内燃机简介

合集下载

内燃机简介

内燃机简介

内燃机内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。

广义上的内燃机不仅包括往复活塞式内燃机、旋转活塞式发动机和自由活塞式发动机,也包括旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指活塞式内燃机。

活塞式内燃机以往复活塞式最为普遍。

活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。

燃气膨胀推动活塞作功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。

内燃机的发展历史活塞式内燃机自19世纪60年代问世以来,经过不断改进和发展,已是比较完善的机械。

它热效率高、功率和转速范围宽、配套方便、机动性好,所以获得了广泛的应用。

全世界各种类型的汽车、拖拉机、农业机械、工程机械、小型移动电站和战车等都以内燃机为动力。

海上商船、内河船舶和常规舰艇,以及某些小型飞机也都由内燃机来推进。

世界上内燃机的保有量在动力机械中居首位,它在人类活动中占有非常重要的地位。

活塞式内燃机起源于用火药爆炸获取动力,但因火药燃烧难以控制而未获成功。

1794年,英国人斯特里特提出从燃料的燃烧中获取动力,并且第一次提出了燃料与空气混合的概念。

1833年,英国人赖特提出了直接利用燃烧压力推动活塞作功的设计。

之后人们又提出过各种各样的内燃机方案,但在十九世纪中叶以前均未付诸实用。

直到1860年,法国的勒努瓦模仿蒸汽机的结构,设计制造出第一台实用的煤气机。

这是一种无压缩、电点火、使用照明煤气的内燃机。

勒努瓦首先在内燃机中采用了弹力活塞环。

这台煤气机的热效率为4%左右。

英国的巴尼特曾提倡将可燃混合气在点火之前进行压缩,随后又有人著文论述对可燃混合气进行压缩的重要作用,并且指出压缩可以大大提高勒努瓦内燃机的效率。

1862年,法国科学家罗沙对内燃机热力过程进行理论分析之后,提出提高内燃机效率的要求,这就是最早的四冲程工作循环。

1876年,德国发明家奥托运用罗沙的原理,创制成功第一台往复活塞式、单缸、卧式、3.2千瓦(4.4马力)的四冲程内燃机,仍以煤气为燃料,采用火焰点火,转速为156.7转/分,压缩比为2.66,热效率达到14%,运转平稳。

内燃机车的基本工作原理-概述说明以及解释

内燃机车的基本工作原理-概述说明以及解释

内燃机车的基本工作原理-概述说明以及解释1.引言1.1 概述内燃机车作为一种重要的交通工具,在现代社会中扮演着至关重要的角色。

它利用内燃机的工作原理,将化学能转化为机械能,驱动车辆行驶。

本文将重点介绍内燃机车的基本工作原理,帮助读者更好地理解这一关键的交通工具。

通过对内燃机车的工作原理和关键部件进行剖析,我们可以深入了解其运行机理,从而更好地理解其在现代交通中的重要性和未来发展方向。

1.2文章结构1.2 文章结构本文将首先介绍内燃机车的概念和历史背景,然后深入探讨内燃机车的工作原理,包括燃烧过程、动力传递机制等方面。

接着将详细介绍内燃机车的关键部件,如发动机、传动系统等。

最后,通过总结内燃机车的基本工作原理和在现代交通中的重要性,展望其未来发展趋势。

通过本文的讲解,读者将对内燃机车的运行原理有一个清晰的认识,并了解其在现代社会中的重要作用和发展前景。

1.3 目的:本文旨在深入探讨内燃机车的基本工作原理,帮助读者了解内燃机车是如何运作的。

通过对内燃机车的简介、工作原理和关键部件的介绍,读者可以更好地了解内燃机车在现代交通中的重要性。

同时,通过展望内燃机车未来的发展,我们希望读者能够对内燃机车技术的进步和发展方向有更深入的认识。

最终,本文旨在帮助读者对内燃机车有一个全面而清晰的了解,为其在相关领域的学习和工作提供参考和指导。

2.正文2.1 内燃机车简介内燃机车是一种通过内燃机产生动力来驱动车辆的机车。

内燃机车被广泛应用于铁路运输和工业领域,在汽车、飞机和船舶等交通工具中也有广泛的应用。

内燃机车与蒸汽机车相比具有结构简单、操作方便、效率高等优点。

内燃机车使用内燃机燃烧燃料产生热能,通过发动机的工作循环将热能转化为机械能,从而驱动车轮转动,推动车辆前进。

内燃机车的运作原理是利用内燃机的燃烧过程产生的高压气体推动活塞运动,通过连杆和曲轴将往复运动转化为旋转运动传递给车轮,从而使车辆前进。

内燃机车的类型多样,包括柴油机车、汽油机车和天然气机车等。

中国内燃机车发展史简介

中国内燃机车发展史简介

中国内燃机车发展史简介内燃机车是指以燃烧内燃机提供动力的铁路机车。

它具有动力强、响应快、机动性好等优点,因此在铁路交通发展过程中起到了重要的推动作用。

中国内燃机车的发展历程可以追溯到20世纪初。

1903年,中国的内燃机车发展起步。

当时,四川川汉铁路开通,列车使用德国制造的包尔内燃机车担当起客货运输任务。

这是中国使用内燃机车进行运输的开始。

1912年,中国自行设计制造了第一台内燃机车。

这台机车由邵同龙等人设计,景德镇(今江西景德镇)的一家窑瓷厂制造。

它的发动机模仿德国MAN公司的柴油机,工作效果较好,算得上是中国的首台内燃机车。

1921年,中国的内燃机车制造工作迈出了重要的一步。

当时,湖北松滋机车车辆厂组织了制造一台内燃机车的实验,最终成功地完成了这项任务。

这台机车的发动机是由中国工程师李祖庆根据英国乔姆森公司的柴油机设计制造的。

1924年,中国自行设计制造的内燃机车首度投入商业运营。

这台机车由湖北松滋机车车辆厂制造,使用了李祖庆设计的柴油机。

这台机车在商业运营中稳定运行,为中国内燃机车的发展积累了宝贵经验。

1927年,中国的内燃机车制造实现了新的突破。

湖北松滋机车车辆厂制造的柴油机车在贵州麻窝铅锌矿铁路进行了试验,并成功推出了重载运输服务。

这标志着中国内燃机车制造技术的快速进步。

1930年代,中国内燃机车的生产逐渐取得了突破性进展。

当时,中国首台柴油机车产量达到了30辆。

需要注意的是,这些机车都是中国人自行设计制造的,其中既有湖北松滋机车车辆厂制造的,也有天津武清机车车辆厂制造的。

1940年代,中国内燃机车的制造量达到了规模化的水平。

当时,中国内燃机车的年产量已经达到400辆以上,并持续增长。

这些机车为中国铁路运输提供了可靠的动力支持。

1950年代,中国开始引进外国先进的内燃机车技术。

当时,中国从前苏联引进了大量内燃机车,其中包括蒸汽机车改造的柴油机车和独立设计制造的柴油机车。

这些机车的投入使用,对中国内燃机车技术的发展起到了积极的推动作用。

二冲程内燃机

二冲程内燃机
③直流扫气:有气口-气门式和气口-气口式(即对置活塞式)之分。扫气流由扫气口供入气缸,沿气缸轴线 单向流动,同时绕气轴线旋转,将废气从排气口(排气门)扫出,新鲜充量与废气很少掺混。这种扫气方式的扫气 质量最好,应用广泛,尤其适用于长行程船用柴油机。
二冲程内燃机用扫气泵中,应用最广的是罗茨压缩机(见罗茨鼓风机)和离心压缩机。有的小型内燃机用曲 轴箱作为扫气泵。有的大型船用柴油机用活塞底部作为扫气泵,称为活塞底泵。
工作循环
当活塞从下止点开始向上移动时,扫气口和排气口均开启,新鲜充量(空气或可燃混合气)通过扫气泵提高压力 后,由扫气口压入气缸。一方面,清扫气缸内的废气使之由排气口排出;一方面,又使气缸充满新鲜充量。这就是 扫气过程。接着,活塞继续向上运动,先将扫气口覆盖,继而将排气口关闭,此时扫气过程结束。活塞再继续上行, 将封闭在气缸内的新鲜充量和未排净的少量废气的混合气压缩到上止点时即完成压缩过程.这时气缸内压力和温度 增高很多,活塞接近上止点时点火(或喷油),燃料燃烧,燃气压力和温度急剧升高,在高温高压气体作用下, 推动活塞从上向下运动,即为燃烧膨胀过程。这时,内燃机对外作功,通过连杆推动曲轴作旋转运动,将机械功 输出。当活塞继续下行打开排气口时,废气因压力较高便从排气口自行逸出,气缸内压力随即下降,待活塞打开 扫气口时供入新鲜充量清扫废气,活塞再移至下止点时即完成一个工作循环 。
工作原理
如果在两个冲程里完成进气、压缩、做功、排气这些循环动作,就叫二冲程,相应的内燃机叫二冲程内燃机。
辅助冲程:即进气冲程、压缩冲程和排气冲程的统称。为完成做功,这三个冲程都是为做功而准备的,故称 之为辅助冲程。
辅助设备:内燃机除主要做功部分之外,还有燃料、点火、冷却及润滑四个辅助设备系统。燃料系统主要是 化油器,它是把汽油和空气按一定比例配制成雾状的混合气体,以供给汽缸作为燃料使用;点火系统是由蓄电池、 线圈、火花塞等部分组成,火花塞是由齿轮来管理的,它能够按时在气缸中产生电火花,使压缩的混合气体燃烧 爆炸;冷却系统,主要部分是汽缸外部缸体的水套,使水在其中可以流动,因为燃料在汽缸中燃烧时,汽缸的温 度可以升到2000℃左右,使汽缸壁和活塞发热,易使机件损坏,故汽缸外壁的水套中的水吸热上升进入散热器, 降温后,再用抽水机将冷水打回水套中,使水循环地将汽缸冷却。小型内燃机和少数飞机也常用空气减热法,使 汽缸外壳与空气接触面积增大,将热散逸到空气中去;润滑系统,是为防止金属磨损,而在机内装有油盘、抽油 泵等装置向机件各部分输送润滑油,以减小摩擦损耗 。

内燃机车概述7g

内燃机车概述7g

机油系统
作用: 向柴油机供给一定压力、一定温度 和清洁的机油对柴油机的轴承和受 热零部件进行润滑和冷却。 组成: 由机车机油系统和柴油机机油系统 两部分组成。
机油系统
机车机油系统:由主机油泵、 机油滤清器、 板式热交换器、两台辅助机油泵组、以 及阀类和管路等组成。 柴油机机油系统:由柴油机油底壳、主机 油泵、柴油机内部各润滑和冷却处、机 油离心精滤器、增压器滤清器、管路等 组成。

机车主要技术参数 用途:调车及小运转

轨距: 1435mm 轴重: 23T 轮经: 1050mm 整备重量: 138T 通过最小曲线半径: 100m 轴列式: Co- Co 机车外形尺寸(mm):19980×3310×4763
机车主要技术参数
传动方式: 三相交-直流电传动、硅整流 装车功率: 1840kw 最高运行速度: 100km/h 燃油箱容量: 6500L 机油装载量: 850kg 水装载量: 1100kg 机车控制照明电压: 直流110V
交-直流电传动内燃机车: 采用三相交流同步牵引发电机和直流牵 引电动机。 交-直流电传动内燃机车装置: 柴油机—同步牵引发电机—硅整流装 置——直流牵引电动机 主电路图:参见Page254。

传动装置
传动装置(以电传动为例): 主发电机——整流柜——直流电动机 从主发出来的电是交流电,经过整流柜 后转变为直流电,在输入到转向架上的 牵引电动机上,牵引电机带动轮对转动, 实现机车的牵引。
机车牵引时,转向架承受三种力
1、垂直力:静载荷、动载荷(垂直振动引 起的附加载荷)等; 2、水平力:通过曲线时的离心力、水平振 动引起的附加载荷等; 3、纵向力:主要有牵引力、制动力等;
转向架受力传递途经

燃气机和燃气轮机介绍

燃气机和燃气轮机介绍

燃气机和燃气轮机介绍一、燃气机1、燃气机简介燃气机是通过燃烧天然气或人工煤气产生动力做功,可用于推动汽车及轮船行走和驱动发电机发电。

其优点在于比柴油机或汽油机更加清洁、环保。

可以取代柴油机和汽油机,现广泛应用于公共交通、油田、发电等领域。

2、燃气机分类根据原料燃烧位置不同,分为燃气内燃机(俗称“内燃机”)和燃气外燃机(俗称“外燃机”)。

3、燃气内燃机燃气内燃机通常指活塞式内燃机,活塞式内燃机以往复活塞式最为普遍。

活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。

燃气膨胀推动活塞作功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。

内燃机以其热效率高、结构紧凑,机动性强,运行维护简便的优点著称于世。

燃气内燃机的发电效率通常在30%-40%之间,比较常见的机型一般可以达到35%。

燃气内燃机最突出的优点正是发电效率比较高,其次是设备集成度高,安装快捷,对于气体中的粉尘要求不高,基本不需要水,设备的单位千瓦造价也比较低。

但是内燃机也有一些不足的地方,首先,内燃机燃烧低热值燃料时,机组出力明显下降,此外,内燃机需要频繁更换机油和火花塞,消耗材料比较大,也影响到设备的可用性和可靠性两个主要设备利用指标,对设备利用率影响比较大,有时不得不采取增加发电机组台数的办法,来消除利用率低的影响。

内燃机设备对焦化煤气中的水分子含量和硫化氢比较敏感,可能导致硫化氢和水形成硫酸腐蚀问题,需要采取一些必要措施加以克服。

燃气内燃机代表产品:GE公司的颜巴赫系列,功率输出范围为0.25至3兆瓦。

4、燃气外燃机燃气外燃机(简称外燃机)是一种外燃的闭式循环往复活塞式热力发动机,因它是在1816年为苏格兰的R.斯特林所发明,故又称斯特林发动机。

新型外燃机使用氢气作为工质(传递能量的媒介物质叫工质),在四个封闭的气缸内充有一定容积的工质。

气缸一端为热腔,另一端为冷腔。

工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀做功。

点燃式内燃机的燃烧ppt课件

点燃式内燃机的燃烧ppt课件

06
总结与展望
当前存在问题与挑战
01
燃油消耗和排放问题
随着环保要求的提高,如何降低点燃式内燃机的燃油消耗和减少排放成
为亟待解决的问题。
02
燃烧效率与性能提升
当前点燃式内燃机的燃烧效率仍有提升空间,需要研究如何提高燃烧效
率,同时保持或提升发动机性能。
03
新技术应用与融合
随着新技术的发展,如缸内直喷、可变气门正时等,如何将这些技术应
稀薄燃烧技术
在过量空气系数较大的条件 下进行燃烧,可以降低燃烧 温度,减少NOx的生成。
分层燃烧技术
在缸内形成不同浓度的可燃 混合气层,实现分层燃烧, 提高燃烧效率并降低污染物 排放。
均质压燃技术
通过提高压缩比、采用高热 值燃料等手段,实现均质混 合气的压燃式燃烧,具有高 效、低污染的特点。
05
新型点燃式内燃机技术进展
高效率与低排放
未来点燃式内燃机将更 加注重提高燃烧效率和 降低排放,采用先进的 燃烧技术、优化燃烧室 设计等方式来实现。
行业创新机遇挖掘
新型燃烧技术
研究新型燃烧技术,如预混合压缩点火、 均质压燃等,以提高燃烧效率和降低排放

新材料与新工艺
探索新材料和新工艺在点燃式内燃机中的 应用,如高强度轻质材料、3D打印技术等
03
影响因素与优化措施
空燃比对燃烧性能影响
空燃比定义
空燃比是指空气与燃料的质量比,是影响燃烧性能的关键因素。
空燃比对燃烧速度的影响
空燃比过低会导致燃烧速度减慢,燃烧不充分;空燃比过高则会使 燃烧速度过快,产生爆震现象。
空燃比对排放性能的影响
空燃比不合理会导致排放物中CO、HC等有害物质含量增加,对环 境造成污染。

介绍内燃机

介绍内燃机

内燃机的特点和应用
内燃机的特点和应用
总之,内燃机作为一种重要的动力设备, 在各个领域中都得到了广泛的应用
随着科技的不断进步和环保要求的提高, 内燃机的性能和排放水平也在不断提高,
为未来的发展提供了更好的保障
4
内燃机的技术参数
01.
内燃机车的技术参数涵盖了动力系统参数、车辆性能参数、底盘参 数和其他参数等多个方面

04
此外,内燃机还可以 按照用途和结构进行 分类,如单缸机和多 缸机、立式和卧式等。 不同类型和用途的内 燃机具有不同的特点
和适用范围
3
内燃机的特点和应用
内燃机具有以 下特点
内燃机的特点和应用
内燃机的特点和应用
内燃机的应用非常广泛,包括以下几个方面 交通运输:内燃机是汽车、摩托车、船舶和飞机等交通工具的主要动力源之一 工业领域:内燃机被广泛应用于各种工业设备中,如泵、压缩机、发电机等 农业领域:内燃机是农业机械如拖拉机、收割机等的主要动力源之一 军事领域:内燃机在军事领域中被广泛应用于各种武器和装备中 发电领域:内燃机也可以被用于发电厂中,作为发电的主要动力源之一
-
谢谢观看
演讲者:23级新能源2班第3组全体成、曲轴等组成。其中, 燃烧室是燃料和空气混合并 点燃的地方,活塞则在气缸 中上下运动,曲轴则将活塞 的直线运动转化为旋转运动
在内燃机中,燃料和空气的 混合比例、燃烧速度、气缸 容积和活塞运动速度等因素
都会影响内燃机的性能
2
内燃机的类型
汽油机是以汽油为燃
料的内燃机,具有体
积小、重量轻、转速
高、启动容易等特点。
汽油机广泛应用于汽
01
车、摩托车和飞机等 交通工具中
03

工程热力学-5-热力循环与热工设备简介

工程热力学-5-热力循环与热工设备简介

10
进气冲程
活塞被曲轴带动由上止点向下 上止点移动。 进气门开启,排气门关闭。 活塞上方的容积增大,气缸内 的气体压力下降,形成一定的 真空度。 由于进气门开启,气缸与进气 管相通,混合气被吸入气缸。 当活塞移动到下止点时,气缸 内充满了新鲜混合气以及上一 个工作循环未排出的废气。
7
内燃机的基本构造
气缸体 活塞 连杆 曲轴 飞轮 配气机构 进、排气阀 凸轮轴 火花塞
8

第5章 热力循环与热工设备简介
5-1 内燃机的特点及类型 5-2 内燃机的基本构造 5-3 内燃机的工作过程与原理 5-4 内燃机的理想循环
9
内燃机的工作原理
四冲程汽油机的工作过程是一个复杂的过程,它 由进气、压缩、膨胀、排气四个冲程组成。
表示定压加热时工质体积膨胀的程度。
20
混合加热循环热效率
单位质量工质的吸热量:
q1 cv T3 T2 cp T4 T3
单位质量工质的放热量:
q2 cv T5 T1 wnet q1 q2 q2 1 循环热效率:t q1 q1 q1 T5 T1 1 T3 T2 T4 T3
压燃式内燃机压燃式内燃机点燃式内燃机点燃式内燃机77554内燃机的理想循环内燃机的理想循环553内燃机的工作过程与原理内燃机的工作过程与原理551内燃机的特点及类型内燃机的特点及类型552内燃机的基本构造内燃机的基本构造热力循环与热工设备简介88内燃机的基本构造气缸体气缸体活塞活塞连杆连杆曲轴曲轴飞轮飞轮配气机构配气机构进排气阀进排气阀凸轮轴凸轮轴火花塞火花塞99554内燃机的理想循环内燃机的理想循环553内燃机的工作过程与原理内燃机的工作过程与原理551内燃机的特点及类型内燃机的特点及类型552内燃机的基本构造内燃机的基本构造热力循环与热工设备简介1010内燃机的工作原理四冲程汽油机的工作过程是一个复杂的过程它四冲程汽油机的工作过程是一个复杂的过程它进气压缩压缩膨膨胀胀排气排气四个冲程组成

内燃机车简介

内燃机车简介

内燃机车简介汇报人:2023-12-14•内燃机车概述•内燃机车的结构与原理•内燃机车的性能与参数目录•内燃机车的应用与前景•内燃机车的安全与环保问题01内燃机车概述内燃机车是一种以柴油机为动力源,通过燃烧柴油产生动力,驱动车轮前进的机车。

定义内燃机车具有功率大、速度快、爬坡能力强、牵引力大等特点,但同时也会产生较大的噪音和震动。

特点内燃机车的定义与特点内燃机车起源于20世纪初,最早的内燃机车是由德国人发明和制造的。

早期发展二战后的发展现代发展二战后,随着铁路运输的快速发展,内燃机车得到了广泛的应用和推广。

进入21世纪,随着环保和能源问题的日益突出,内燃机车的技术和性能也在不断升级和改进。

030201内燃机车的发展历程内燃机车按照用途可以分为干线内燃机车、调车内燃机车、工矿内燃机车等。

干线内燃机车主要用于铁路干线上的货物运输,调车内燃机车主要用于铁路车站的调车作业,工矿内燃机车主要用于工业企业的货物运输。

内燃机车的分类与用途用途分类02内燃机车的结构与原理柴油机传动装置车体走行部01020304内燃机车的动力来源,将柴油燃烧产生的热能转化为机械能。

将柴油机的动力传递到车轮,包括离合器、变速器和传动轴等。

承载旅客和货物,包括车架、车壳和车门等。

支撑车体并引导机车行走,包括转向架、轮对和制动装置等。

根据用途和功率不同,内燃机车可采用不同型号的柴油机,如6缸、8缸、12缸等。

柴油机类型包括燃油箱、燃油滤清器、喷油泵和喷油器等,确保柴油机正常工作。

燃油系统包括空气滤清器、进气管和排气管等,为柴油机提供清洁的空气。

空气系统离合器用于连接或断开柴油机与传动装置之间的动力传递。

变速器根据行驶需要,将柴油机的动力传递到不同的车轮上,实现机车在不同速度下的行驶。

传动轴将变速器输出的动力传递到车轮上,使机车行驶。

包括制动盘、制动缸和制动阀等,用于对机车进行制动。

制动装置利用压缩空气作为制动介质,通过控制制动阀来实现机车的制动。

完整版内燃机车概述7g

完整版内燃机车概述7g

机油装载量: 850kg
水装载量: 1100kg
机车控制照明电压: 直流110V
内燃机车的分类
1. 从用途上分:干线机车、调车机车 干线机车一般为车体承载方式、 内走廊 如:DF7D (干线重联) 调车机车一般为车架承载方式、 外走廊 如:DF7C 等(调车机车)
内燃机车的分类
2. 从传动方式分:电传动、液力传动 电传动如DF7 系列 液力传动如工矿车、北京型
内燃机车的型号与轴列式
? 内燃机车的型号 “东风”、“ND”:电传动内燃机车; “东方红”、“北京”、“ NY”:液力传动内燃机车; ? “GKD”:电传动工矿机车; ? “GK”:液力传动工矿机车、
? 内燃机车的轴列式
数字表示法: 30—30
2—2
字母表示法: C0—C0
B—B
3、C——表示每台转向架的动轴数。 0——表示每一动轴为单独驱动。无此注脚为成组驱动。
? 作用 将柴油机的机械功传递给走行部。
? 要求 力求将柴油机的功率得到充分发挥,并 使机车具有良好的牵引性能。
电传动装置概述
? 原因: 由于柴油机的特性不符合机车牵引性能的要求, 因此,从柴油机曲轴到机车动轴之间需要有一 个中间环节,即传动装置,来完成机车柴油机 到轮对之间功率的理想传递。
? 电传动内燃机车的分类方法 主要以两个主要部件,即 牵引发电机 和牵引电 动机的电流制式的不同来分类 。
内燃机车基本构造介绍
? 发动机——柴油机(参见教材第二章) ? 传动装置——电传动(参见教材第八章) ? 走行部——车体、转向架 (参见教材第五、七章) ? 辅助装置——燃油系统、机油系统、预热及冷却
系统、空气制动系统、电控及照明系统 (参见教 材第三、四、六章)

内燃机简介

内燃机简介

内燃机简介内燃机简介摘要内燃机的出现为汽车的发展提供了基础,给世界带来了现代物质文明。

本文简单介绍了内燃机的发展历程、常用工作指标、总体构造,以及内燃机的工作原理,使大家能对与我们生活有密切联系的内燃机有个初步认识。

内燃机是近代工业文明发展的产物,以其简单、经济取代了蒸汽机,通过科学家的不断研究,内燃机已经成为现代交通运输工具的主要动力。

关键词:内燃机,发展历史,工作指标,总体构造,工作原理一、绪论内燃机是热机的一种,能将燃料的化学能转化机械能。

一般的实现方式为,燃料与空气混合燃烧,产生热能,气体受热膨胀,通过机械装置转化为机械能对外做功。

内燃机有非常广泛的应用,汽车、船舶、飞机、火箭等的发动机基本都是内燃机,其最常见的例子即为车用汽油机与柴油机。

广义上的内燃机不仅包括往复活塞式内燃机、旋转活塞式发动机和自由活塞式发动机,也包括旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指活塞式内燃机。

区别于外燃机,内燃机的燃烧气体同时也是工作介质,比如汽油机中,汽油燃烧后的气体直接推动活塞做功。

与此相对,燃料不作为工作介质的热机则称为外燃机,比如蒸汽机的工作介质(蒸汽)并不是燃料。

二、内燃机的发展历史活塞式内燃机起源于荷兰物理学家惠更斯用火药爆炸获取动力的研究,但因火药燃烧难以控制而未获成功。

1801年,法国化学家菲利浦·勒本研制成以煤气和氢气为燃料的内燃机。

1824年,卡诺(Sadi Camot)发表了热力机的基本理论——卡诺原理。

之后人们又提出过各种各样的内燃机方案,但在十九世纪中叶以前均未付诸实用。

直到1860年,法国的莱诺伊尔(Lenoir)模仿蒸汽机的结构,设计制造出第一台实用的煤气机,从而结束了只有外燃机——蒸汽机作为动力机构的历史,开始了以内燃机为主的动力机械及工程时代。

Lenoir的煤气机运转平稳,但由于没有压缩过程,其热效率仅有4%左右。

1862年,法国科学家罗沙(Beau De Rochse)对内燃机热力过程进行理论分析之后,提出了等容燃烧的四冲程循环工作原理,这是一次认识上的飞跃,一直沿用至今。

内燃机分类与工作原理[1]

内燃机分类与工作原理[1]

二、 四行程发动机工作原理
1、进气行程
2、压缩行程
3、作功行程 4、排气行程
(一)四行程汽油机的工作原理
汽油发动机四个行程的图示
1.进气行程
2.压缩行程
3.作功行程
4.排气行程
每一行程工作的具体分析如下
1、进气行程(曲轴转角0-180) 示功图:表示活塞
在不同位置时气缸内 气体压力的变化情况。
1、按燃料使用不同分:汽油机、柴油机、多种燃料
2、按冷却方式不同分:水冷式、风冷式
3、内燃机按照完成一个工作循环所需的行程数可 分:四行程内燃机、二行程内燃机。
四冲程内燃机
二冲程内燃机
4、按气缸数及排列方式
单缸发动机
多缸发动机
单列式 V型 对置式
5、按气缸的排列分单列、双列,双列分V型、对置式
(五)二冲程汽油机与四冲程汽油机比较
1、功率较大:理论上同样发动机排量、同样工作转速的 发动机其功率应等于四冲程汽油机的二倍,实际上由于实 际压缩比小于名义压缩比,气缸内进气不足(进气时间短, 存在给气和扫气损失),只等于1.5~1.6倍。 2、结构简单:二冲程汽油机没有配气机构,结构简单, 体积小,重量轻,容易维修。 3、工作平稳:二冲程汽油机作功间隔短,发动机运转平 稳,飞轮转动惯量小,容易上高速。
• 4、经济性差,污染严重:二冲程汽油机燃油消耗率远较 四冲程汽油机的燃油消耗率高,HC等排放严重,一般功 率小于10kw,逐渐淘汰出摩托车用市场,但军用小型无 人航空飞行器却因其体积小、重量轻、单位气缸工作容积 输出功率大而仍被看好,但要解决电控汽油喷射技术甚至 废气涡轮增压技术 。 • 二、二冲程柴油机工作原理 • 二冲程柴油机工作时,是喷入的柴油,靠压燃点火;汽油 机工作时,靠火花塞点火。

内燃机原理和构造.完整版PPT资料

内燃机原理和构造.完整版PPT资料
四冲程循环.swf
7
二冲程柴油工作原理
如果在两个冲程里完成进气、压缩、做功 、排气这些循环动作,就叫二冲程,相应 的内燃机叫二冲程内燃机.
8
柴油机工作原理
第一冲程——进气,它的任务是使气缸内充满新鲜空气。 当进气冲程开始时,活塞位于上止点,气缸内的燃烧室中 还留有一些废气。 当曲轴旋转时,连杆使活塞由上止点向下止点移动,同时 ,利用与曲轴相联的传动机构使进气阀打开。 随着活塞的向下运动,气缸内活塞上面的容积逐渐增大: 造成气缸内的空气压力低于进气管内的压力,因此外面空 气就不断地充入气缸。 当活塞向下运动接近下止点时,冲进气缸的气流仍具有很 高的速度,惯性很大,为了利用气流的惯性来提高充气量 ,进气阀在活塞过了下止点以后才关闭。虽然此时活塞上 行,但由于气流的惯性,气体仍能充人气缸。
11
柴油机工作原理
四. 排气冲程 第四冲程——排气。排气冲程的功用是把膨胀后的废气排 出去,以便充填新鲜空气,为下一个循环的进气作准备。 当工作冲程活塞运动到下止点附近时,排气阀开起,活塞 在曲轴和连杆的带动下,由下止点向上止点运动,并把废 气排出气缸外。由于排气系统存在着阻力,所以在排气冲 程开始时,气缸内的气体压力比大气压力高0.025— 0.035MPa,其温度Tb=725~925K。为了减少排气时活 塞运动的阻力,排气阀在下止点前就打开了。排气阀一打 开,具有一定压力的气体就立即冲出缸外,缸内压力迅速 下降,这样当活塞向上运动时,气缸内的废气依靠活塞上 行排出去。为了利用排气时的气流惯性使废气排出得干净 ,排气阀在上止点以后才关闭。
影响:喷油提前角的大小对柴油机影响极大,若 其过大,将导致发动机工作粗暴;过小,最高压 力和热效率下降,排气管冒白烟。最佳喷油提前 角:即在转速和供油量一定的条件下,能获得最 大功率及最小燃油消耗率的喷油提前角。供油量 越大,转速越高,则最佳喷油提前角越大;最佳 喷油提前角还与发动机的结构有关

内燃机简介

内燃机简介
inside the engine. The actual working fluids are the fuel-air mixture before combustion and the burned products after combustion .(燃料在机器内部燃烧而将能量释放做功的,它的 工质在燃烧前是燃油与空气的混合气,在燃烧后则是燃烧产物。)
3
1876年,Otto提出四冲程循环内燃机(即进气、着火前的压缩、 膨胀与排气)这种发动机的热效率提高到了14%,而质量则减 少了近70%,有效地投入工业使用而形成了内燃机工业。
To overcome this engine’s shortcomings of low thermal efficiency and excessive weight, Otto proposed an engine cycle with four piston strokes:an intake stroke, then a compression stroke before ignition, an expansion or power stroke where work was delivered to the crankshaft ,and finally an exhaust stroke. His prototype fore-stroke engine first ran in 1876.This was the breakthrough that effectively founded the ICE-combustion engine): Steam Engine, Stirling
Engine, Steam Turbine
点 燃 式 spark-ignition engines ( 汽 油 机 Otto engines,gasoline

铁路机车及铁路部门介绍—内燃机车简介

铁路机车及铁路部门介绍—内燃机车简介

中国第一代调车用柴油机车 由戚墅堰机车车辆工厂1964年研制成功 共生产了153台 轴列式C0-C0 功率650kW 最高运营速度95.3km/h 走廊外置
三、东风系列内燃机车
3.东风3型内燃机车
东风3型内燃机车,与东风1型构造基本相同 仅牵引齿轮传动比由4.41改为3.38 机车功率1050kW 大连机车车辆工厂 共生产226台 并不适合高速运行
五、和谐型内燃机车
5.HXN5B型内燃机车
功率3250kW 轴列式C0-C0,最高运营速度100km/h
五、和谐型内燃机车
6.HXN5K型内燃机车
功率2×3270kW,轴列式2(A01A0A01A0),最大运营速度170km/h
五、和谐型内燃机车
7.HXN6型混合动力内燃机车
中车资阳机车有限公司研制的油-电混合 动力交流传动内燃机车 NY6240ZJA型柴油机 磷酸铁锂动力电池组 功率2200kW 轴列式C0-C0 最高运营速度100km/h
三、东风系列内燃机车
9.东风9型内燃机车
戚墅堰机车车辆厂,于1990年研制成功 功率3040kW 轴列式C0-C0 最高运行速度160km/h 我国第一种最高运行速度达到160公里/小时 以上的柴油内燃机车 也是继东风8型货运机车之后,我国第二种装 用16V280/285系列大功率柴油机的铁路机车
六、复兴型内燃机车
1.FXN3型内燃机车
样车原称HXN3K型内燃机车 主辅一体交流传动、变频启动等 有列车供电功能
功率2×3250kW 轴列式2(A01A0-A01A0) 最大运营速度16XN3B型内燃机车
样车原称HXN3C型 中油电双动力,混合动力机车
六、复兴型内燃机车
3.FXN3C型内燃机车

内燃机工程

内燃机工程

交通科学与工程导论内燃机工程学习综合报告交通科学与工程学院12131065原仁杰内燃机简介一、概述内燃机是将液体或气体燃料与空气混合后,直接输入汽缸内部的高压燃烧室燃烧爆发产生动力。

这也是将热能转化为机械能的一种热机。

内燃机具有体积小、质量小、便于移动、热效率高、起动性能好的特点。

但是内燃机一般使用石油燃料,同时排出的废气中含有害气体的成分较高。

二、内燃机分类1、根据所用燃料分:汽油机、柴油机、天然气、LPG发动机、乙醇发动机等,另有双燃料发动机和灵活燃料发动机。

单列式和双列式2、根据缸内着火方式分:电燃式、点燃式、压燃式。

3、根据冲程数分:二冲程、四冲程4、根据活塞运动方式分:往复式、旋转式5、根据气缸冷却方式分:水冷式、风冷式6、根据气缸数目分:单缸机、多缸机7、根据内燃机转速分:低速(<300r/min)、中速(300 ~ 1000 r/min)、高速(>1000 r/min);8、根据进气充量压力分:自然吸气式、增压式9、根据气缸排列分:立式、卧式直列、V型、对置X型、星型三、内燃机的机构和系统组成发动机是一种由许多机构和系统组成的复杂机器。

要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备以下一些机构和系统。

1、曲柄连杆机构曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。

它由机体组、活塞连杆组和曲轴飞轮组等组成。

在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。

而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。

2、配气机构配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。

配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。

3、燃料供给系统汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内燃机简介摘要内燃机的出现为汽车的发展提供了基础,给世界带来了现代物质文明。

本文简单介绍了内燃机的发展历程、常用工作指标、总体构造,以及内燃机的工作原理,使大家能对与我们生活有密切联系的内燃机有个初步认识。

内燃机是近代工业文明发展的产物,以其简单、经济取代了蒸汽机,通过科学家的不断研究,内燃机已经成为现代交通运输工具的主要动力。

关键词:内燃机,发展历史,工作指标,总体构造,工作原理一、绪论内燃机是热机的一种,能将燃料的化学能转化机械能。

一般的实现方式为,燃料与空气混合燃烧,产生热能,气体受热膨胀,通过机械装置转化为机械能对外做功。

内燃机有非常广泛的应用,汽车、船舶、飞机、火箭等的发动机基本都是内燃机,其最常见的例子即为车用汽油机与柴油机。

广义上的内燃机不仅包括往复活塞式内燃机、旋转活塞式发动机和自由活塞式发动机,也包括旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指活塞式内燃机。

区别于外燃机,内燃机的燃烧气体同时也是工作介质,比如汽油机中,汽油燃烧后的气体直接推动活塞做功。

与此相对,燃料不作为工作介质的热机则称为外燃机,比如蒸汽机的工作介质(蒸汽)并不是燃料。

二、内燃机的发展历史活塞式内燃机起源于荷兰物理学家惠更斯用火药爆炸获取动力的研究,但因火药燃烧难以控制而未获成功。

1801年,法国化学家菲利浦·勒本研制成以煤气和氢气为燃料的内燃机。

1824年,卡诺(Sadi Camot)发表了热力机的基本理论——卡诺原理。

之后人们又提出过各种各样的内燃机方案,但在十九世纪中叶以前均未付诸实用。

直到1860年,法国的莱诺伊尔(Lenoir)模仿蒸汽机的结构,设计制造出第一台实用的煤气机,从而结束了只有外燃机——蒸汽机作为动力机构的历史,开始了以内燃机为主的动力机械及工程时代。

Lenoir的煤气机运转平稳,但由于没有压缩过程,其热效率仅有4%左右。

1862年,法国科学家罗沙(Beau De Rochse)对内燃机热力过程进行理论分析之后,提出了等容燃烧的四冲程循环工作原理,这是一次认识上的飞跃,一直沿用至今。

1876年,德国发明家奥托(Otto)运用罗沙的原理,创制成功第一台往复活塞式、单缸、卧式、3.2千瓦的四冲程内燃机,仍以煤气为燃料,采用火焰点火,转速为156.7转/分,压缩比为2.66,其热效率提高到16%,是Lenoir内燃机热效率的4倍,应用普遍。

这被认为是内燃机发展史上的第一次重大技术突破。

随着石油工业的出现和发展,为内燃机使用热值比煤气高得多的液体燃料提供了能源条件。

1886年,德国人Gottlieb Daimler和Karl Benz研制出高速汽油机并将其成功地装在车辆上运行,因而这一年被公认为汽车的诞生年。

1893年,德国人Rudolf Diesel发表了压燃式内燃机的工作原理,二年之后研制出水冷、高压空气喷射燃油的压燃式内燃机,使热效率提高到24%,这被认为是内燃机发展史上的第二次重大技术突破。

随着制造工艺水平的提高,1925年德国建成了专业化的喷油泵生产厂,使柴油机用于车辆上成为可能。

1926年瑞士人Alfred J Buchi提出了废气涡轮增压理论。

但直至1950年以后,随着燃气轮机技术的成熟,废气涡轮增加技术才逐渐在柴油机上广泛应用,使柴油机的性能指标有了大幅度提高。

这是内燃机发展史上的第三次重大技术突破。

此后,内燃机的发展与总体设计、制造工艺水平的提高和能源、环境的要求紧密相联。

20世纪60年代,以动力性、可靠性和耐久性为主要目标。

20世纪70年代,出现了第一次石油危机,因而经济性占据了主要位置,低油耗的经济型轿车风靡全球。

20世纪80—90年代,环境污染日益严重,排放问题突出,因而低排放、甚至零排放的动力机械才具有生命力。

液化石油气、天然气、电动、燃料电池和太阳能等汽车相继问世。

汽油机、柴油机也转向追求综合性的高指标,各项性能全面发展。

三、内燃机的常用工作指标内燃机的工作指标很多,主要有动力性能指标(功率、转矩、转速)、经济性能指标(燃料与润滑油消耗率)、运转性能指标(冷起动性能、噪声和排气品质)和耐久可靠性指标(大修或更换零件之间的最长运行时间与无故障长期工作能力)。

我们最常用到的是表征动力性能指标和经济性能指标的各种参数。

3.1 示功图内燃机气缸内部实际进行的工作循环是非常复杂的,为获得正确反映气缸内部实际情况的试验数据,通常利用不同型式的示功器或内燃机数据采集系统来观察或记录相对于不同活塞位置或曲轴转角时气缸内工质压力的变化,所得的结果即为p−V示功图或p−φ示功图。

图3-1四冲程内燃机的p−φ图从示功图可以观察到内燃机工作循环的不同阶段(压缩、燃烧、膨胀)以及进气、排气行程中的压力变化,通过数据处理,运用热力学知识,将它们与所积累的试验数据进行分析比较,可以对整个工作过程或工作过程的不同阶段进展的完善程度作出正确的判断。

因此,示功图是研究内燃机工作过程的重要试验数据。

3.2 指示性能指标内燃机的指示性能指标是指以工质对活塞做功为基础的指标。

指示功是指气缸内完成一个工作循环所得到的有用功W i,大小可由示功图中闭合曲线所占有的面积求出。

W i=∫p dV平均指示压力p mi,是指单位气缸容积一个循环所做的指示功,单位为Pa。

p mi=W i s式中,V s为发动机气缸工作容积(m3)。

指示功率P i指内燃机单位时间内所作的指示功。

P i=2p mi V s n τi式中,i为气缸数,τ为冲程数。

指示热效率是发动机实际循环指示功与所消耗的燃料热量的比值。

ηit=W i 1指示燃油消耗率是指单位指示功的耗油量,通常用单位千瓦小时指示功的耗油量克数来表示。

b i=BP i×1033.3 有效性能指标上面所讨论的指示性能指标只能评定工作循环进行的好坏,发动机发出的指示功率需扣除运动件的摩擦功率以及驱动气门机构、风扇、机油泵、发电机等附件所消耗的功率后才能变为曲轴的有效输出,所有这些消耗功率的总和称为机械损失功率P m,从而有效功率P e=P i−P m有效功率与指示功率之比称为机械效率,即ηm=P e i内燃机的有效功率P e(kW)可以利用各种型式的测功器和转速计分别测出发动机在某一工况下曲轴的输出转矩T tq及在同一工况下的发动机转速n,按以下公式求得:P e=T tq 2πn×10−3=T tq n平均有效压力可看作是一个假想的、平均不变的压力作用在活塞顶上,使活塞移动一个冲程所做的功等于每循环所做的有效功。

平均有效压力是衡量发动机动力性能的一个很重要的参数。

p me=30τP e s升功率P L(kW/L)的定义是在标定工况下,发动机每升气缸工作容积所发出的有效功率。

P L=P es=p me n若把每循环吸入气缸的空气量换算成进气管状态(p s,T s)的体积V1,其值一般要比活塞排量V s小,两者的比值定义为充量系数ϕc,即ϕc=V1 V s燃烧单位质量燃料的实际空气量与理论空气量之比称为过量空气系数ϕa,即ϕa=m1 b0式中,g b为每循环燃料供给量(kg);l0为单位质量燃料完全燃烧所需的理论空气质量,称为化学计量比。

衡量发动机经济性能的重要指标是有效热效率ηet和有效燃油消耗率b e。

有效热效率是实际循环的有效功与为得到此有效功所消耗的热量的比值,即ηet=W e1=W iηm1ηet=ηitηm有效燃油消耗率是指单位有效功的耗油量,通常用单位千瓦小时有效功所消耗的燃料克数b e来表示,即b e=Be×103四、内燃机的总体构造内燃机是一部由许多机构和系统组成的复杂机器。

典型的汽车发动机主要有“两大机构”和“五大系统”。

4.1 曲柄连杆机构曲柄连杆机构的功用是将燃烧时产生的热能转变为活塞往复运动的机械能,再通过连杆将活塞的往复运动变为曲轴的旋转运动,从而对外输出动力。

图4-1 曲柄连杆机构4.2 配气机构配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。

图4-2 配气机构4.3 冷却系统冷却系统的功用是使发动机在所有工况下都保持在适当的温度范围。

图4-3 冷却系统4.4 润滑系统润滑系统的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。

并对零件表面进行清洗和冷却。

图4-4 润滑系统4.5 供给系统根据发动机各种不同工况的要求,配制出一定数量和浓度的可燃混合气,供入气缸,使之在临近压缩终了时点火燃烧而膨胀做功。

图4-5 供给系统4.6 点火系统点火系统的功用保证按规定时刻及时点燃汽缸中被压缩的可燃混合气。

图4-6 点火系统4.7 起动系统起动系统的功用是通过起动机将蓄电池储存的电能转变为机械能带动发动机以足够高的转速运转,以顺利起动发动机。

图4-7 起动系统五、内燃机的工作原理内燃机每作一次功完成进气、压缩、作功和排气四个过程叫一个工作循环。

四冲程内燃机是活塞经过四个行程(进气行程、压缩行程、作功行程和排气行程)完成一个工作循环的内燃机。

5.1 四冲程汽油机的工作过程5.1.1 进气行程进气行程中,活塞由上止点向下止点移动,进气门开启,排气门关闭。

随着活塞移动,活塞上方的气缸容积增大,形成一定的真空度。

空气和汽油通过化油器混合或燃油直接喷射式混合形成可燃混合气,经进气门被吸入气缸。

进气终了时的缸内压力约为0.075~0.09MPa,温度可升高到370K~400K左右。

5.1.2 压缩行程为使吸入气缸的可燃混合气能迅速燃烧,以产生较大的压力,从而增加发动机输出功率,必须在燃烧前将可燃性混合气压缩,使其容积缩小,密度增加,温度升高,故需要压缩过程。

压缩过程中,进、排气门关闭,活塞向上止点移动。

压缩终了时的缸内压力约为0.6~1.2MPa,温度可达600~700K。

压缩前气缸中气体的最大容积与压缩后的最小容积之比称为压缩比,以ε表示。

ε=V a c现代汽油机压缩比一般为8~11。

5.1.3 作功行程压缩至上止点前10º~15ºCA时,火花塞点火,混合气剧烈燃烧,气缸内的温度、压力急剧上升。

可燃性混合气燃烧后,发出大量的热能,气缸内气体能达到最高燃烧压力,约为3~5MPa,最高燃烧温度约为2200~2800K。

高温、高压气体推动活塞向下移动,通过连杆带动曲轴旋转,向外输出机械能。

做功终了时,气体压力降为0.3~0.5MPa,温度约为1300~1600K。

5.1.4 排气行程活塞从下止点向上止点移动,排气门开启,进气门保持关闭。

膨胀后的废气在自身剩余压力和活塞的推动下,经排气门排出气缸。

排气过程中,气缸内的压力约为0.105~0.115MPa,温度约为900~1200K。

相关文档
最新文档