (C )3个 (D )4个二、填空题5.计算:()______73=+-,6.计算:______32=-,7.用科学记数法表示______305000=,8.把-2在数轴上的对应点沿数轴向左移动4个单位后,所得到的点对应的数是_________,9.将方程3x +y =5变形为用含y 的式子表示x ,那么x =__________,10.如果x =1是方程2x -4-a =0的解,那么a =_________,11.已知a<b<0,c <0,用“<”或“>”连接:a-c _______b-c ,12.二元一次方程3x +y =-7的所有负整数解为________,13.如图,射线AB 表示_______方向(∠AOC=30°),14.如图,在长方体EFGH ABCD -中,与面BCGF 平行的面是________,15.如图,在长方体EFGH ABCD -中,与棱EF 异面的棱有________条,16.如图,已知︒=∠116AOB ,过O 在∠AOB 内引射线OC ,OD 平分OE BOC ,∠平分∠AOC ,则A CE∠DOE=_______,17.已知线段a 、b 的边长分别为10cm 、6cm ,,如果在射线OP 上截取OM=a ,MC=b,那么线段 OC=_______cm,18.对于任意的实数m 、n ,定义一种新运算n m mn n m --=⊗,等式右边是通常的加减和乘法运算,例如7535353=--⨯=⊗.根据上述定义解决问题.则不等式52<⊗x 的最大整数解为_________.第13题图 第14、15题图 第16题图 三、作图题19.补画长方体(被遮住的线段用虚线表示)20.如图,已知βα∠∠、.(1)画∠AOB ,使∠AOB=∠AOC+∠COB ,且βα∠=∠∠=∠COB AOC ,;(2)在(1)所画的图中,画∠AOB 的角平分线OD ;(3)在(1)(2)的前提下,如果∠AOB=110°,∠COD=30°,那么_____________=∠=∠βα,.第19题图 第20题图 四、解答题21.计算:()21213132÷⎪⎭⎫ ⎝⎛-⨯--22.解方程:543221--=-x x 23.解方程组:⎩⎨⎧=+=-2241332y x y x 24.解不等式组:()⎪⎩⎪⎨⎧-≥->+2213322x x x 并在数轴上把解集表示出来.25.解方程组:⎪⎩⎪⎨⎧-=-+-=+-=+2231202z y x z y x y x26.如图,∠AOB=100°,∠1补角的度数为3x ,∠2的度数为(x +8),求∠1、∠2的度数.五、阅读题27.甲、乙两地相距300千米,甲地开出一辆货车,乙地开出一辆客车,若两车同时开出相向而行,2小时后相遇;若两车同时同向开出,货车10小时后追上客车,求货车和客车的平均速度各是多少?28.阅读下述材料,再按要求解答(1)阅读并完成填空:如图,点C 是线段AB 上一点,点D 、E 分别是AC 、BC 的中点,则______21=DE ; 解:因为点D 、E 分别是AC 、BC 的中点 所以_____2121==CE AC DC ,所以DE=DC+CE=21AC+________ =21(AC+_________) =21________.(2)填空,并写出解答过程:如图,点C 是线段AB 上一点,点D 、E 分别是AC 、AB 的中点,则DE =21__________;(3)若点C 为线段AB 延长线上一点,点D 、E 分别是AC 、AB 的中点,请你画出图形,并回答DE 的长只与哪条线段的长有关,有怎样的数量关系?(直接写出结果)(4)若点C 为线段AB 反向延长线上一点,点D 、E 分别是AC 、AB 的中点,请你画出图形,并回答DE 的长只与哪条线段的长有关,有怎样的数量关系?(直接写出结果)。

2016上海十七区初三中考数学一模试卷汇总(WORD)

2016上海十七区初三中考数学一模试卷汇总(WORD)

初三一轮数学检测卷(2016奉贤一模)一. 选择题1. 用一个4倍放大镜照△,下列说法错误的是()A.△放大后,是原来的4倍;B.△放大后,边是原来的4倍;C. △放大后,周长是原来的4倍;D.△放大后,面积是原来的16倍;2. 抛物线的对称轴是()A.直线;B. 直线;C. 直线;D. 直线;3. 抛物线与轴的交点个数是()A.0个;B. 1个;C. 2个;D. 3个;4. 在△中,点、分别是边、上的点,且有,,那么的值为()A. 3;B. 6;C. 9;D. 12;5. 已知△中,,,,那么下列说法正确的是()A. ;B. ;C. ;D. ;6. 下列关于圆的说法,正确的是()A. 相等的圆心角所对的弦相等;B. 过圆心且平分弦的直线一定垂直于该弦;C. 经过半径的端点且垂直于该半径的直线是圆的切线;D. 相交两圆的连心线一定垂直且平分公共弦;二. 填空题7. 已知,那么;8. 二次函数的顶点坐标为;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比;10. 如果抛物线的开口向下,那么的取值范围是;11. 从观测点观察到楼顶的仰角为,那么从楼顶观察观测点的俯角为;12. 在以为坐标原点的直角坐标平面内有一点,如果与轴正半轴的夹角为,那么角的余弦值为;13. 如图△中,平分,∥,若,,那么;14. 线段长,点在线段上,满足,则的长为;15. 的半径,的半径,若此两圆有且仅有一个交点,那么这两圆的圆心距;16. 已知抛物线,经过点和点,那么;17. 如图,△中,,,点在边上,,且有,那么的长是;18. 如图,已知平行四边形中,,,,将边绕点旋转,使得点落在平行四边形的边上,其对应点为(点不与点重合),那么;三. 解答题19. 计算:;20. 如图,已知∥∥,,;(1);(用来表示)(2)求作向量在、方向上的分向量;(不要求写作法,但要指出所表示向量)21. 为方便市民通行,某广场计划对坡角为,坡长为米的斜坡进行改造,在斜坡中点处挖去部分坡体(阴影表示),修建一个平行于水平线的平台和一条新的斜坡;(1)若修建的斜坡的坡角为,则平台的长约为多少米?(2)在距离坡角点米远的处是商场主楼,小明在点测得主楼顶部的仰角为,那么主楼高约为多少米?(结果取整数,参考数据:,,,)22. 如图,在中,为直径,点为的中点,直径交弦于,,;(1)求半径的值;(2)点在直径上,联结,当时,求的长;23. 已知在梯形中,∥,,;(1)求证:△∽△;(2)联结,若,求证:;24. 如图,二次函数图像经过原点和点,直线与抛物线交于点,且;(1)求二次函数解析式及其顶点的坐标;(2)在直线上是否存在点,使得△为直角三角形,若存在,求出点的坐标,若不存在,说明理由;25. 已知如图,△中,,,,点是斜边上任意一点,联结,过点作,联结,使得,联结;(1)求证:;(2)设,四边形的面积为,求与之间的函数关系式,并写出定义域;(3)当时,求的值;初三一轮数学检测卷(2016奉贤一模)参考答案一. 选择题1. A2. C3. C4. B5. B6. D二. 填空题7. 8. 9. 10.11. 12. 13. 14.15. 或 16. 17. 18. 或三. 解答题19. ;20.(1);(2)略;21.(1);(2);22.(1);(2);23. 略;24.(1),;(2)或;25.(1)略;(2);(3)或;初三一轮数学检测卷(2016浦东一模)一. 选择题1. 如果两个相似三角形对应边之比是,那么它们的对应边上的中线之比是()A.;B. ;C. ;D. ;2. 在△中,,若,,则的值为()A.;B. ;C. ;D. ;3. 如图,点、分别在、上,以下能推得∥的条件是()A.;B. ;C.;D. ;4. 已知二次函数的图像如图所示,那么、、的符号为()A. ,,;B. ,,;C. ,,;D. ,,;5. 如图,△中,,于点,下列结论中错误的是()A. ;B. ;C. ;D. ;6. 下列命题是真命题的是()A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似;二. 填空题7. 已知,那么;8. 计算:;9. 上海与杭州的实际距离约千米,在比例尺为的地图上,上海与杭州的图上距离约厘米;10. 某滑雪运动员沿着坡比为的斜坡向下滑行了100米,则运动员下降的垂直高度为米;11. 将抛物线向下平移2个单位,得到新抛物线的函数解析式是;12. 二次函数的图像如图所示,对称轴为直线,若此抛物线与轴的一个交点为,则抛物线与轴的另一个交点坐标是;13. 如图,已知是△的中线,点是△的重心,,那么用向量表示向量为;14. 如图,△中,,,是△的边上的点,且,那么的长是;15. 如图,直线∥∥,如果,,,那么线段的长是;16. 如图是小明在建筑物上用激光仪测量另一建筑物高度的示意图,在地面点处水平放置一平面镜,一束激光从点射出经平面镜上的点反射后刚好射到建筑物的顶端处;已知,,且测得米,米,米,、、在一条直线上,那么建筑物的高度是米;17. 若抛物线与轴交于点、,与轴交于点,则称△为“抛物三角形”;特别地,当时,称△为“正抛物三角形”;当时,称△为“倒抛物三角形”;那么,当△为“倒抛物三角形”时,、应分别满足条件;18. 在△中,,,,是边上的一点,是边上的一点(、均与端点不重合),如果△与△相似,那么;三. 解答题19. 计算:;20. 二次函数的变量与变量的部分对应值如下表:(1)求此二次函数的解析式;(2)写出抛物线顶点坐标和对称轴;21. 如图,梯形中,∥,点是边的中点,联结并延长交的延长线于点,交于点;(1)若,,求线段的长;(2)求证:;22. 如图,为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点、、,是一个观测点,,60米,,,测得该车从点行驶到点所用时间为1秒;(1)求、两点间的距离;(2)试说明该车是否超过限速;23. 如图,在△中,是边的中点,交于点,,交于点;(1)求证:△∽△;(2)求证:;24. 如图,抛物线与轴交于、两点(在的左侧),与轴交于点,抛物线的顶点为;(1)求、的值;(2)求的值;(3)若点是线段上一个动点,联结;问是否存在点,使得以点、、为顶点的三角形与△相似?若存在,求出点坐标;若不存在,请说明理由;25. 如图,在边长为6的正方形中,点为边上的一个动点(与点、不重合),,交对角线于点,交对角线于点,交于点;(1)如图1,联结,求证:△∽△,并写出的值;(2)联结,如图2,设,,求关于的函数解析式,并写出定义域;(3)当为边的三等分点时,求的面积;初三一轮数学检测卷(2016浦东一模)参考答案一. 选择题1. B2. C3. C4. A5. B6. D二. 填空题7. 8. 9. 10.11. 12. 13. 14.15. 16. 17. 18. 或或三. 解答题19. ;20.(1);(2)对称轴,顶点坐标;21.(1);(2)略;22.(1);(2)不超速;23. 略;24.(1),;(2);(3),;25.(1);(2);(3)或;普陀区2015-2016年度第一学期初三质量调研一、选择题:(本大题共6题,每题4分,满分24分)1、如图1,相交于点,下列条件中,能推得的条件是()2、在中,点分别是边的中点,,如果的面积等于3,那么的面积等于()B、C、D、3、如图2.在中,,是斜边AB上的高,下列线段的比值不等于的值是()4、如图同号,那么二次函数的大致图像是()5、下列命题中,正确的是()A、圆心角相等,所对的弦的弦心距相等B、三点确定一个圆C、平分弦的直径垂直于弦,并且平分弦所对的弧D、弦的垂直平分线必经过圆心6、已知在平行四边形中,点分别是边的中点,如果,,那么向量关于的分解式是()二、填空(12*4=48)7.如果,那么=_______.8.计算:_________.9._________.10.已知点P把线段AB分割成AP和PB(AP>PB)两段,如果AP是AB和PB的比例中项,那么AP:BP的值为_____.11.在函数①,②,③,④中,关于的二次函数是_____.(填写序号)12.二次函数的图像有最_________点.(填:“高”或“低”)13.如果抛物线的顶点坐标为,那么的值等于_________.14.如图3,点G为的重心,DE经过点G,如果DE的长是4,那么CF的长是______.15.如图4,半圆形纸片的半径长是1cm,用如图所示的方法将纸片对折,使对折后半圆的中点M与圆心O重合,那么折痕CD的长是_________cm.16.已知在中,,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果与相似,那么AP的长等于_________.17.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原来坡角为的传送带AB,调整为坡度为的新传送带AC(如图5所示),已知原传送带AB的长是米,那么新传送带AC的长是_______米.18.已知是平面直角坐标系中的一点,点B是轴负半轴上一动点,联结AB,并以AB 为边在轴上方作矩形ABCD,且满足,设点C的横坐标是,如果用含的代数式表示点D的坐标,那么点D的坐标是_________.三,填空题:(本大题共7题,满分78分)19、(本题满分10分)已知:如图6,在梯形中,,,点M是边BC的中点,(1)填空:(结果用表示)(2)直接在图中画出向量(不要写作法,但要指出图中表示结论的向量)20、(本题满分10分)将抛物线先向上平移2个单位,再向左平移个单位,所得抛物线经过(—1,4),求新抛物线的解析式及新抛物线与y轴交点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016上海长宁区初三数学一模试题
(满分150分) 2016.1.6
一、选择题。

(本题共6个小题,每题4分,共24分)
1、如果两个三角形的相似比是1:2,那么他们的面积比是( ).
A.1:2
B.1:4
C.1:2
D.2:1
2、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ).
A.AD:AB=2:3
B.AE:AC=2:5
C.AD:DB=2:3
D.CE:AE=3:2
3、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ).
A.22
B.23
C.2
1 D.
2 4、在△ABC 中,若cosA=2
2,tanB=3,则这个三角形一定是( ). A.直角三角形 B.等腰三角形 C.钝角三角形 D.锐角三角形
5、已知⊙O 1
的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ). A.相交 B.内含 C.内切 D.外切 6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是
( ).
A.先向左平移2个单位,再向上平移1个单位
B.先向左平移2个单位,再向下平移1个单位
C.先向右平移2个单位,再向上平移1个单位
D.先向右平移2个单位,再向下平移1个单位
二、填空题。

(本大题共12小题,每题4分,满分48分)
7、已知抛物线12+=x y 的顶点坐标是( ).
8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( )
9、已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 与x
的函数关系式是( ).
10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B (x ,b ),
则a 和b 的大小关系是a ( )b.
11、圆是轴对称图形,它的对称轴是( ).
12、已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径是( )cm.
13、如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC=1,BC=22,那么sin ∠ACD 的值是( ).
14、王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处( )m.
15、已知△ABC 中,AD 是中线,G 是重心,设m AD =,那么用m 表示AG =( ).
16、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=( ).
17、如果把两条邻边中较短边与较长边的比值为2
15-的矩形称作黄金矩形。

现将长度为20cm 的铁丝折成一个黄金矩形,这个黄金
矩形较短的边长是( )cm.
18、如图,ABCD 为正方形,E 是BC 边上一点,将正方形折叠,使A
点与E 点重合,折痕为MN ,如果tan ∠AEN=3
1,DC+CE=10,那么△ANE 的面积为( ).
三、解答题。

(本大题共7个小题,满分78分)
19(本题满分10分)
如图,在正方形网格中,每一个小正方形的边长都是1,已知向
量a 和b 的起点、终点都是小正方形的顶点,如果b a c 2
13-
=,求作c 并写出c 的模(不用写作法,只要所求作向量)。

20(本题满分10分)
计算:︒︒+︒︒︒45tan 2-60cos 210cot -75cos -30tan 02)(.
21(本题满分10分)
已知△ABC 中,∠CAB=60°,P 为△ABC 内一点且∠APB=∠APC=120°,
求证:CP BP AP *2 .
22(本题满分10分)
如图,点C 在⊙O 的直径BA 的延长线上,AB=2AC ,CD 切⊙O 于点D ,连接CD,OD.
(1)求角C 的正切值:
(2)若⊙O 的半径r=2,求BD 的长度.
23(本题满分12分)
靠校园一侧围墙的体育场看台侧面,如图阴影部分所示,看台的三级台阶高度相等,宽度相同,现要用钢管做护栏扶手ACG 及三根与水平地面PQ 垂直的护栏支架CD 、EF 和GH (底端D 、F 、H 分别在每级台阶的中点处),已知看台高为1.2米,护栏支架CD=GH=0.8米, ∠DCG=66.5°.(参考数据:sin66.5°=0.92,cos66.5°=0.40,tan66.5°=2.30)
(1)点D 与点H 的高度差是( )米:
(2)试求制作护栏扶手和支架的钢管总长度l ,即AC+CG+CD+EF+GH 的长度.(结果精确到0.1米)
24(本题满分12分)
如图,直角坐标平面内的梯形OABC ,OA 在x
轴上,OC 在y 轴上,OA ∥BC ,点E 在对角线
OB 上,点D 在OC 上,直线DE 与x 轴交于点F ,已知OE=2EB,CB=3,OA=6,BA=53,OD=5.
(1)求经过点A 、B 、C 三点的抛物线解析式:
(2)求证:△ODE ∽△OBC :
(3)在y 轴上找一点G ,使得△OFG ∽△ODE ,直接写出点G 的坐标。

25(本题满分14分)
如图,平行四边形ABCD 中,AB=5,BC=10,sin ∠B=5
4,E 点为BC 边上的一个动点(不与B 、C 重合),
过E 作直线AB 的垂线,垂足为F ,FE 与DC 的延长线相交于点G ,连结DE,DF.
(1)当△ABE 恰为直角三角形时,求BF :CG 的值:
(2)当点E 在线段BC 上运动时,△BEF 与△CEG 的周长之和是否是常数,请说明理由:
(3)设BE=x ,△DEF 的面积为y ,试求出y 关于x 的函数关系式,并写出定义域.
2015-2016上海长宁区初三数学一模试题参考答案
选择题 1-6:B 、A 、C 、D 、C 、B
填空题 7、(0,1) 8、-2 9、x x y +=2 10、≤ 11、圆的直径
12、5 13、31
14、310 15、32
16、4
17、3515- 18、310
解答题:
19:原式=1*221
*21)33
(2-+-=-35
20:图略 的模为65
21:证明△APB ∽△CDA 得AP BP
PC AP =,即CP BP AP *2=
22:(1)tanC=33
; (2)BD=32
23:(1)0.8; (2)4.9米
24: (1)63431
2++-=x x y 或者43
6)23(312+--=x y
(2)E (2,4),OE=52,OB=53,55
2=OD OE =OB OC
,∠DOE=∠BOC,
故得证
(3)(0,5)、(0,-5)、(0,20)、(0,-20)
25:(1)73
或者5
(2)常数 24 算法略
(3))100(256
524
2∠∠-=x x x y。

相关文档
最新文档