2016西城一模数学试卷及答案分析
北京市西城区高三数学一模试卷 文(含解析)

北京市西城区2016届高三一模文科数学试卷一、单选题1.设集合,集合,则()A. B.C. D.【知识点】集合的运算【试题解析】所以。
故答案为:B【答案】B2.设命题p:,则p为()A. B.C. D.【知识点】全称量词与存在性量词【试题解析】因为特称命题的否定是全称命题,p为:。
故答案为:A【答案】A3.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A. B.C. D.【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。
故答案为:B【答案】B4.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A. B. C. D.【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C【答案】C5.在平面直角坐标系中,向量=(1,2),=(2,m),若O,A,B三点能构成三角形,则()A. B. C. D.【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
若O,A,B三点共线,有:-m=4,m=-4.故要使O,A,B三点不共线,则。
故答案为:B【答案】B6.执行如图所示的程序框图,若输入的分别为0,1,则输出的()A.4 B.16 C.27 D.36【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
故答案为:D【答案】D7.设函数,则“”是“函数在上存在零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【知识点】零点与方程【试题解析】因为所以若,则函数在上存在零点;反过来,若函数在上存在零点,则则故不一定。
故答案为:A【答案】A8.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是()A.最多可以购买4份一等奖奖品 B.最多可以购买16份二等奖奖品C.购买奖品至少要花费100元 D.共有20种不同的购买奖品方案【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。
2016届北京市西城区初三一模数学试卷(解析版)概要1讲解

2016届北京市西城区初三一模数学试卷、单选题(共10小题)考点:科学记数法和近似数、有效数字 答案:C试题解析:科学记数法是一个数表示成 题意得9 186 000=9.186 106.故选 C .1 . 2016年春节假期期间,我市接待旅游总人数达到9 186 000 人次, 000用科学计数法表示应为()3A . 9186 60B . 59.186 106C . 9.186 60D79.186 10比去年同期增长 1.9%.将9 186axio 的n 次幕的形式,其中1w |a|<10 n 为整数,所以根据2.如图,实数:,在数轴上的对应点分别为P , Q ,这四个数中绝对值最大的数对应的点是() A .点B .点T C .点厂D .点-_:考点:实数大小比较 答案:D试题解析:数轴上的数离远点最远的数绝对值最大,由图可得原点在 远,故选DMN 之间,所以Q 点离远点最3. 如图,直线| V.,直线EF 分别与匸,二.交于点二,,门_二「,且与的平分线交于■,若__」1-,则__的度数是()C . 25°D . 20 °E考点:平行线的判定及性质2答案:A试题解析:由题意得 __<-二 一 .?, 故选A4.下列几何体中,主视图和俯视图都为矩形的是()考点:几何体的三视图 答案:B试题解析:由题意可得只有 B 选项的长方体的三视图都为长方形,故选B1 、5.关于:的一元二次方程./ - ■ - H 有两个不相等的实数根,贝U:的取值范围是(),9 A. ‘2,9 B. 4C.:-2D.:4考点:一兀一 二次方程的根的判别式答案:A:' ,故选A 。
2试题解析: 由题意可得A > 0.33- 4x-i > Oi 26.老北京的老行当中有-行叫做 抓彩卖糖”: 商贩将高丽纸裁成许多小条,用矶水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入 小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了 10张质地均匀的纸条, 其中能得到一块糖的纸条有5张,能得到三块糖的纸条有 随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是(3张,能得到五块糖的纸条有 2张.从中)D .D .考点:概率及计算答案:B2试题解析:由题意得10张中三块糖的纸条有3张,所以概率为―,即选B。
.4.西城.高三数学答案.docx

高中数学学习材料鼎尚图文*整理制作北京市西城区2016年高三一模试卷参考答案及评分标准高三数学(理科)2016.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.A 3.B 4.B 5.D 6.A 7.D 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.29n - 16- 11.3 33y x =±12.6 13.21 14.○1○4注:第10,11题第一问2分,第二问3分;第14题多选、少选或错选均不得分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为 sin 3sin B C =, 由正弦定理sin sin sin a b cA B C==, 得 3b c =. ………………3分 由余弦定理 2222cos a b c bc A =+-及π3A =,7a =, ………………5分 得 227b c bc =+-,所以 222()733b b b +-=,解得 3b =. ………………7分 (Ⅱ)解:由π3A =,得2π3B C =-. 所以 2πsin()3sin 3C C -=. ………………8分 即31cos sin 3sin 22C C C +=, ………………11分 所以35cos sin 22C C =,所以3tan 5C =. ………………13分16.(本小题满分13分)(Ⅰ)解:由折线图,知样本中体育成绩大于或等于70分的学生有30人,………………2分 所以该校高一年级学生中,“体育良好”的学生人数大约有30100075040⨯=人. ……4分 (Ⅱ)解:设 “至少有1人体育成绩在[60,70)”为事件A , ………………5分由题意,得2325C 37()11C 1010P A =-=-=,因此至少有1人体育成绩在[60,70)的概率是710. ………………9分 (Ⅲ)解:a , b , c 的值分别是为79, 84, 90;或79, 85, 90. ………………13分17.(本小题满分14分)(Ⅰ)证明:由11CC D D 为矩形,得11//CC DD ,又因为1DD ⊂平面1ADD ,1CC ⊄平面1ADD ,所以1//CC 平面1ADD , ……………… 2分 同理//BC 平面1ADD , 又因为1BCCC C =,所以平面1//BCC 平面1ADD , ……………… 3分 又因为1BC ⊂平面1BCC ,所以1//BC 平面1ADD . ……………… 4分 (Ⅱ)解:由平面ABCD 中,//AD BC ,90BAD ∠=,得AB BC ⊥,又因为1AB BC ⊥,1BC BC B =,所以AB ⊥平面1BCC , 所以1AB CC ⊥,又因为四边形11CC D D 为矩形,且底面ABCD 中AB 与CD 相交一点, 所以1CC ⊥平面ABCD , 因为11//CC DD , 所以1DD ⊥平面ABCD .过D 在底面ABCD 中作DM AD ⊥,所以1,,DA DM DD 两两垂直,以1,,DA DM DD 分 别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分则(0,0,0)D ,(4,0,0)A ,(4,2,0)B ,(3,2,0)C ,1(3,2,2)C ,1(0,0,2)D , 所以1(1,2,2)AC =-,1(4,0,2)AD =-. 设平面11AC D 的一个法向量为(,,)x y z =m ,由10AC ⋅=m ,10AD ⋅=m ,得220,420,x y z x z -++=⎧⎨-+=⎩令2x =,得(2,3,4)=-m . ………………8分易得平面1ADD 的法向量(0,1,0)=n . 所以329cos ,||||29⋅<>==-m n m n m n . 即平面11AC D 与平面1ADD 所成的锐二面角的余弦值为32929. ………………10分 (Ⅲ)结论:直线1BC 与CP 不可能垂直. ………………11分证明:设1(0)DD m m =>,1((0,1))DP DC λλ=∈, 由(4,2,0)B ,(3,2,0)C ,1(3,2,)C m ,(0,0,0)D ,ABCDD 1C 1Pyxz得1(1,0,)BC m =-,1(3,2,)DC m =,1(3,2,)DP DC m λλλλ==,(3,2,0)CD =--, (33,22,)CP CD DP m λλλ=+=--. ………………12分 若1BC CP ⊥,则21(33)0BC CP m λλ⋅=--+=,即2(3)3m λ-=-, 因为0λ≠, 所以2330m λ=-+>,解得1λ>,这与01λ<<矛盾.所以直线1BC 与CP 不可能垂直. ………………14分18.(本小题满分13分)(Ⅰ)解:对()f x 求导,得1()(1)e e x x f x x a -'=+-, ………………2分 所以(1)2e e f a '=-=,解得e a =. ………………3分 故()e e x x f x x =-,()e x f x x '=. 令()0f x '=,得0x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:x(,0)-∞0 (0,)+∞()f x ' -0 +()f x↘↗所以函数()f x 的单调减区间为(,0)-∞,单调增区间为(0,)+∞. ………………5分(Ⅱ)解:方程2()2f x kx =-,即为2(1)e 20x x kx --+=,设函数2()(1)e 2x g x x kx =--+. ………………6分 求导,得()e 2(e 2)x x g x x kx x k '=-=-.由()0g x '=,解得0x =,或ln(2)x k =. ………………7分 所以当(0,)x ∈+∞变化时,()g x '与()g x 的变化情况如下表所示:x (0,ln(2))kln(2)k (ln(2),)k +∞()g x ' -0 +()g x↘↗所以函数()g x 在(0,ln(2))k 单调递减,在(ln(2),)k +∞上单调递增. ………………9分由2k >,得ln(2)ln 41k >>.又因为(1)20g k =-+<, 所以(ln(2))0g k <.不妨设12x x <(其中12,x x 为2()2f x kx =-的两个正实数根),因为函数()g x 在(0,ln 2)k 单调递减,且(0)10g =>,(1)20g k =-+<,所以101x <<. ………………11分 同理根据函数()g x 在(ln 2,)k +∞上单调递增,且(ln(2))0g k <, 可得2ln(2)ln 4x k >>,所以12214||ln 41ln ex x x x -=->-=,即 124||ln ex x ->. ………………13分19.(本小题满分14分)(Ⅰ)解:由题意,椭圆C :221113x y m m+=, ………………1分所以21a m =,213b m=, 故12226a m ==,解得16m =, 所以椭圆C 的方程为22162x y +=. ………………3分因为222c a b =-=, 所以离心率63c e a ==. ………………5分 (Ⅱ)解:设线段AP 的中点为D ,因为||||BA BP =,所以BD AP ⊥, ………………7分 由题意,直线BD 的斜率存在,设点000(,)(0)P x y y ≠,则点D 的坐标为003(,)22x y +,且直线AP 的斜率003AP y k x =-, ………………8分 所以直线BD 的斜率为031AP x k y --=, 所以直线BD 的方程为:000033()22y x x y x y -+-=-. ………………10分 令0x =,得2200092x y y y +-=,则220009(0,)2x y B y +-, 由2200162x y +=,得22063x y =-, 化简,得20023(0,)2y B y --. ………………11分 所以四边形OPAB 的面积OPAB OAP OAB S S S ∆∆=+200023113||3||222y y y --=⨯⨯+⨯⨯………………12分 2000233(||||)22y y y --=+ 0033(2||)22||y y =+003322||22||y y ⨯⨯≥ 33=.当且仅当00322y y =,即03[2,2]2y =±∈-时等号成立. 所以四边形OPAB 面积的最小值为33. ………………14分 20.(本小题满分13分)(Ⅰ)解:由题意,数列1,3,5,6和数列2,3,10,7的距离为7. ………………2分 (Ⅱ)解:设1a p =,其中0p ≠,且1p ≠±.由111n n n a a a ++=-,得211p a p +=-,31a p=-,411p a p -=+,5a p =,所以15a a =,因此A 中数列的项周期性重复,且每隔4项重复一次. ………………4分 所以{}n b 中,432k b -=,423k b -=-,4112k b -=-,413k b =(*k ∈N ),所以{}n c 中,433k c -=,422k c -=-,4113k c -=-,412k c =(*k ∈N ). ……………5分由111||||k ki i i i i i b c b c +==--∑∑≥,得项数m 越大,数列{}n b 和{}n c 的距离越大.由417||3i i i b c =-=∑, ………………6分 得34564864117||||86420163i i i ii i b c b c ⨯==-=-=⨯=∑∑.所以当3456m <时,1||2016mi i i b c =-<∑.故m 的最大值为3455. ………………8分 (Ⅲ)证明:假设T 中的元素个数大于或等于17个. 因为数列{}n a 中,0i a =或1,所以仅由数列前三项组成的数组123,,)(a a a 有且只有8个:,0,0)(0,,0,0)(1,,1,0)(0,,0,1)(0,,1,0)(1,,0,1)(1,,1,1)(0,,1,1)(1.那么这17个元素(即数列)之中必有三个具有相同的123,,a a a . ………………10分设这三个数列分别为1234567,,,,,,{}n c c c c c c c c :;1234567,,,,,,{}n d d d d d d d d :;123456,,,,,,{}n f f f f f f f f :,其中111d f c ==,222d f c ==,333d f c ==.因为这三个数列中每两个的距离大于或等于3,所以{}n c 与{}n d 中,(4,5,6,7)i i c d i ≠=中至少有3个成立.不妨设445566,,c d c d c d ≠≠≠.由题意,得44,c d 中一个等于0,而另一个等于1.又因为40f =或1,所以44f c =和44f d =中必有一个成立, 同理,得55f c =和55f d =中必有一个成立,66f c =和66f d =中必有一个成立,所以“(4,5,6)i i f c i ==中至少有两个成立”或“(4,5,6)i i f d i ==中至少有两个成立”中必有一个成立.所以71||2i i i f c =-∑≤和71||2i i i f d =-∑≤中必有一个成立.这与题意矛盾,所以T 中的元素个数小于或等于16. ………………13分。
2016年北京市西城区初三数学一模试题及答案

2016年北京市西城区初三数学一模试题及答案一、选择题(每题3分共30分)1.﹣3的相反数是()A.﹣3 B.C.3 D.﹣2.下列计算中,正确的是()A.a0=1 B.a﹣1=﹣a C.a3?a2=a5 D.2a2+3a3=5a53.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.4.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4) B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.将二次函数y=x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣1 D.y=(x+2)2﹣1 7.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%8.如图,为测量学校旗杆的高度,小东用长为 3.2m的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()m.A.8.8 B.10 C.12 D.149.如图,飞机飞行高度BC为1500m,飞行员看地平面指挥塔A的俯角为α,则飞机与指挥塔A的距离为()m.A.B.1500sinαC.1500cosαD.10.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.将5400 000用科学记数法表示为.12.函数中自变量的取值范围是.13.计算2﹣的结果是.14.把多项式ax2+2a2x+a3分解因式的结果是.15.若扇形的弧长为6πcm,面积为15πcm2,则这个扇形所对的圆心角的度数为°.16.不等式组的解集为.17.一个不透明的袋子中装有两个黑球和一个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为.18.矩形ABCD中,AB=3,AD=5,点E在BC边上,△ADE是以AD为一腰的等腰三角形,则tan∠CDE=.19.已知,如图,CB是⊙O的切线,切点为B,连接OC,半径OA⊥OC,连接AB交OC于点D,若OD=1,OA=3,则BC=.20.如图,直线DE过等边△ABC的顶点B,连接AD、CE,AD∥CE,∠E=30°,若BE:AD=1:,CE=4时,则BC=.三、解答题(共60分)(21-22题每题7分,23-24题每题8分,25-27题每题10分)+2cos60°.21.先化简,再求代数式:÷(﹣x)的值,其中x=2sin 60°22.图1,图2均为正方形网络,每个小正方形的面积均为1,请在下面的网格中按要求画图,使得每个图形的顶点均在小正方形的顶点上.(1)在图1中作出点A关于BC对称点D,顺次连接ABDC,并求出四边形ABDC 的面积;(2)在图2中画出一个面积是10的等腰直角三角形.23.某校积极开展“大课间”活动,共开设了跳绳、足球、篮球、踢键子四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图,请根据图中信息解答下列问题.(1)求本次被调查的学生人数;(2)通过计算补全条形统计图;(3)该校有1000名学生,请估计全校最喜爱足球的人数比最喜爱篮球的人数少多少人?24.在?ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.(1)求证:△BFO≌△DEO;(2)若EF平分∠AEC,试判断四边形AFCE的形状,并证明.25.“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?26.已知,△ADB内接于⊙O,DG⊥AB于点G,交⊙O于点C,点E是⊙O上一点,连接AE分别交CD、BD于点H、F.(1)如图1,当AE经过圆心O时,求证:∠AHG=∠ADB;(2)如图2,当AE不经过点O时,连接BC、BH,若∠GBC=∠HBG时,求证:HF=EF;(3)如图3,在(2)的条件下,连接DE,若AB=8,DH=6,求sin∠DAE的值.27.在平面直角坐标系中,抛物线y=x2﹣bx+c与x轴交于点A(8,0)、B(2,0)两点,与y轴交于点C.(1)如图1,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PB并延长交y轴于点D,若点P的横坐标为t,CD长为d,求d与t的函数关系式(并求出自变量t的取值范围);(3)如图3,在(2)的条件下,连接AC,过点P作PH⊥x轴,垂足为点H,延长PH交AC于点E,连接DE,射线DP关于DE对称的射线DG交AC于点G,延长DG交抛物线于点F,当点G为AC中点时,求点F的坐标.2016-2017学年黑龙江省哈尔滨市平房区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分共30分)1.﹣3的相反数是()A.﹣3 B.C.3 D.﹣【考点】相反数.【分析】依据相反数的定义回答即可.【解答】解:﹣3的相反数是3.故选:C.2.下列计算中,正确的是()A.a0=1 B.a﹣1=﹣a C.a3?a2=a5 D.2a2+3a3=5a5【考点】同底数幂的乘法;合并同类项;零指数幂;负整数指数幂.【分析】直接利用负整数指数幂的性质以及零指数幂的性质和合并同类项法则以及同底数幂的乘法运算法则化简求出答案.【解答】解:A、a0=1(a≠0),故此选项错误;B、a﹣1=(a≠0),故此选项错误;C、a3?a2=a5,正确;D、2a2+3a3,无法计算,故此选项错误;故选:C.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.4.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4) B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】将(﹣2,4)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.【解答】解:∵点(﹣2,4)在反比例函数y=(k≠0)的图象上,∴k=﹣2×6=﹣8,四个选项中只有D符合.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.将二次函数y=x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣2)2﹣1 D.y=(x+2)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2的顶点坐标为(0,0),再确定平移后顶点坐标,然后写出平移的顶点式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移2个单位,再向上平移1个单位得到点(2,1),所以平移后的抛物线的解析式为y=(x﹣2)2+1.故选A.7.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%【考点】一元二次方程的应用.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故选:B.8.如图,为测量学校旗杆的高度,小东用长为 3.2m的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为()m.A.8.8 B.10 C.12 D.14【考点】相似三角形的应用.【分析】利用相似三角形对应边成比例解题.【解答】解:因为竹竿和旗杆均垂直于地面,所以构成两个相似三角形,若设旗杆高x米,则,∴x=12.故选C.9.如图,飞机飞行高度BC为1500m,飞行员看地平面指挥塔A的俯角为α,则飞机与指挥塔A的距离为()m.A.B.1500sinαC.1500cosαD.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形,可得Rt△ABC中,∠C=90°,BC=1500m,运用三角函数定义解Rt△ABC即可求出AB.【解答】解:由题意得:Rt△ABC中,∠A=∠α,∠C=90°,BC=1500m,∴sinA=sinα=,∴AB==m.故选A.10.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】①根据图象中t=0时,s=120实际意义可得;②根据图象中t=1时,s=0的实际意义可判断;③由④可知小汽车的速度是货车速度的2倍;④由图象t=1.5和t=3的实际意义,得到货车和小汽车的速度,进一步得到 1.5小时后的路程,可判断正误.【解答】解:(1)由图象可知,当t=0时,即货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①错误;(2)当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;(3)由(3)知小汽车的速度为:120÷1.5=80(千米/小时),货车的速度为40(千米/小时),∴小汽车的速度是货车速度的2倍,故③正确;(4)根据图象知,汽车行驶 1.5小时达到终点A地,货车行驶3小时到达终点B地,故货车的速度为:120÷3=40(千米/小时),出发1.5小时货车行驶的路程为: 1.5×40=60(千米),小汽车行驶 1.5小时达到终点A地,即小汽车 1.5小时行驶路程为120千米,故出发1.5小时,小汽车比货车多行驶了60千米,∵故④正确.∴正确的有②③④三个.二、填空题(每题3分,共30分)11.将5400 000用科学记数法表示为 5.4×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:5400 000用科学记数法表示为 5.4×106,故答案为:5.4×106.12.函数中自变量的取值范围是.【考点】函数自变量的取值范围;分式有意义的条件.【分析】该函数由分式组成,故分母不等于0,依次解得自变量的取值范围.【解答】解:2x+1≠0,解得x.故答案为x≠.13.计算2﹣的结果是﹣.【考点】二次根式的加减法.【分析】根据二次根式的乘除,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:原式=﹣3=﹣,故答案为:﹣.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.若扇形的弧长为6πcm,面积为15πcm2,则这个扇形所对的圆心角的度数为216°.【考点】扇形面积的计算;弧长的计算.【分析】首先根据题意求出扇形的半径,然后运用弧长公式求出圆心角,即可解决问题.【解答】解:设这个扇形的半径为λ,弧长为μ,圆心角为α°;由题意得:,μ=6π,解得:λ=5;由题意得:,解得:α=216,故答案为216.16.不等式组的解集为﹣1<x<1.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<1,解②得x>﹣1,则不等式组的解集是:﹣1<x<1.故答案是:﹣1<x<1.17.一个不透明的袋子中装有两个黑球和一个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为.【考点】列表法与树状图法.【分析】画树状图展示所有9种等可能的结果数,再找出两次摸出的小球都是黑球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球都是黑球的结果数为4,所以两次摸出的小球都是黑球的概率=.故答案为.18.矩形ABCD中,AB=3,AD=5,点E在BC边上,△ADE是以AD为一腰的等腰三角形,则tan∠CDE=或.【考点】矩形的性质;等腰三角形的性质;解直角三角形.【分析】需要分类讨论:AD=AE和AD=DE两种情况,由勾股定理和三角函数即可得出结果.【解答】解:在矩形ABCD中,AB=CD=3,BC=AD=5,∠C=∠B=90°,①当DE=DA=5时,如图1所示:∴CE==4,∴tan∠CDE==;②当AE=AD=5时,BE==4,∴CE=BC﹣BE=1,∴tan∠CDE==;故答案为:或.19.已知,如图,CB是⊙O的切线,切点为B,连接OC,半径OA⊥OC,连接AB交OC于点D,若OD=1,OA=3,则BC=4.【考点】切线的性质;勾股定理;垂径定理.【分析】连接OB,由垂直定义得∠A+∠ADO=90°,由切线的性质可得∠CBO=90°,再由AO=BO,可得∠OAD=∠OBD,进而可证明CB=CD,设BC=x,则CD=x,在Rt△OBC中利用勾股定理可求出x的长,问题得解.【解答】解:连接OB,∵OA⊥OC,∴∠A+∠ADO=90°,∵CB是⊙O的切线,∴∠OBC=90°,∴∠OBD+∠CBD=90°,∵AO=BO,∴∠OAD=∠OBD,∴∠OAD=∠OBD,∴CB=CD,设BC=x,则CD=x,在Rt△OBC中,OB=OA=3,OC=OD+CD=x+1,∵OB2+BC2=OC2,∴32+x2=(x+1)2,解得:x=4,即BC的长为4,故答案为:4.20.如图,直线DE过等边△ABC的顶点B,连接AD、CE,AD∥CE,∠E=30°,若BE:AD=1:,CE=4时,则BC=2.【考点】等边三角形的性质;旋转的性质;相似三角形的判定与性质.【分析】作辅助线,构建全等三角形和直角三角形,由旋转得:∠PCE=60°,∠APC=∠E=30°,根据BE:AD=1:,设AD=x,BE=x,则AP=BE=x,根据三角函数表示PF、PH、AH、GH的长,根据PG=GH+PH列式求x的长,得BE=2,在△BGC中,利用勾股定理求得BC的长.【解答】解:将△CBE绕C逆时针旋转60°到△CAP,BC与AC重合,延长DA交PC于H,过H作HF⊥AP于F,CP交DE于G,∴∠PCE=60°,∵∠E=30°,∴∠CGE=90°,由旋转得:CE=CP,Rt△CGE中,CE=CP=4,∴CG=CE=2,∴GP=PC﹣CG=2,∵AD:BE=:1,设AD=x,BE=x,则AP=BE=x,∵AD∥BE,∴∠ADE=∠E=30°,Rt△DGH中,∠DHG=60°,由旋转得:∠APC=∠E=30°,∴∠HAP=60°﹣30°=30°,∴∠HAP=∠APC=30°,∴AH=PH,AF=PF=x,cos30°=,∴PH==x,∴DH=AD+AH=x+x=x,∴GH=DH=x,∵PG=2=GH+PH,∴2=x+x,x=2,∴BE=x=2,由勾股定理得:EG===6,∴BG=6﹣2=4,在Rt△BGC中,BC===2;故答案为:.三、解答题(共60分)(21-22题每题7分,23-24题每题8分,25-27题每题10分)+2cos60°.21.先化简,再求代数式:÷(﹣x)的值,其中x=2sin 60°【考点】分式的化简求值;特殊角的三角函数值.【分析】先将代数式进行化简,然后求出x的值并代入代数式求解即可.+2cos60°=+1,【解答】解:∵x=2sin 60°∴÷(﹣x)=÷=×==﹣.22.图1,图2均为正方形网络,每个小正方形的面积均为1,请在下面的网格中按要求画图,使得每个图形的顶点均在小正方形的顶点上.(1)在图1中作出点A关于BC对称点D,顺次连接ABDC,并求出四边形ABDC 的面积;(2)在图2中画出一个面积是10的等腰直角三角形.【考点】作图-轴对称变换.【分析】(1)作出点A关于BC对称点D,顺次连接ABDC,并求出四边形ABDC 的面积即可;(2)先求出等腰直角三角形的直角边长,再画出三角形即可.【解答】解:(1)如图1,四边形ABDC即为所求,S四边形ABDC=AD?BC=×6×4=12;(2)如图2,△ABC即为所求..23.某校积极开展“大课间”活动,共开设了跳绳、足球、篮球、踢键子四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下不完整的统计图,请根据图中信息解答下列问题.(1)求本次被调查的学生人数;(2)通过计算补全条形统计图;(3)该校有1000名学生,请估计全校最喜爱足球的人数比最喜爱篮球的人数少多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢跳绳的人数除以其所占的百分比即可求得被调查的总人数;(2)用总数减去其他各小组的人数即可求得喜欢足球的人数,从而补全条形统计图;(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.【解答】解:(1)∵10÷25%=40,答:本次被调查的学生人数为40人;(2)40﹣15﹣2﹣10=13,如图所示,(3),答:估计全校最喜爱足球的人数比最喜爱篮球的人数大约少50人.24.在?ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.(1)求证:△BFO≌△DEO;(2)若EF平分∠AEC,试判断四边形AFCE的形状,并证明.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质和平行线性质得出OA=OC,∠OAE=∠OCF,证△AOE≌△COF,推出OE=OF,即可得出四边形是矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,AD∥BC,AD=BC,∴∠OBF=∠ODE,在△BFO和△DEO中,,∴△BFO≌△DEO(ASA);(2)解:四边形AFCE是正方形;理由如下:∵△BFO≌△DEO,∴BF=DE,∴CF=AE,∵AD∥BC,∴四边形AFCE是平行四边形,又∵AF⊥BC,∴∠AFC=90°,∴四边形AFCE是矩形,∵EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AEF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,∴四边形AFCE是正方形.25.“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设设A款a元,B款b元,根据题意列方程组求解;(2)设让利的羽绒服有x件,总获利不低于3800元,列不等式,求出最大整数解.【解答】解:(1)设A款a元,B款b元,可得:,解得:,答:A款400元,B款300元.(2)设让利的羽绒服有x件,则已售出的有(20﹣x)件600 (20﹣x)+600×60% x﹣400×10﹣300×10≥3800,解得x≤5,答:最多让利5件.26.已知,△ADB内接于⊙O,DG⊥AB于点G,交⊙O于点C,点E是⊙O上一点,连接AE分别交CD、BD于点H、F.(1)如图1,当AE经过圆心O时,求证:∠AHG=∠ADB;(2)如图2,当AE不经过点O时,连接BC、BH,若∠GBC=∠HBG时,求证:HF=EF;(3)如图3,在(2)的条件下,连接DE,若AB=8,DH=6,求sin∠DAE的值.【考点】圆的综合题.【分析】(1)如图1中,连接BE,由DG∥BE,推出∠AEB=∠AHG,由∠ADB=∠AEB,即可推出∠ADB=∠AHG.(2)连接AC、DE,EB、AC、BC.只要证明HG=CG,∠EDB=∠CDB,根据等腰三角形三线合一即可证明.(3)过点O作ON⊥DE,OM⊥AB垂足分别为N、M,连接OD、OE、OA、OB.只要证明△NOE≌△MBO,推出NE=OM=3,OB==5,在RT△OMB中,根据sin∠OBM=,计算即可.【解答】证明:(1)如图1中,连接BE,∵AE是⊙O的直径∴∠ABE=90°,∵DG⊥AB,∴∠ABE=∠AGD=90°,∴DG∥BE,∴∠AEB=∠AHG,∵∠ADB=∠AEB∴∠ADB=∠AHG.(2)连接AC、DE,EB、AC、BC.∠GBC=∠HBG,DG⊥AB∴∠GHB=∠BCH,BH=BC,∴HG=CG,∴AH=AC,∠AHC=∠HCA,∠BAC=∠HAG∵∠AED=∠ACH,∠DHE=∠AHC,∴∠AED=∠DHE,∴DH=DE,∵∠EDB=∠EAB,∠CDB=∠BAC,∴∠EDB=∠CDB,∴HF=EF.(3)过点O作ON⊥DE,OM⊥AB垂足分别为N、M,连接OD、OE、OA、OB.∴BM=AB=4,∵DH=DE=6,HF=EF,∴DF⊥AE,∴∠DAE+∠BDA=90°,∵∠E O D=2∠DAE∠AO B=2∠ADB,∴∠BOA+∠EOD=180°,∵∠DOE=2∠NOE∠AOB=2∠BOM,∴∠NOE+∠BOM=90°∠NOE+∠NEO=90°,∵∠NEO=∠BOM,OE=OB,∴△NOE≌△MBO∴NE=OM=3,∴OB==5,∵∠ADB=∠BOM,∴∠DAF=∠OBM,在RT△OMB中sin∠OBM==∴sin∠DAE=.27.在平面直角坐标系中,抛物线y=x2﹣bx+c与x轴交于点A(8,0)、B(2,0)两点,与y轴交于点C.(1)如图1,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PB并延长交y轴于点D,若点P的横坐标为t,CD长为d,求d与t的函数关系式(并求出自变量t的取值范围);(3)如图3,在(2)的条件下,连接AC,过点P作PH⊥x轴,垂足为点H,延长PH交AC于点E,连接DE,射线DP关于DE对称的射线DG交AC于点G,延长DG交抛物线于点F,当点G为AC中点时,求点F的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线解析式;(2)先表示出BH,PH,进而得出∠HBP的正切值,再用等角的同名三角函数即可表示出OD,即可得出结论;(3)先求出直线AC解析式,进而判断出四边形DOMN是矩形,最后用三角函数和对称性求出t,即可得出OD和tan∠GDN=,即可得出结论.【解答】证明:(1)∵抛物线过A(8,0)、B(2,0)两点,∴,∴,∴抛物线的解析式为:y=x2﹣x+4(2)如图2,过点P作PH⊥AB于点H,设点P(t,)∴BH=t﹣2,PH=∴tan∠HBP==,∵∠OBD=∠HBP,∴tan∠OBD=tan∠HBP,∴,∴OD=,∴CD=4﹣OD=∴d=(2<t<8),(3)如图3,设直线AC的解析式为y=kx+b,∴∴,∴直线AC的解析式为,∴点E(t,)∴EH=OD=,∵EH∥OD,∴四边形DOHE是矩形,∴DE∥OH,取AO的中点M,连接GM,交DE于点N,∴GM∥OC,∴GN⊥DE,∴四边形DOMN是矩形,∴OD=NM=,NG=2﹣MN=,∵DN=OM=4tan∠GDN=,∵由对称性得∠PDE=∠GDE=∠HBP tan∠GDN=tan∠HBP,∴,∴t=∴OD=,∴tan∠GDN=,设点F(m,过点F作FK⊥DE交延长线于点K,tan∠GDN=,∴,∴F(10,4),2017年2月10日。
2016年北京西城高三一模数学试卷(理科答案)

北京市西城区2016年高三一模试卷参考答案及评分标准高三数学(理科)2016.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.A 3.B 4.B 5.D 6.A 7.D 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.29n - 16-11 y = 12.6 13.21 14.○1○4注:第10,11题第一问2分,第二问3分;第14题多选、少选或错选均不得分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为 sin 3sin B C =, 由正弦定理sin sin sin a b cA B C==, 得 3b c =. ………………3分由余弦定理 2222cos a b c bc A =+-及π3A =,a ………………5分 得 227b c bc =+-,所以 222()733b b b +-=,解得 3b =. ………………7分 (Ⅱ)解:由π3A =,得2π3B C =-. 所以 2πsin()3sin 3C C -=. ………………8分1sin 3sin 2C C C +=, ………………11分5sin 2C C =,所以tan C =. ………………13分16.(本小题满分13分)(Ⅰ)解:由折线图,知样本中体育成绩大于或等于70分的学生有30人,………………2分 所以该校高一年级学生中,“体育良好”的学生人数大约有30100075040⨯=人. ……4分 (Ⅱ)解:设 “至少有1人体育成绩在[60,70)”为事件A , ………………5分由题意,得2325C 37()11C 1010P A =-=-=,因此至少有1人体育成绩在[60,70)的概率是710. ………………9分 (Ⅲ)解:a , b , c 的值分别是为79, 84, 90;或79, 85, 90. ………………13分17.(本小题满分14分)(Ⅰ)证明:由11CC D D 为矩形,得11//CC DD ,又因为1DD ⊂平面1ADD ,1CC ⊄平面1ADD ,所以1//CC 平面1ADD , ……………… 2分 同理//BC 平面1ADD , 又因为1BC CC C = ,所以平面1//BCC 平面1ADD , ……………… 3分 又因为1BC ⊂平面1BCC ,所以1//BC 平面1ADD . ……………… 4分 (Ⅱ)解:由平面ABCD 中,//AD BC ,90BAD ∠= ,得AB BC ⊥,又因为1AB BC ⊥,1BC BC B = , 所以AB ⊥平面1BCC , 所以1AB CC ⊥,又因为四边形11CC D D 为矩形,且底面ABCD 中AB 与CD 相交一点, 所以1CC ⊥平面ABCD , 因为11//CC DD , 所以1DD ⊥平面ABCD .过D 在底面ABCD 中作DM AD ⊥,所以1,,DA DM DD 两两垂直,以1,,DA DM DD 分 别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分则(0,0,0)D ,(4,0,0)A ,(4,2,0)B ,(3,2,0)C ,1(3,2,2)C ,1(0,0,2)D , 所以1(1,2,2)AC =- ,1(4,0,2)AD =-. 设平面11AC D 的一个法向量为(,,)x y z =m ,由10AC ⋅= m ,10AD ⋅= m ,得22420,x y z x z -++=⎧⎨-+=⎩ 令2x =,得(2,3,4)=-m . ………………8分易得平面1ADD 的法向量(0,1,0)=n . 所以cos ,||||⋅<>==m n m n m n 即平面11AC D 与平面1ADD . ………………10分 (Ⅲ)结论:直线1BC 与CP 不可能垂直. ………………11分证明:设1(0)DD m m =>,1((0,1))DP DC λλ=∈,由(4,2,0)B ,(3,2,0)C ,1(3,2,)C m ,(0,0,0)D ,得1(1,0,)BC m =- ,1(3,2,)DC m = ,1(3,2,)DP DC m λλλλ== ,(3,2,0)CD =--,(33,22,)CP CD DP m λλλ=+=-- . ………………12分 若1BC CP ⊥,则21(33)0BC CP m λλ⋅=--+=,即2(3)3m λ-=-,因为0λ≠,1所以2330m λ=-+>,解得1λ>,这与01λ<<矛盾.所以直线1BC 与CP 不可能垂直. ………………14分18.(本小题满分13分)(Ⅰ)解:对()f x 求导,得1()(1)e e x x f x x a -'=+-, ………………2分 所以(1)2e e f a '=-=,解得e a =. ………………3分 故()e e x x f x x =-,()e x f x x '=. 令()0f x '=,得0x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:所以函数()f x 的单调减区间为(,0)-∞,单调增区间为(0,)+∞. ………………5分 (Ⅱ)解:方程2()2f x kx =-,即为2(1)e 20x x kx --+=,设函数2()(1)e 2x g x x kx =--+. ………………6分 求导,得()e 2(e 2)x x g x x kx x k '=-=-.由()0g x '=,解得0x =,或ln(2)x k =. ………………7分 所以当(0,)x ∈+∞变化时,()g x '与()g x 的变化情况如下表所示:所以函数()g x 在(0,ln(2))k 单调递减,在(ln(2),)k +∞上单调递增. ………………9分 由2k >,得ln(2)ln 41k >>.又因为(1)20g k =-+<, 所以(ln(2))0g k <.不妨设12x x <(其中12,x x 为2()2f x kx =-的两个正实数根),因为函数()g x 在(0,ln 2)k 单调递减,且(0)10g =>,(1)20g k =-+<,所以101x <<. ………………11分 同理根据函数()g x 在(ln 2,)k +∞上单调递增,且(ln(2))0g k <, 可得2ln(2)ln 4x k >>,所以12214||ln 41ln ex x x x -=->-=,即 124||lnex x ->. ………………13分19.(本小题满分14分)(Ⅰ)解:由题意,椭圆C :2213x y m m+=, ………………1分所以21a m =,213b m=,故2a ==16m =, 所以椭圆C 的方程为22162x y +=. ………………3分因为2c =,所以离心率c e a == ………………5分 (Ⅱ)解:设线段AP 的中点为D ,因为||||BA BP =,所以BD AP ⊥, ………………7分 由题意,直线BD 的斜率存在,设点000(,)(0)P x y y ≠,则点D 的坐标为003(,)22x y +, 且直线AP 的斜率003AP y k x =-, ………………8分 所以直线BD 的斜率为0031AP x k y --=, 所以直线BD 的方程为:000033()22y x x y x y -+-=-. ………………10分令0x =,得2200092x y y y +-=,则220009(0,)2x y B y +-,由2200162x y +=,得220063x y =-, 化简,得20023(0,)2y B y --. ………………11分所以四边形OPAB 的面积OPAB OAP OAB S S S ∆∆=+200023113||3||222y y y --=⨯⨯+⨯⨯………………12分 2000233(||||)22y y y --=+ 0033(2||)22||y y =+32⨯≥=当且仅当00322y y =,即0[y =时等号成立. 所以四边形OPAB面积的最小值为 ………………14分 20.(本小题满分13分)(Ⅰ)解:由题意,数列1,3,5,6和数列2,3,10,7的距离为7. ………………2分 (Ⅱ)解:设1a p =,其中0p ≠,且1p ≠±. 由111n n n a a a ++=-,得211p a p +=-,31a p =-,411p a p -=+,5a p =, 所以15a a =,因此A 中数列的项周期性重复,且每隔4项重复一次. ………………4分 所以{}n b 中,432k b -=,423k b -=-,4112k b -=-,413k b =(*k ∈N ),所以{}n c 中,433k c -=,422k c -=-,4113k c -=-,412k c =(*k ∈N ). ……………5分 由111||||k ki i i i i i b c b c +==--∑∑≥,得项数m 越大,数列{}n b 和{}n c 的距离越大.由417||3i i i b c =-=∑, ………………6分 得34564864117||||86420163i i i i i i b c b c ⨯==-=-=⨯=∑∑.所以当3456m <时,1||2016mi i i b c =-<∑.故m 的最大值为3455. ………………8分 (Ⅲ)证明:假设T 中的元素个数大于或等于17个. 因为数列{}n a 中,0i a =或1,所以仅由数列前三项组成的数组123,,)(a a a 有且只有8个:,0,0)(0,,0,0)(1,,1,0)(0,,0,1)(0,,1,0)(1,,0,1)(1,,1,1)(0,,1,1)(1.那么这17个元素(即数列)之中必有三个具有相同的123,,a a a . ………………10分设这三个数列分别为1234567,,,,,,{}n c c c c c c c c :;1234567,,,,,,{}n d d d d d d d d :;123456,,,,,,{}n f f f f f f f f :,其中111d f c ==,222d f c ==,333d f c ==.因为这三个数列中每两个的距离大于或等于3,所以{}n c 与{}n d 中,(4,5,6,7)i i c d i ≠=中至少有3个成立.不妨设445566,,c d c d c d ≠≠≠.由题意,得44,c d 中一个等于0,而另一个等于1. 又因为40f =或1,所以44f c =和44f d =中必有一个成立, 同理,得55f c =和55f d =中必有一个成立,66f c =和66f d =中必有一个成立,所以“(4,5,6)i i f c i ==中至少有两个成立”或“(4,5,6)i i f d i ==中至少有两个成立”中必有一个成立.所以71||2i iif c =-∑≤和71||2i iif d =-∑≤中必有一个成立.这与题意矛盾,所以T中的元素个数小于或等于16.………………13分。
北京市西城区2016届九年级下学期第一次中考模拟考试数学试题解析(解析版)

北京市西城区2016届九年级下学期第一次中考模拟考试数学试题一、选择题(本题共30分,每小题3分)1.64的立方根是( )A. ±8B. ±4C. 8D. 4【答案】D【解析】试题分析:根据34=64,则64的立方根为4.考点:立方根的计算.2.2014年11月北京主办了第二十二届APEC (亚太经合组织)领导人会议,“亚太经合组织”联通太平洋两岸,从地理概念上逐渐变成了一个拥有280000000人口的经济合作体,把“280000000”用科学记数法表示正确的是( )A .82810.⨯B .92810.⨯C .82810⨯D .72810⨯【答案】A【解析】试题分析:科学计数法是指a ×10n ,且1≤a <10,n 为原数的整数位数减一.考点:科学计数法.3.如右图是由四个相同的小正方体组成的立体图形,它的俯视图为( )A B C D【答案】D【解析】试题分析:根据三视图的法则可得,这个立体图形的俯视图为D.考点:三视图.4.一名射击爱好者5次射击的中靶环数依次为:6,7,9,8,9,这5个数据的中位数是( )A .6B .7C .8D .9【答案】C【解析】试题分析:将这些数字从小到大排列起来则为6,7,8,9,9,则中位数为8.考点:中位数的计算.5.下列图形中,是中心对称图形的是( )A .B .C .D .【答案】A【解析】试题分析:中心对称图形是指将图形围绕一点旋转180°之后能与原图形完全重合.根据定义可得A 为中心对称图形.考点:中心对称图形.6.在函数y =中,自变量x 的取值范围是( )A .3x >B .3x ≥C .3x <D . 3x ≤【答案】B【解析】试题分析:二次根式的被开方数为非负数,则x -3≥0,解得:x ≥3.考点:二次根式的性质.7.一个不透明的口袋中,装有4个红球,3个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为( )A .18B .38C .21D .34【答案】C【解析】试题分析:摸到红球的概率=红球的数量÷球的总数量.考点:概率的计算.8.如图,⊙O 的半径为5,AB 为⊙O 的弦,OC ⊥AB 于点C .若3OC ,则弦AB 的长为( )A .4B .6C .8D .10 A BCO【答案】C【解析】试题分析:连接OB ,则OB=5,根据Rt △OBC 的勾股定理得出BC=4,则AB=2BC=8.考点:垂径定理.9.若正多边形的一个外角为60º,则这个正多边形的中心角的度数是( )A .30°B .60°C .90°D .120°【答案】B【解析】试题分析:根据外角可得这个多边形为六边形,则正多边形的中心角的度数为60°.考点:正多边形的性质.10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=6,BD=8,动点P 从点B 出发,沿着B-A-D 在菱形ABCD的边上运动,运动到点D 停止,点'P 是点P 关于BD 的对称点,'PP 交BD 于点M ,若BM=x ,'OPP △的面积为y ,则y 与x 之间的函数图象大致为( )M O P'PDB ACx y x y x y xyO O O OD A B C 483333848448【答案】D【解析】试题分析:根据题意可得:当x=0,x=4和x=8时,y=0,则排除A 和C ,当0<x <4和4<x <8时为抛物线,则选择D.考点:二次函数的性质.二、填空题(本题共18分,每小题3分)11.若2(2)0m ++= 则m n -= .【答案】-3考点:非负数的性质.12.质量检测部门对甲、乙两工厂生产的同样产品抽样调查,计算出甲厂的样本方差为0.99,乙厂的样本方差为1.22.由此可以推断出生产此类产品,质量比较稳定的是 厂.【答案】甲【解析】试题分析:方差越小,则说明成绩越稳定.考点:方差的作用.13.在综合实践课上,小明同学设计了如图测河塘宽AB 的方案:在河塘外选一点O ,连结AO ,BO ,测得18AO =m ,21BO =m ,延长AO ,BO 分别到D ,C 两点,使6OC =m ,7OD =m ,又测得5CD =m ,则河塘宽AB= m .DCB AO【答案】15【解析】 试题分析:根据题意可得:13OC OD AO BO ==,∠DOC=∠BOA ,则△OCD ∽△OAB ,则13CD AB =,则AB=15m. 考点:三角形相似的应用14.写出一个当自变量0x 时,y 随x 的增大而增大的反比例函数表达式 _____.【答案】y=-1x(答案不唯一) 【解析】试题分析:对于反比例函数,当k <0时,在每个象限内,y 随x 的增大而增大.考点:反比例函数的增减性.15.居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2014年用电量为3000度,则2014年小敏家电费为 元.【答案】1446元.【解析】试题分析:本题需要将3000度点分成两部分进行计算,得出最后的答案.2880×0.48+(3000-2880)×0.53=1382.4+63.6=1446元考点:分段计算.16.规定:在平面直角坐标系xOy 中,“把某一图形先沿x 轴翻折,再沿y 轴翻折”为一次变化.如图,已知正方形ABCD ,顶点A(1,3),C(3,1).若正方形ABCD 经过一次上述变化,则点A 变化后的坐标为 ,如此这样,对正方形ABCD 连续做2015次这样的变化,则点D 变化后的坐标为 .yxA BC D O 1133【答案】(-1,-3);(-3,-3)【解析】试题分析:一次变换实际上就是做了中心对称,两次变换后回到原来的位置.则一次变换后A 的坐标为(-1,-3);经过2015次变换后点D 的坐标为(-3,-3)考点:规律题.三、解答题(本题共30分,每小题5分)17.计算:1012015452-⎛⎫+-︒ ⎪⎝⎭. 【答案】3【解析】试题分析:首先根据幂和二次根式、三角函数的计算法则求出各式的值,然后进行实数的加减法计算. 试题解析:原式==21+-=3考点:实数的计算.18.解不等式组:()4156,30.x x x ⎧->-⎨+>⎩【答案】-3<x <2【解析】试题分析:首先分别求出每个不等式的解,然后求出不等式组的解.试题解析:解不等式①得x <2 解不等式②得x >-3∴原不等式的解集为-3<x <2考点:不等式组的解法.19.如图,C ,D 为线段AB 上两点,且AC=BD ,AE ∥BF .AE=BF .求证:∠E=∠F .FA BCD E【答案】证明过程见解析【解析】试题分析:根据AC=BD 得出AD=BC ,根据平行线得出∠A=∠B ,结合AE=BF 得出△EAD 和△FBC 全等,从而得出答案.试题解析:∵AC=BD , ∴AD=BC .∵AE ∥BF , ∴∠A=∠B .又∵AE=BF ,∴△EAD ≌△FBC ,∴∠E=∠F .考点:三角形全等.20.已知3b a =-,求代数式22112aba b a ab b ⎛⎫⋅- ⎪-+⎝⎭的值. 【答案】-13【解析】 试题分析:首先将括号里面的分式进行通分,将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后利用整体代入的思想进行求解.试题解析:原式=()2abb a aba b -=⋅-1b a =- ∵3b a =-,∴3b a -=-, ∴原式1b a =-13=-. 考点:分式的化简求值. 21.已知关于x 的一元二次方程2320kx x --=有两个不相等的实数根.(1)、求k 的取值范围;(2)、若k 为小于2的整数,且方程的根都是整数,求k 的值.【答案】(1)、98k >-且0k ≠;(2)、k=-1. 【解析】试题分析:(1)、根据根的判别式和一元二次方程的定义求出k 的取值范围;(2)、根据取值范围得出k 的值,然后分别进行计算得出k 的值.试题解析:(1)、△=9+8k ∵方程2320kx x --=有两个不相等的实数根,∴9+80,0.k k >⎧⎨≠⎩ ∴98k >-且0k ≠ (2)、∵k 为不大于2的整数, ∴1k =-,1k =∴当1k =-时,方程2320x x ---=的根-1,-2都是整数;当1k =时,方程2320x x --= 综上所述,1k =-.考点:(1)、解一元二次方程;(2)、根的判别式.22.列方程或方程组解应用题:在练习100米跑步时,小丽为了帮助好朋友小云提高成绩,让小云先跑7.5秒后自己再跑,结果两人同时到达终点,这次练习中小丽的平均速度是小云的1.6倍,求小云这次练习中跑100米所用的时间.【答案】20秒.【解析】试题分析:首先设小云的时间为x 秒,则小丽的时间为(x -7.5)秒,根据题意列出分式方程进行求解,最后将得出的解进行验根得出答案.试题解析:设小云这次练习跑100米的时间为x 秒,则小丽的时间为(x -7.5)秒. 依题意,得1001001.67.5x x ⨯=-. 解得20x =. 经检验:20x =是所列方程的根,且符合实际意义答:小云这次练习跑100米的时间为20秒.考点:分式方程的应用.四、解答题(本题共20分,每小题5分)23.如图,平行四边形ABCD 中,点E 是AD 边上一点,且 CE ⊥BD 于点F ,将△DEC 沿从D 到A 的方向平移,使点D 与点A 重合,点E 平移后的点记为G .(1)、画出△DEC 平移后的三角形; (2)、若BC=BD=6,CE=3,求AG 的长.DCEB A F【答案】(1)、答案见解析;(2)考点:(1)、三角形全等;(2)、勾股定理;(3)、图像的平移.24.为了提倡“绿色”出行,顺义区启动了公租自行车项目,为了解我区居民公租自行车的使用情况,某校的社团把使用情况分为A (经常租用)、B (偶尔租用)、C (不使用)三种情况.先后在2015年1月底和3月底做了两次调查,并根据调查结果绘制成了如下两幅不完整的统计图:根据以上信息解答下列问题:(1)在扇形统计图中,A(经常租用)所占的百分比是;(2)求两次共抽样调查了多少人;并补全折线统计图;(3)根据调查的结果,请你谈谈从2015年1月底到2015年3月底,我区居民使用公租自行车的变化情况.【答案】(1)、20%;(2)、100人;答案见解析;(3)、常使用公租自行车的人数明显增多,从不使用的人数明显减少,说明大家越来越认识公租自行车的好处.【解析】试题分析:(1)、根据扇形统计图得出A所占的百分比;(2)、根据B的人数和比例求出总人数,然后画出图形;(3)、根据图形得出结论,只要符合题意即可.试题解析:(1)、20%;(2)、(24+32)÷56%=100(人)两次调查公租自行车使用情况折线统计图2015年3月底2015年1月底使用情况A B C20841216人数242832(3)、经常使用公租自行车的人数明显增多,从不使用的人数明显减少,说明大家越来越认识公租自行车的好处.考点:统计图.25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是BC 的中点,过点D 作⊙O 的切线,与AB ,AC 的延长线分别交于点E ,F ,连结AD .(1)求证:AF ⊥EF ; (2)若1tan 2CAD ∠=,AB=5,求线段BE 的长. EF DABCO【答案】(1)、证明过程见解析;(2)、53【解析】试题分析:(1)、连接OD 根据切线得出OD ⊥EF ,根据OA=OD 得出∠1=∠3,根据弧的中点得出∠1=∠2,则∠2=∠3,说明OD ∥AF ,得到切线;(2)、连接BD ,根据tan ∠CAD 的值得出tan ∠1的值,根据Rt △ADB 得出BD 和AD 的长度,根据平行得出△EDO 与△EFA 相似,设BE=x ,根据相似比得出x 的值. 试题解析:(1)、连结OD . ∵直线EF 与⊙O 相切于点D , ∴OD ⊥EF .∵OA = OD ,∴∠1=∠3.∵点D 为BC 的中点, ∴∠1=∠2,∴∠2=∠3,∴OD ∥AF ,∴AF ⊥EF .(2)、连结BD .∵1tan 2CAD ∠=, ∴1tan 12∠=在Rt △ADB 中,AB=5,∴AD=, 在Rt △AFD 中,可得DF=2,AF=4,∵OD ∥AF ,∴△EDO ∽△EFA ,∴OD OEAF AE=,又∵OD=2.5,设BE=x , ∴2.5 2.545x x +=+,∴53x =,即BE=53. 321OCBADF E EFDABCO123考点:(1)、圆的基本性质;(2)、三角形相似.26.阅读、操作与探究:小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:如图1,Rt △ABC 中,BC ,AC ,AB 的长分别为3,4,5,先以点B 为圆心,线段BA 的长为半径画弧,交CB 的延长线于点D ,再过D ,A 两点分别作AC ,CD 的平行线,交于点E .得到矩形ACDE ,则矩形ACDE 的邻边比为 .请仿照小亮的方法解决下列问题:(1)如图2,已知Rt △FGH 中,GH :GF :FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;(2)若已知直角三角形的三边比为()()()2221:2+2:2+21n n n n n ++(n 为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为 .图2图1HGFEDAB C【答案】(1)、1:2;2:3;(2)、n:(n+1). 【解析】试题分析:(1)、根据题意中的画法得出矩形的邻边之比;根据题意画出图形得出比值;(2)、根据直角三角形的三边长进行化简,得出比值. 试题解析:(1)、1:2;NMFG H 图22:3; (2)、()1n n +:考点:(1)、规律题;(2)、作图;(3)、操作与探究.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线21212y ax x a =+-+与y 轴交于C 点,与x 轴交于A ,B 两点(点A 在点B 左侧),且点A 的横坐标为-1. (1)求a 的值;(2)设抛物线的顶点P 关于原点的对称点为'P ,求点'P 的坐标;(3)将抛物线在A ,B 两点之间的部分(包括A , B 两点),先向下平移3个单位,再向左平移m (0m >)个单位,平移后的图象记为图象G ,若图象G 与直线'PP 无交点,求m 的取值范围.xyO22-2-2【答案】 (1)、a=-2;(2)、P ′(-1,-4);(3)、m >154【解析】试题分析:(1)、将点A 的坐标代入解析式求出a 的值;(2)、根据a 的值得出函数解析式,然后求出顶点坐标,根据原点对称的性质求出点P ′的坐标;(3)、根据题意得出直线PP ′的解析式,图象向下平移3个单位后,得出A ′和B ′的坐标,若图象G 与直线PP ′无交点,则B ′要左移到M 及左边,将y=3代入一次函数得出点M 的坐标,然后求出m 的取值范围. 试题解析:(1)、∵A (-1,0)在抛物线21212y ax x a =+-+上,∴12102a x a --+=,∴解得2a =- (2)、∴抛物线表达式为223y x x =-++. ∴抛物线223y x x =-++的顶点P 的坐标为(1,4). ∵点P 关于原点的对称点为'P ,∴'P 的坐标为(-1,-4). (3)、直线'PP 的表达式为4y x =,图象向下平移3个单位后,'A 的坐标为(-1,-3),'B 的坐标为(3,-3),若图象G 与直线'PP 无交点,则'B 要左移到M 及左边,令3y =-代入'PP ,则34x =-,M 的坐标为3,34⎛⎫-- ⎪⎝⎭xyMA'B'OP C B A P'∴315344B'M=⎛⎫--=⎪⎝⎭,∴154m >.考点:二次函数的综合应用.28.如图,△ABC 中,AB=AC ,点P 是三角形右外一点,且∠APB=∠ABC .(1)如图1,若∠BAC=60°,点P 恰巧在∠ABC 的平分线上,PA=2,求PB 的长; (2)如图2,若∠BAC=60°,探究PA ,PB ,PC 的数量关系,并证明; (3)如图3,若∠BAC=120°,请直接写出PA ,PB ,PC 的数量关系.图3图1图2ABCPABCPABC P【答案】(1)、BP=4;(2)、PA+PC=PB ,证明过程见解析;(3)PA+PC=PB 【解析】试题分析:(1)、根据题意得出△ABC 为等边三角形,根据点P 在∠ABC 的平分线上,则∠ABP=30°,根据∠PAB=90°得出BP=2AP ;(2)、在在BP 上截取PD ,使PD=PA ,连结AD ,证明△ABD 和△ACP 全等,从而得出PC=BD ,得出所求的答案;(3)、根据同样的方法得出线段之间的关系.试题解析:(1)、∵AB=AC ,∠BAC=60°,∴△ABC 是等边三角形,∠APB=∠ABC ,∴∠APB=60°, 又∵点P 恰巧在∠ABC 的平分线上,∴∠ABP=30°∴∠PAB=90°.∴BP=2AP ,∵AP=2,∴BP=4. (2)、结论:PA+PC=PB .在BP 上截取PD ,使PD=PA ,连结AD .12DABPC∵∠APB =60°,∴△ADP 是等边三角形,∴∠DAP =60°,∴∠1=∠2,PA=PD ,又∵AB=AC ,∴△ABD ≌△ACP ,∴PC=BD ,∴PA+PC=PB . (3)PA+PC=PB .12FDABCP考点:三角形全等.29.已知:如图1,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),根据对称性△AMB 恒为等腰三角形,我们规定:当△AMB 为直角三角形时,就称△AMB 为该抛物线的“完美三角形”.(1)①如图2,求出抛物线2y x =的“完美三角形”斜边AB 的长;②抛物线21y x +=与2y x =的“完美三角形”的斜边长的数量关系是 ; (2)若抛物线24y ax +=的“完美三角形”的斜边长为4,求a 的值;(3)若抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,且225y mx x+n =+-的最大值为-1,求m ,n 的值.xyxyxyy =x 2备用图1O图2(M )ABO 图1MBAO【答案】(1)、AB=2;相等;(2)、a=±12;(3)、34m =-,∴83n =. 【解析】试题分析:(1)、过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,设出点B 的坐标为(n ,-n),根据二次函数得出n 的值,然后得出AB 的值;(2)、根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B 的坐标,得出a 的值;(3)、根据最大值得出mn -4m -1=0,根据抛物线的完美三角形的斜边长为n 得出点B 的坐标,然后代入抛物线求出m 和n 的值.试题解析:(1)、①过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,AB ∥x 轴, 易证MN=BN ,设B 点坐标为(n ,-n ),代入抛物线2y x =,得2n n =, ∴1n =,0n =(舍去),∴抛物线2y x =的“完美三角形”的斜边2AB = ②相等;(2)、∵抛物线2y ax =与抛物线24y ax =+的形状相同, ∴抛物线2y ax =与抛物线24y ax =+的“完美三角形”全等,∵抛物线24y ax +=的“完美三角形”斜边的长为4,∴抛物线2y ax =的“完美三角形”斜边的长为4, ∴B 点坐标为(2,2)或(2,-2),∴12a=±. (3)、∵225y mx x+n =+-的最大值为-1,∴()45414m n m--=-,∴410mn m --=,∵抛物线225y mx x+n =+-的“完美三角形”斜边长为n , ∴抛物线2y mx =的“完美三角形”斜边长为n ,∴B 点坐标为,22n n ⎛⎫- ⎪⎝⎭,∴代入抛物线2y mx =,得222n n m ⎛⎫⋅=- ⎪⎝⎭,∴2mn =-(不合题意舍去), ∴34m =-,∴83n =考点:(1)、二次函数的综合应用;(2)、直角三角形的性质.。
2016中考西城区初三一模数学试卷分析

2016中考西城区初三一模数学试卷分析一、试卷总体评价2016年西城区初三数学一模试卷与2015年中考试题从试卷结构和内容上高度相似。
命题体现基础性、层次性、和发展性的特点,全面考查基础知识、基本技能、基本思想和基本活动经验;注重考查思维的广度和宽度;突出对“核心概念”的考查;体现命题要求:打破模式化,试题维稳求新,摒弃“题型教学”与“题海战术”。
二、试卷整体难易度分析本次考试试卷结构和2015年北京中考试卷题型及分数分配吻合,3种题型,共29道试题,分为选择题和填空题、解答题(包括计算题、证明题、应用题和综合题)。
选择题10道,填空题6道,解答题13道。
较难试题依然分布在选择题第10题、填空题第6题、解答题的最后三道试题。
基础知识考查宽泛,不再局限于核心考点,要求学生对知识掌握全面;选择题、填空题多为容易题,解答题的前几道也为较为容易的试题,以水平测试为主,保证了整个试卷的平均分,稳定了考生的情绪,解答题的后几道中难题主要兼顾选拔的作用,对学生学业水平能够有显著区分。
三、试卷典型试题分析针对试卷中的典型试题来给大家分享一下,我们的认识:1、重视基础,体现数学与实际的联系,以传统文化为素材基础知识的考查,体现学生知识的宽厚与扎实,有不少基础题来源于生活实际,最接地气的一道题是选择题的第6题“抓彩买糖”将一道简单的概率试题放在实际生活中,体现了数学与生活的联系。
当然第6至9题都是与生活联系紧密的试题。
让学生用所学知识去解决日常生活中的现实问题,能很好地解释生活中的问题,把学生与教师的课堂互动以试题的形式呈现出来。
2、突出数学的学科特点,体现数学的严密性(1)重视解答过程的严谨性和规范性,体现在解答题的第17-20题,要求学生规范步骤,体现数学的逻辑性与严密性;(2)重视对学生筛选有效信息能力,体现在第15题、第23题、第25题,考查学生阅读能力,筛选有效信息的能力;(3)体现学习内容和方法考查为主的试题;体现在第26题,本题为研究性试题,以“筝形”的定义、性质、判定等一系列命题研究知识的形成过程,也还原了定义定理的形成过程,对学生学习能力的考查体现的非常充分。
2016西城一模及答案概要1讲解

北京市西城区2016年初三一模试卷数 学 2016.4一、选择题(本题共3-分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2016年春节假期期间,我市接待旅游总人数达到9 186 000人次,比去年同期增长1.9%.将9 186 000用科学计数法表示应为( )A .9186×103B .9.186×105C .9.186×106D .9.186×1072.如图,实数3-,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最大的数对应的点是( )A .点MB .点NC .点PD .点Q PQMNxy-333.如图,直线AB CD P ,直线EF 分别与AB ,CD 交于点E ,F ,FP EF ⊥,且与BEF ∠的平分线交于P ,若120∠=︒,则2∠的度数是( )A .35°B .30°C .25°D .20°AB CDEFP124.下列几何体中,主视图和俯视图都为矩形的是( )ABCD5.关于x 的一元二次方程21302x x k ++=有两个不相等的实数根,则k 的取值范围是( ) A .92k <B .94k =C .92k ≥D .94k >6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是( )A .110 B .310C .15D .127.李阿姨是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步骤(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是( )A .1.2,1.3B .1.4,1.3C .1.4,1.35D .1.3,1.38.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径.如图,直角角尺中,90AOB ∠=︒,将点O 放在圆周上,分别确定OA ,OB 与圆的交点C ,D ,读得数据8OC =,9OD =,则此圆的直径约为( )A .17B .14C .12D .109.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C 观测水平雪道一端A 处的俯角为30°,另一端B 处的俯角为45°.若直升机镜头C 处的高度CD 为300米,点A ,D ,B 在同一直线上,则雪道AB 的长度为( )A .300米B .1502米C .900米D .(3003300+)米10.如图,在等边三角形ABC 中,2AB =.动点P 从点A 出发,沿三角形边界按顺指针方向匀速运动一周,点Q 在线段AB 上,且满足2AQ AP +=.设点P 运动的时间为x ,AQ 的长为y ,则y 与x 的函数图像大致是( )二、填空题(本题共18分,每小题3分) 11.分解因式:34ab ab -=_______________.12.在平面直角坐标系xOy 中,将点()2,3-绕原点O 旋转180o ,所得到的对应点的坐标为__________. 13.已知函数满足下列两个条件:①当0x >时,y 随x 的增大而增大;②它的图象经过点()1,2,请写出一个符合上述条件的函数的表达式_______________. 14.已知O e ,如图所示.(1)求作O e 的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2)若O e 的半径为4,则它的内接正方形的边长为_______________.15.阅读下面材料:如图,C 是以点O 为圆心,AB 为直径的半圆上一点,且CO AB ⊥,在OC 两侧分别作矩形OGHI 和正方形ODEF ,且点I ,F 在OC 上,点H , E 在半圆上,求证:IG FD =.小云发现连接已知点得到两条线段,便可证明IG FD =.请回答:小云所作的两条线段分别是__________和___________,证明I G F D =的依据是___________________________.DI GEC OA BH F16.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是 ,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 解答应写出文字说明,演算步骤或证明过程. 17.计算:()212sin 452320163π-⎛⎫+---+ ⎪⎝⎭o18.已知230a a --=,求代数式()()()232a a b a b a b ---+-的值.19.如图,在ABC V 中,AB AC =,AD 是BC 边上的中线,AE BE ⊥于点E ,且12BE BC =.求证:AB 平分EAD ∠.20.解不等式组()+21243512x x x x -≥-⎧⎪⎨+>-⎪⎩21.如图,在ABCD Y 中,过点A 作AE DC ⊥交DC 的延长线于点E ,过点D 作DF EA P 交BA 的延长线于点F .(1)求证:四边形AEDF 是矩形;(2)连接BD ,若2AB AE ==,25tan FAD ∠=,求BD 的长. EFDACB22.在平面直角坐标系xOy 中,直线314y x =+与x 轴交于点A ,且与双曲线ky x =的一个交点为8,3B m ⎛⎫⎪⎝⎭. (1)求点A 的坐标和双曲线ky x=的表达式; (2)若BC y P 轴,且点C 到直线314y x =+的距离为2,求点C 的纵坐标.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:1.如果选择在乐园内,会比住在乐园外少用一天的时间就能体验完他们感兴趣的项目; 2.一家三口住在乐园内的日均支出是住在乐园外的日均支出的1.5倍; 3.无论是住在乐园内还是乐园外,一家三口这次旅行的总费用都是9810元. 请问:如果小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩多少天?24.如图,在ABC V 中,AB 是O e 的直径,AC 与O e 交于点D .点E 在»BD上,连接DE ,AE ,连接CE 并延长交AB 于点F ,AED ACF ∠=∠. (1)求证:CF AB ⊥;(2)若4CD =,45CB =,4cos 5ACF ∠=,求EF 的长. FEDO ABC25.阅读下列材料:据报导,2014年北京市环境空气中PM 2.5年平均浓度为85.9微克/立方米,PM 2.5一级优天数达到93天,较2013年大辅度增加了22天.PM 2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京市环境空气中PM 2.5年平均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题.市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM 2.5一级优的天数增加了13天.2015年本市PM 2.5重污染天数占全年总天数的11.5%,其中在11—12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天. 根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为____________天;PM 2.5年平均浓度的国家标准限值是______________微克/立方米;(结果保留整数) (2)选择统计表或统计图,将2013—2015年PM 2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11—12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天”,他由此推断“2015年全年的PM 2.5重污染天数比2014年要多”,你同意他的结论吗?并说明你的理由.26.有这样一个问题:如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究. 下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等. 关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等. 请将下面证明此猜想的过程补充完整;已知:如图,在筝形ABCD 中,AB AD =,CB CD = 求证:___________________________. 证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):____________________________________________.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.27.在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,.(1)求抛物线1C 的表达式;(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE V 的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.28.在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q .(1)如图1,当点P 与点B 重合时,QPM V 的形状是_____________________; (2)当点P 在线段CB 的延长线上时,如图2. ①依题意补全图2;②判断QPM V 的形状,并加以证明;(3)点P '与点P 关于直线AB 对称,且点P '在线段BC 上,连接AP ',若点Q 恰好在直线AP '上,正方形ABCD 的边长为2,请写出求此时BP 长的思路.(可以不写出计算结果)QMNBDA CB DACPB DA C图1 图2 图329.在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是 ; ②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为 ;(2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E 在直线343l y x =-+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围;(3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT ∆的“阴影点”,直接写出NQT ∆的周长的最小值.。
北京市西城区016高三一模试卷

北京市西城区2016高三一模试卷数学(理科) 2016.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.设集合{}240A x x x =+<,集合{}21,B n n k k ==-∈Z ,则A B =(A){}1,1-(B){}1,3(C){}3,1--(D){}3,1,1,3--2.在平面直角坐标系xOy 中,曲线C的参数方程为2x y θθ⎧=+⎪⎨=⎪⎩ (θ为参数),则C 曲线是(A)关于x 轴对称的图形 (B)关于y 轴对称的图形 (C) 关于原点对称的图形(D)关于y x =对称的图形3.如果()f x 是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是 (A) ()y x f x =+(B)()y xf x = (C)()2y x f x =+(D)()2y x f x =4.在平面直角坐标系xOy 中,向量()1,2OA =-,()2,OB m =,若O ,A ,B 三点构成的三角形,则 (A) 4m =- (B)4m ≠-C)1m ≠(D)m ∈R5.执行如图所示的程序库按图,若输入的A 、S 分别为0,1则输出的S = (A)4(B)16(C)27(D)366.设10,2x ⎛⎫∈ ⎪⎝⎭,则“(),0a ∈-∞ ”是“12log x x a >+”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件7.设函数()()sin f x A x ωϕ=+(A ,ω,ϕ是常数,0A >,0ω>),且函数()f x 的部分图像如图所示,则有(A)357436f f f πππ⎛⎫⎛⎫⎛⎫-<< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(B)375463f f f πππ⎛⎫⎛⎫⎛⎫-<< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ (C) 573364f f f πππ⎛⎫⎛⎫⎛⎫<<-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(D)537346f f f πππ⎛⎫⎛⎫⎛⎫<-<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8.如图,在棱长为()0a a >的正四面体ABCD 中,点B ,C ,D 分别在棱AB ,AC ,AD 上,且平面111B C D ∥平面BCD ,1A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,对于函数()V F x =,则 (A)当23x =时,函数()f x 取得最大值 (B)函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数 (C)函数()f x 的图像关于直线12x =对称(D)存在0x ,使得()013A BCD f x V ->(其中A BCD V -为四面体ABCD的体积)第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.在复平面内,复数1z 与2z 对应的点关于虚轴对称,且11i z =-+,则12z z = . 10.已知等差数列{}n a 的公差0d >,33a =-,245a a =,则n a = ;记{}n a 的前项和为n S ,则n S 的最小值为 .ADCBD 1C 1B 1A 111.若圆()2221x y -+=与双曲线()222:10x C y a a-=>的渐近线相切,则a = ;双曲线C 的渐近线方程是.12.一个棱长为4的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该截面的面积是 . 13.在冬奥会志愿者活动中,甲、乙等5人报名参加了A ,B ,C 三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者工作,且甲不能参加A ,B 项目,乙不能参加B ,C 项目,共有 种不同的志愿者分配方案.(用数字作答)14.一辆赛车在一个周长为3km 的封闭跑道上行驶,跑道由几段直道和弯道组成,图1反映了赛车在“计时赛”整个第二圈的行驶速度与行驶路程之间的关系. 根据图1,有一些四个说法:①在这第二圈的2.6km 到2.8km 之间,赛车速度逐渐增加; ②在整个跑道中,最长的直线路程不超过0.6km ;③大约在这第二圈的0.4km 到0.6km 之间,赛车开始了那段最长直线路程的行驶; ④在图2的四条曲线(注:s 为初始记录数据位置)中,曲线B 最能符合赛车的运动轨迹. 其中,所有正确说法的序号是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,设3A π=,sin 3sin B C =.(Ⅰ)若a =b 的值;(Ⅱ)求tan C 的值. 16.(本小题满分13分)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被成为“体育良好”.已知该校高一年级有1000名学生,试估计,高一全年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[)60,70和[)80,90的样本学生中随机抽取2人,至少有1人体育成绩在[)60,70的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为a ,b ,c ,且分别在[)70,80,[)80,90,[]90,100三组中,其中a ,b ,c ∈N ,当数据a ,b ,c 的方差2s 最小时,写出a ,b ,c 的值.(结论不要求证明)(注:()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中x 为数据12,,,n x x x ⋅⋅⋅的平均数)17.(本小题满分14分)如图,四边形为梯形ABCD ,DAD BC ∥,90BAD ∠=,四边形11CC D D 为矩形,已知1AB BC ⊥,4AD =,2AB =,1BC =.(Ⅰ)求证:1BC ∥平面1ADD ;(Ⅱ)若12DD =,求平面11AC D 与平面1ADD 所成的锐二面角的余弦值;(Ⅲ)设P 为线段1C D 上的一个动点(端点除外),判断直线1BC 与直线CP 能否垂直?并说明理由. 18.(本小题满分13分)已知函数()1e e x x f x x a -=- ,且()'1e f =. (Ⅰ)求a 的值及()f x 的单调区间;(Ⅱ)若关于x 的方程()()222f x kx k =->存在两不相等的正实数根1x ,2x ,证明:124lnex x ->.19.(本小题满分14分)已知椭圆()22:310C mx my m +=>的长轴长为O 为坐标原点(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ)设点()3,0A ,动点B 在y 轴上,动点P 在椭圆C 上,且P 在y 轴的右侧,若BA BP =,求四边形OPAB 面积的最小值.20.(本小题满分13分)设数列{}n a 和{}n b 的项均为m ,则将数列和的距离定义为1mi ii a b=-∑.(Ⅰ)该出数列1,3,5,6和数列2,3,10,7的距离(Ⅱ)设A 为满足递推关系111nn na a a ++=-的所有数列{}n a 的集合,{}n b 和{}n c 为A 中的两个元素,且项数均为m ,若12b =,13c =,{}n b 和{}n c 的距离小于2016,求m 得最大值;证明:中的元素个数小于或等于16.北达教育总部位于北京大学校内,分校遍及北京各城区40多所,多年来被家长认可的教育机构,法制晚报曾报道:是什么让北达教育成为京城良好口碑课外辅导品牌?为此北达教育被法制晚报评为:公众最信赖知名教育品牌!曾多次被新浪网,中国网评为课外绿色发展机构!北达教育为中央电视台推荐品牌。
2016年北京市西城区中考数学一模试题含答案

2016年北京市西城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.2016年春节假期期间,我市接待旅游总人数达到9186000人次,比去边同期增长1.9%,将9186000用科学记数法表示应为()A.9186×103B.9.186×105C.9.186×106D.9.186×1072.如图,实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最大的数对应的点是()A.点M B.点NC.点P D.点Q3.如图,直线AB∥CD,直线EF分别于AB,CD交于点E,F,FP⊥EF于点F,且与∠BEF的平分线交于点P,若∠1=20°,则∠2的度数是()A.35°B.30°C.25°D.20°4.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.5.关于x的一元二次方程+3x+k=0有两个不相等的实数根,则k的取值范围是()A.k B.k=C.k D.k6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将枝条混合在一起.游戏时叫儿童随意抽取一张,然后放入水罐中浸湿,即出现白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块塘的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是()A.B.C.D.7.李阿姨是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成如图所示的统计图,在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.4,1.3C.1.4,1.35D.1.3,1.38.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17B.14C.12D.109.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A.300米B.150米C.900米D.米10.如图,在等边三角形ABC中,AB=2,动点P从点A出发,沿三角形边界按顺时针方向匀速运动一周,点Q在线段AB上,且满足AQ+AP=2.设点P运动的时间为x,AQ的长为y,则y与x的函数图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.分解因式:ab3﹣4ab=.12.在平面直角坐标系xOy中,将点(﹣2,3)绕原点O旋转180°,所得到的对应点的坐标为.13.已知函数满足下列两个条件:①x>0时,y随x的增大而增大;②它的图象经过点(1,2).请写出一个符合上述条件的函数的表达式.14.已知⊙O,如图所示.(1)求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法);(2)若⊙O的半径为4,则它的内接正方形的边长为.15.阅读下面材料:如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI 和正方形ODEF,且点I、F在OC上,点H、E在半圆上,求证:IG=FD.小云发现连接已知点得到两条线段,使可证明IG=FD.请回答:小云所作的两条线段分别是和,证明IG=FD的依据是.16.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是,此时按游戏规则填写空格,所有可能出现的结果共有种.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程17.计算:2sin45°+||﹣(π﹣2016)0+()﹣2.18.已知a2﹣a﹣3=0,求代数式a(3a﹣2)﹣b2﹣(a+b)(a﹣b)的值.19.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.20.解不等式组.21.如图,在▱ABCD中,过点A作AE⊥DC交DC的延长线于点E过点D作DF⊥BA,交BA 的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.22.在平面直角坐标系xOy中,直线y=x+1与x轴交于点A,且与双曲线y=的一个交点为B(,m).(1)求点A的坐标和双曲线y=的表达式;(2)若BC∥y轴,且点C到直线y=x+1的距离为2,求点C的纵坐标.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:1.如果选择住在乐园内,会比住在乐园外少用1天的时间就能体验完他们感兴趣的项目;2.一家三口住在乐园内的日均支出是在乐园外的日均支出的1.5倍;3.无论住在乐园内还是乐园外,一家三口这次旅行的总费用都是9810元.请问:如果小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩多少天?24.如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.(1)求证:CF⊥AB;(2)若CD=4,CB=4,cos∠ACF=,求EF的长.25.阅读下列材料:据报道,2014年北京市环境空气中PM2.5年平均浓度为85.9微克/立方米.PM2.5一级优天数达到93天,较2013年大幅度增加了22天,PM2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京缓解空气中PM2.5年均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题,市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM2.5一级优的天数增加了13天.2015年本市PM2.5重污染天数占全年总天数的11.5%,其中在11﹣12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天.根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为天;PM2.5年平均浓度的国家标准限值是微克/立方米;(结果保留整数)(2)选择统计表或统计图,将2013﹣2015年PM2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11﹣12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天”,他由此推断“2015年全年的PM2.5重污染天数比2014年要多”你同意他的结论吗?并说明理由.26.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形,请探究筝形的性质和判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质时:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等.请将下面证明此猜想的过程补充完整:已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:.由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线,结合图形,写出筝形的其他性质(一条即可):(3)筝形的定义是判定一个四边形为筝形的方法之一,试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是”是否成立?如果成立,请给出证明;如果不成立,请举出一个反例,画出图形,并加以证明.27.在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c经过点A(2,﹣3),且与x轴的一个交点为B(3,0).(1)求抛物线C1的表达式;(2)D是抛物线C1与x轴的另一个交点,点E的坐标为(m,0),其中m>0,△ADE的面积为.①求m的值;②将抛物线C1向上平移n个单位,得到抛物线C2.若当0≤x≤m时,抛物线C2与x轴只有一个公共点,结合函数的图象,求n的取值范围.28.在正方形ABCD中,点P是射线CB上一个动点,连接PA,PD,点M、N分别为BC、AP 的中点,连接MN交PD于点Q.(1)如图1,当点P与点B重合时,△QPM的形状是;(2)当点P在线段CB的延长线上时,如图2.①依题意补全图2;②判断△QPM的形状并加以证明;(3)点P′于点P关于直线AB对称,且点P′在线段BC上,连接AP′,若点Q恰好在直线AP′上,正方形ABCD的边长为2,请写出求此时BP长的思路(可以不写出计算结果).29.在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,),⊙C与y轴相切于点D,若⊙E的半径为,圆心E在直线l:y=﹣x+4上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的结距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.2016年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.2016年春节假期期间,我市接待旅游总人数达到9186000人次,比去边同期增长1.9%,将9186000用科学记数法表示应为()A.9186×103B.9.186×105C.9.186×106D.9.186×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9186000=9.186×106,故选:C.2.如图,实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最大的数对应的点是()A.点M B.点NC.点P D.点Q【考点】实数与数轴.【分析】先相反数确定原点的位置,再根据点的位置确定绝对值最大的数即可解答.【解答】解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q,故选:D.3.如图,直线AB∥CD,直线EF分别于AB,CD交于点E,F,FP⊥EF于点F,且与∠BEF的平分线交于点P,若∠1=20°,则∠2的度数是()A.35°B.30°C.25°D.20°【考点】平行线的性质.【分析】根据平行线的性质求得∠BEF=180°﹣90°﹣20°,再进一步根据角平分线的定义求解.【解答】解:∵AB∥CD,FP⊥EF于点F,∠1=20°,∴∠BEF=180°﹣90°﹣20°=70°,∵∠BEF的平分线,∴∠2=35°,故选A4.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别确定四个几何体从正面和上面看所得到的视图即可.【解答】解:A、此几何体的主视图是等腰三角形,俯视图是圆,故此选项错误;B、此几何体的主视图是矩形,俯视图是矩形,故此选项正确;C、此几何体的主视图是矩形,俯视图是圆,故此选项错误;D、此几何体的主视图是梯形,俯视图是矩形,故此选项错误;故选:B.5.关于x的一元二次方程+3x+k=0有两个不相等的实数根,则k的取值范围是()A.k B.k=C.k D.k【考点】根的判别式.【分析】根据判别式的意义得到△=32﹣4×k>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4×k>0,解得k<.故选A.6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将枝条混合在一起.游戏时叫儿童随意抽取一张,然后放入水罐中浸湿,即出现白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块塘的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共有10张质地均匀的纸条,能得到三块塘的纸条有3张,∴从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是;故选B.7.李阿姨是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成如图所示的统计图,在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3B.1.4,1.3C.1.4,1.35D.1.3,1.3【考点】众数;条形统计图;中位数.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,7环,故众数是1.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步).故选B.8.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17B.14C.12D.10【考点】圆周角定理.【分析】连接CD,根据圆周角定理得到CD为圆的直径,根据勾股定理计算即可.【解答】解:连接CD,∵∠AOB=90°,∴CD为圆的直径,CD=≈12,故选:C.9.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A.300米B.150米C.900米D.米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】由题意可得在Rt△ACD中,∠A=30°,CD=300米,在Rt△BCD中,∠B=45°,然后利用三角函数,求得AD与BD的长,继而求得答案.【解答】解:∵在Rt△ACD中,∠A=30°,CD=300米,∴AD===300(米),∵在Rt△BCD中,∠B=45°,CD=300米,∴BD=CD=300米,∴AB=AD+BD=米.故选D.10.如图,在等边三角形ABC中,AB=2,动点P从点A出发,沿三角形边界按顺时针方向匀速运动一周,点Q在线段AB上,且满足AQ+AP=2.设点P运动的时间为x,AQ的长为y,则y与x的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意可以得到各段y随x的变化如何变化,从而可以得到哪个选项比较符合y与x的函数图象.【解答】解:由题意可得,当点P从点A运动到C时,y随着x的增大而减小;当点P从点C到点B的过程中,y随x的增大先增大,再减小,y的最大值是2﹣;当点P从点C运动到点A的过程中,y随x的增大而增大;故选D.二、填空题(本题共18分,每小题3分)11.分解因式:ab3﹣4ab=ab(b+2)(b﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用平方差公式继续分解.【解答】解:ab3﹣4ab,=ab(b2﹣4),=ab(b+2)(b﹣2).故答案为:ab(b+2)(b﹣2).12.在平面直角坐标系xOy中,将点(﹣2,3)绕原点O旋转180°,所得到的对应点的坐标为(2,﹣3).【考点】坐标与图形变化﹣旋转.【分析】利用关于原点中心对称的点的坐标特征求解.【解答】解:点(﹣2,3)绕原点O旋转180°,所得到的对应点的坐标为(2,﹣3).故答案为(2,﹣3).13.已知函数满足下列两个条件:①x>0时,y随x的增大而增大;②它的图象经过点(1,2).请写出一个符合上述条件的函数的表达式y=2x(答案不唯一).【考点】一次函数的性质;正比例函数的性质.【分析】根据y随着x的增大而增大推断出k与0的关系,再利用过点(1,2)来确定函数的解析式.【解答】解:∵y随着x的增大而,增大∴k>0.又∵直线过点(1,2),∴解析式为y=2x或y=x+1等.故答案为:y=2x(答案不唯一).14.已知⊙O,如图所示.(1)求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法);(2)若⊙O的半径为4,则它的内接正方形的边长为4.【考点】正多边形和圆;作图—复杂作图.【分析】(1)作出直径AC,再过点O作AC的垂线,进而得出答案;(2)利用正方形的性质结合勾股定理得出正方形ABCD的边长.【解答】解:(1)如图所示:正方形ABCD即为所求;(2)∵⊙O的半径为4,四边形ABCD是正方形,∴AC⊥BD,OA=OB=4,∴AB===4.故答案为:4.15.阅读下面材料:如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI 和正方形ODEF,且点I、F在OC上,点H、E在半圆上,求证:IG=FD.小云发现连接已知点得到两条线段,使可证明IG=FD.请回答:小云所作的两条线段分别是OH和DF,证明IG=FD的依据是等量代换.【考点】矩形的判定与性质;圆的认识.【分析】连接OH、OE,由矩形OGHI和正方形ODEF的性质得出IG=OH,OE=FD,由OH=OE,即可得出结论.【解答】解:连接OH、OE,如图所示:∵在矩形OGHI和正方形ODEF中,IG=OH,OE=FD,∵OH=OE,∴IG=FD;故答案为:OH、OE,等量代换.16.有这样一个数字游戏:将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是2,此时按游戏规则填写空格,所有可能出现的结果共有6种.【考点】规律型:数字的变化类.【分析】每一行从左到右、每一列从上到下分别依次增大,1、2、9只有一种填法,5只能填右上角或左下角,有2种方法,5之后与之相邻的空格可填6、7、8任意一个,有3种选择;余下的两个数字按从小到大只有一种方法,根据分步计数原理可得结果.【解答】解:根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程17.计算:2sin45°+||﹣(π﹣2016)0+()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=2×+3﹣﹣1+9=11.18.已知a2﹣a﹣3=0,求代数式a(3a﹣2)﹣b2﹣(a+b)(a﹣b)的值.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,平方差公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=3a2﹣2a﹣b2﹣a2+b2=2a2﹣2a=2(a2﹣a),由a2﹣a﹣3=0,得到a2﹣a=3,则原式=6.19.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【考点】等腰三角形的性质;角平分线的性质.【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论..【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.20.解不等式组.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+2(1﹣2x)≥﹣4,得:x≤2,解不等式>x﹣1,得:x>﹣,故不等式组的解集为:﹣<x≤2.21.如图,在▱ABCD中,过点A作AE⊥DC交DC的延长线于点E过点D作DF⊥BA,交BA 的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.【考点】平行四边形的性质;勾股定理;矩形的判定与性质.【分析】(1)由四边形ABCD是平行四边形,AE⊥DC,DF⊥BA,易证得四边形AEDF是平行四边形,继而证得四边形AEDF是矩形;(2)由四边形AEDF是矩形,可得在Rt△AFD中,tan∠FAD==,继而求得BF的长,然后由勾股定理求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AF∥ED,∵AE⊥DC,DF⊥BA,∴DF∥EA,∴四边形AEDF是平行四边形,∵AE⊥DE,∴∠E=90°,∴四边形AEDF是矩形;(2)如图,连接BD,∵四边形AEDF是矩形,∴FD=AE=2,∠F=90°,∵在Rt△AFD中,tan∠FAD==,∵AF=5,∴AB=2,∴BF=AB+AF=7,在Rt△BFD中,BD==.22.在平面直角坐标系xOy中,直线y=x+1与x轴交于点A,且与双曲线y=的一个交点为B(,m).(1)求点A的坐标和双曲线y=的表达式;(2)若BC∥y轴,且点C到直线y=x+1的距离为2,求点C的纵坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)令直线y=x+1中y=0,解关于x的一元一次方程即可得出A点的坐标,由点B在直线y=x+1上,可求出m的值,再将点B坐标代入双曲线y=中,解关于k的一元一次方程即可求出双曲线y=的表达式;(2)令直线y=x+1与y轴的交点为D,过点C作CE⊥直线y=x+1于点E,由BC∥y轴结合B点坐标即可找出直线BC的函数表达式,设C点的坐标为(,n),由平行线的性质可得出∠CBE=∠ADO,结合∠CEB=∠AOD=90°即可得出△BEC∽△DOA,根据相似三角形的性质可得出,由此即可得出关于n的函数绝对值符号的一元一次方程,解方程即可得出n值.【解答】解:令y=0,则有0=x+1,解得x=﹣,即点A的坐标为(﹣,0).令x=,则m=+1=3,即点B的坐标为(,3).将点B(,3)代入到双曲线y=中得3=,解得k=8,∴双曲线的表达式为y=.(2)依照题意画出图形,令直线y=x+1与y轴的交点为D,过点C作CE⊥直线y=x+1于点E,如图所示.∵BC∥y轴且点B的坐标为(,3),∴直线BC的表达式为x=,设点C的坐标为(,n).令y=x+1中x=0,则y=1,∴点D(0,1),∴AD==,OA=.∵BC∥y轴,∴∠CBE=∠ADO,∵∠CEB=∠AOD=90°,∴△BEC∽△DOA,∴.∵CE=2,BC=|n﹣3|,∴,解得:n=或n=.故点C的纵坐标为或.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:1.如果选择住在乐园内,会比住在乐园外少用1天的时间就能体验完他们感兴趣的项目;2.一家三口住在乐园内的日均支出是在乐园外的日均支出的1.5倍;3.无论住在乐园内还是乐园外,一家三口这次旅行的总费用都是9810元.请问:如果小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩多少天?【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,然后根据解分式方程的方法即可解答本题.【解答】解:设小芳家选择住在乐园内,预计在迪士尼乐园游玩x天,,解得,x=2,经检验,x=2是原分式方程的根,答:小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩2天.24.如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.(1)求证:CF⊥AB;(2)若CD=4,CB=4,cos∠ACF=,求EF的长.【考点】垂径定理;勾股定理;解直角三角形.【分析】(1)连接BD,由AB是⊙O的直径,得到∠ADB=90°,根据余角的性质得到∠CFA=180°﹣(DAB+∠3)=90°,于是得到结论;(2)连接OE,由∠ADB=90°,得到∠CDB=180°﹣∠ADB=90°,根据勾股定理得到DB==8解直角三角形得到CD=4,根据勾股定理即可得到结论.【解答】解:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠1=90°,∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴∠DAB+∠3=90°,∴∠CFA=180°﹣(DAB+∠3)=90°,∴CF⊥AB;(2)连接OE,∵∠ADB=90°,∴∠CDB=180°﹣∠ADB=90°,∵在Rt△CDB中,CD=4,CB=4,∴DB==8,∵∠1=∠3,∴cos∠1=cos∠3==,∴AB=10,∴OA=OE=5,AD==6,∵CD=4,∴AC=AD+CD=10,∵CF=AC•cos∠3=8,∴AF==6,∴OF=AF﹣OA=1,∴EF==2.25.阅读下列材料:据报道,2014年北京市环境空气中PM2.5年平均浓度为85.9微克/立方米.PM2.5一级优天数达到93天,较2013年大幅度增加了22天,PM2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京缓解空气中PM2.5年均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题,市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM2.5一级优的天数增加了13天.2015年本市PM2.5重污染天数占全年总天数的11.5%,其中在11﹣12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天.根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为172天;PM2.5年平均浓度的国家标准限值是35微克/立方米;(结果保留整数)(2)选择统计表或统计图,将2013﹣2015年PM2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11﹣12月当中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天”,他由此推断“2015年全年的PM2.5重污染天数比2014年要多”你同意他的结论吗?并说明理由.【考点】统计图的选择;加权平均数.【分析】(1)根据:“2015年本市空气质量达标天数为186天,较2014年增加14天“可知2014年本市空气质量达标天数,根据:“2015年北京缓解空气中PM2.5年均浓度为80.6微克/立方米,约为国家标准限值的2.3倍“可知PM2.5年平均浓度的国家标准限值;(2)列统计表即可;(3)通过计算知2015年重污染天数约为42天,而2014年重污染天数为45天,故不同意.【解答】解:(1)2014年本市空气质量达标天数为186﹣14=172(天);PM2.5年平均浓度的国家标准限值是80.6÷2.3≈35(微克/立方米);(2)填表如下:年份2013年2014年2015年一级优天数7193106(3)不同意,因为通过计算2015年重污染天数约为42天,而2014年重污染天数为45天,所以2015年全年的PM2.5重污染天数比2014年少.故答案为:(1)172,35.26.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形,请探究筝形的性质和判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质时:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等.请将下面证明此猜想的过程补充完整:已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:∠B=∠C.由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线,结合图形,写出筝形的其他性质(一条即可):筝形的两条对角线互相垂直(3)筝形的定义是判定一个四边形为筝形的方法之一,试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是”是否成立?如果成立,请给出证明;如果不成立,请举出一个反例,画出图形,并加以证明.。
2016年北京市西城区高三一模数学(理)试题及答案

北京市西城区2016年高三一模试卷数 学(理科) 2016.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合2{|0}4A x x x =<+,集合{|21,}B n n k k ==-∈Z ,则A B = ( ) (A ){1,1}- (B ){1,3} (C ){3,1}-- (D ){3,1,1,3}-- 2. 在平面直角坐标系xOy 中,曲线C 的参数方程为22cos ,()2sin x y θθθ⎧=+⎪⎨=⎪⎩为参数,则曲线C 是( )(A )关于x 轴对称的图形 (B )关于y 轴对称的图形 (C )关于原点对称的图形 (D )关于直线y x =对称的图形3. 如果()f x 是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是( )(A ) ()y x f x =+ (B )()y xf x = (C )2()y x f x =+ (D )2()y x f x =4. 在平面直角坐标系xOy 中,向量OA =(-1, 2),OB=(2, m ) ,若O , A , B 三点能构成三角形,则( ) (A )4m =- (B )4m ≠- (C )1m ≠ (D )m ∈R 5. 执行如图所示的程序框图,若输入的,A S 分别为0, 1,则输出的S =( ) (A )4 (B )16 (C )27 (D )36 6. 设1(0,)2x ∈,则“(,0)a ∈-∞”是“12log x x a >+”的( )(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 7. 设函数()()sin f x A x ωϕ=+(A ,ω,ϕ是常数,0A >,0ω>), 且函数()f x 的部分图象如图所示,则有( )(A )3π5π7π()()()436f f f -<< (B )3π7π5π()()()463f f f -<< (C )5π7π3π()()()364f f f <<- (D )5π3π7π()()()346f f f <-<8. 如图,在棱长为(0)a a >的正四面体ABCD 中,点111,,B C D 分别在棱AB ,AC ,AD上,且平面111//B C D 平面BCD ,1A 为BCD D 内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,对于函数()V f x =,则( ) (A )当23x =时,函数()f x 取到最大值 (B )函数()f x 在1(,1)2上是减函数(C )函数()f x 的图象关于直线12x =对称(D )存在0x ,使得01()3A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在复平面内,复数1z 与2z 对应的点关于虚轴对称,且11i z =-+,则12z z =____. 10.已知等差数列{}n a 的公差0d >, 33a =-,245a a ⋅=,则n a =____;记{}n a 的前n 项和为n S ,则n S 的最小值为____.11.若圆22(2)1x y -+=与双曲线C :2221(0)x y a a-=>的渐近线相切,则a =_____;双曲线C 的渐近线方程是____.12. 一个棱长为4的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该截面的面积是____. 13. 在冬奥会志愿者活动中,甲、乙等5人报名参加了A , B , C 三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,且甲不能参加A , B 项目,乙不能参加B , C 项目,那么共有____种不同的选拔志愿者的方案.(用数字作答)14. 一辆赛车在一个周长为3 km 的封闭跑道上行驶,跑道由几段直道和弯道组成,图1反映了赛车在“计时赛”整个第二圈的行驶速度与行驶路程之间的关系.根据图1,有以下四个说法:(图1)5π6O x yπ12BB 1CDC 1D 1A 1A输出S 2k k =+A A k =+S S A =⋅ 是 否4k ≥ 输入A ,S 1k = 开始 结束侧(左)视图正(主)视图俯视图22○1 在这第二圈的2.6 km 到2.8 km 之间,赛车速度逐渐增加; ○2 在整个跑道中,最长的直线路程不超过0.6 km ; ○3 大约在这第二圈的0.4 km 到0.6 km 之间,赛车开始了那段最长直线路程的行驶; ○4 在图2的四条曲线(注:S 为初始记录数据位置)中,曲线B 最能符合赛车的运动轨迹. 其中,所有正确说法的序号是_____. 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 设π3A =,sin 3sinBC =. (图2)(Ⅰ)若7a =,求b 的值;(Ⅱ)求tan C 的值.16.(本小题满分13分)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一全年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为a b c ,,,且分别在[70,80),[80,90),[90,100]三组中,其中a b c ∈N ,,.当数据a b c ,,的方差2s 最小时,写出a b c ,,的值.(结论不要求证明)(注:2222121[()()()]n s x x x x x x n =-+-++- ,其中x 为数据12,,,n x x x 的平均数) 17.(本小题满分14分)如图,四边形ABCD 是梯形,//AD BC ,90BAD ∠= ,四边形 11CC D D 为矩形,已知1AB BC ⊥,4AD =,2AB =,1BC =.(Ⅰ)求证:1//BC 平面1ADD ; (Ⅱ)若12DD =,求平面11AC D 与平面1ADD 所成的锐二面角的余弦值;(Ⅲ)设P 为 线段1C D 上的一个动点(端点除外),判断直线1BC 与直线CP 能否垂直?并说明理由. 18.(本小题满分13分)已知函数1()e e x x f x x a -=-,且(1)e f '=. (Ⅰ)求a 的值及()f x 的单调区间;(Ⅱ)若关于x 的方程2()2(2)f x kx k =->存在两不相等个正实数根12,x x ,证明:124||ln ex x ->.19.(本小题满分14分)已知椭圆C :2231(0)mx my m +=>的长轴长为26,O 为坐标原点.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ)设点(3,0)A ,动点B 在y 轴上,动点P 在椭圆C 上,且P 在y 轴的右侧,若||||BA BP =,求四边形OPAB 面积的最小值.20.(本小题满分13分)设数列{}n a 和{}n b 的项数均为m ,则将数列{}n a 和{}n b 的距离定义为1||mi i i a b =-∑.(Ⅰ)给出数列1,3,5,6和数列2,3,10,7的距离; (Ⅱ)设A 为满足递推关系111nn na a a ++=-的所有数列{}n a 的集合,{}n b 和{}n c 为A 中的两个元素,且项数均为m ,若12b =,13c =, {}n b 和{}n c 的距离小于2016,求m 的最大值;(Ⅲ)记S 是所有7项数列{|107,n n a n a =≤≤或1}的集合,T S ⊆,且T 中任何两个元素的距离大于或等于3,证明:T 中的元素个数小于或等于16.O 体育成绩45 55 65 75 85 95 ◆ 14 2 ◆◆ ◆ ◆ ◆ 4 1210 6 8 各分数段人数 C s DssBA B CD D 1C 1 As北京市西城区2016年高三一模试卷参考答案及评分标准高三数学(理科) 2016.4一、选择题:本大题共8小题,每小题5分,共40分. 1.C 2.A 3.B 4.B 5.D 6.A 7.D 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.29n - 16- 11.3 33y x =±12.6 13.21 14.○1○4 注:第10,11题第一问2分,第二问3分;第14题多选、少选或错选均不得分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分.15.(本小题满分13分) (Ⅰ)解:因为 sin 3sin B C =,由正弦定理 sin sin sin a b cA B C==,得 3b c =.………………3分 由余弦定理 2222cos a b c bc A =+-及π3A =,7a =,…………5分 得 227b c bc =+-,所以 222()733b b b +-=,解得 3b =.………………7分(Ⅱ)解:由π3A =,得2π3B C =-.所以2πsin()3sin 3C C -=……………8分 即31cos sin 3sin 22C C C +=,………11分 所以35cos sin 22C C =,所以3tan 5C =.………………13分 16.(本小题满分13分)(Ⅰ)解:由折线图,知样本中体育成绩大于或等于70分的学生有30人,………………2分所以该校高一年级学生中,“体育良好”的学生人数大约有30100075040⨯=人. ……4分 (Ⅱ)解:设 “至少有1人体育成绩在[60,70)”为事件A ,……………5分 由题意,得2325C 37()11C 1010P A =-=-=,因此至少有1人体育成绩在[60,70)的概率是710.………………9分(Ⅲ)解:a , b , c 的值分别是为79, 84, 90;或79, 85, 90.……………13分 17.(本小题满分14分)(Ⅰ)证明:由11CC D D 为矩形,得11//CC DD ,又因为1DD ⊂平面1ADD ,1CC ⊄平面1ADD ,所以1//CC 平面1ADD ,…… 2分 同理//BC 平面1ADD ,又因为1BC CC C = ,所以平面1//BCC 平面1ADD , …… 3分 又因为1BC ⊂平面1BCC ,所以1//BC 平面1ADD .……………… 4分(Ⅱ)解:由平面ABCD 中,//AD BC ,90BAD ∠= ,得AB BC ⊥,又因为1AB BC ⊥,1BC BC B = ,所以AB ⊥平面1BCC ,所以1AB CC ⊥,又因为四边形11CC D D 为矩形,且底面ABCD 中AB 与CD 相交一点,所以1CC ⊥平面ABCD ,因为11//CC DD ,所以1DD ⊥平面ABCD .过D 在底面ABCD 中作DM AD ⊥,所以1,,DA DM DD 两两垂直,以1,,DA DM DD 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分则(0,0,0)D ,(4,0,0)A ,(4,2,0)B ,(3,2,0)C ,1(3,2,2)C ,1(0,0,2)D , 所以1(1,2,2)AC =- ,1(4,0,2)AD =-.设平面11AC D 的一个法向量为(,,)x y z =m ,由10AC ⋅= m ,10AD ⋅= m ,得220,420,x y z x z -++=⎧⎨-+=⎩令2x =,得(2,3,4)=-m . ………………8分 易得平面1ADD 的法向量(0,1,0)=n .所以329cos ,||||29⋅<>==-m n m n m n . 即平面11AC D 与平面1ADD 所成的锐二面角的余弦值为32929. ………………10分 (Ⅲ)结论:直线1BC 与CP 不可能垂直.…………11分 证明:设1(0)DD m m =>,1((0,1))DP DC λλ=∈,由(4,2,0)B ,(3,2,0)C ,1(3,2,)C m ,(0,0,0)D ,得1(1,0,)BC m =- ,1(3,2,)DC m = ,1(3,2,)DP DC m λλλλ== ,(3,2,0)CD =--, (33,22,)CP CD DP m λλλ=+=-- .………………12分 若1BC CP ⊥,则21(33)0B C C P m λλ⋅=--+=,即2(3)3m λ-=-,因为0λ≠,所以2330m λ=-+>,解得1λ>,这与01λ<<矛盾.所以直线1BC 与CP 不可能垂直.……………14分18.(本小题满分13分)(Ⅰ)解:对()f x 求导,得1()(1)e e x x f x x a -'=+-,………2分 所以(1)2e e f a '=-=,解得e a =.……3分 故()e e x x f x x =-,()e x f x x '=. 令()0f x '=,得0x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:x (,0)-∞ 0(0,)+∞ ()f x ' - 0 +()f x ↘ ↗ABCDD 1C 1Pyxz所以函数()f x 的单调减区间为(,0)-∞,单调增区间为(0,)+∞. ………………5分(Ⅱ)解:方程2()2f x kx =-,即为2(1)e 20x x kx --+=,设函数2()(1)e 2x g x x kx =--+.………………6分 求导,得()e 2(e 2)x x g x x kx x k '=-=-.由()0g x '=,解得0x =,或ln(2)x k =.……………7分 所以当(0,)x ∈+∞变化时,()g x '与()g x 的变化情况如下表所示:x (0,ln(2))k ln(2)k(ln(2),)k +∞ ()g x ' - 0 +()g x ↘ ↗所以函数()g x 在(0,ln(2))k 单调递减,在(ln(2),)k +∞上单调递增. ………………9分 由2k >,得ln(2)ln 41k >>.又因为(1)20g k =-+<,所以(ln(2))0g k <.不妨设12x x <(其中12,x x 为2()2f x kx =-的两个正实数根),因为函数()g x 在(0,ln 2)k 单调递减,且(0)10g =>,(1)20g k =-+<,所以101x <<.………………11分 同理根据函数()g x 在(ln 2,)k +∞上单调递增,且(ln(2))0g k <,可得2ln(2)ln 4x k >>,所以12214||ln 41ln e x x x x -=->-=,即 124||ln ex x ->.………13分19.(本小题满分14分)(Ⅰ)解:由题意,椭圆C :221113x y m m+=,……………1分 所以21a m =,213b m=, 故12226a m ==,解得16m =,所以椭圆C 的方程为22162x y +=……………3分因为222c a b =-=,所以离心率63c e a ==.……………5分 (Ⅱ)解:设线段AP 的中点为D ,因为||||BA BP =,所以BD AP ⊥,………7分 由题意,直线BD 的斜率存在,设点000(,)(0)P x y y ≠,则点D 的坐标为003(,)22x y +,且直线AP 的斜率003AP y k x =-,……………8分 所以直线BD 的斜率为0031AP x k y --=,所以直线BD 的方程为:000033()22y x x y x y -+-=-.……………10分 令0x =,得2200092x y y y +-=,则220009(0,)2x y B y +-,由2200162x y +=,得220063x y =-,化简,得20023(0,)2y B y --.………………11分 所以四边形OPAB 的面积OPAB OAP OABS S S ∆∆=+200023113||3||222y y y --=⨯⨯+⨯⨯ ………………12分 2000233(||||)22y y y --=+0033(2||)22||y y =+003322||22||y y ⨯⨯≥33=.当且仅当00322y y =,即03[2,2]2y =±∈-时等号成立.所以四边形OPAB 面积的最小值为33.……………14分20.(本小题满分13分)(Ⅰ)解:由题意,数列1,3,5,6和数列2,3,10,7的距离为7.………………2分(Ⅱ)解:设1a p =,其中0p ≠,且1p ≠±.由111n n n a a a ++=-,得211p a p +=-,31a p =-,411p a p -=+,5a p =,所以15a a =,因此A 中数列的项周期性重复,且每隔4项重复一次…………4分 所以{}n b 中,432k b -=,423k b -=-,4112k b -=-,413k b =(*k ∈N ),所以{}n c 中,433k c -=,422k c -=-,4113k c -=-,412k c =(*k ∈N ).…………5分 由111||||k ki i i i i i b c b c +==--∑∑≥,得项数m 越大,数列{}n b 和{}n c 的距离越大. 由417||3i i i b c =-=∑,……………6分得34564864117||||86420163i i i i i i b c b c ⨯==-=-=⨯=∑∑.所以当3456m <时,1||2016mi i i b c =-<∑.故m 的最大值为3455.……………8分(Ⅲ)证明:假设T 中的元素个数大于或等于17个.因为数列{}n a 中,0i a =或1,所以仅由数列前三项组成的数组123,,)(a a a 有且只有8个:,0,0)(0,,0,0)(1,,1,0)(0,,0,1)(0,,1,0)(1,,0,1)(1,,1,1)(0,,1,1)(1.那么这17个元素(即数列)之中必有三个具有相同的123,,a a a . ……………10分 设这三个数列分别为1234567,,,,,,{}n c c c c c c c c :;1234567,,,,,,{}n d d d d d d d d :;123456,,,,,,{}n f f f f f f f f :,其中111d f c ==,222d f c ==,333d f c ==. 因为这三个数列中每两个的距离大于或等于3, 所以{}n c 与{}n d 中,(4,5,6,7)i i c d i ≠=中至少有3个成立.不妨设445566,,c d c d c d ≠≠≠.由题意,得44,c d 中一个等于0,而另一个等于1.又因为40f =或1,所以44f c =和44f d =中必有一个成立,同理,得55f c =和55f d =中必有一个成立,66f c =和66f d =中必有一个成立,所以“(4,5,6)i i f c i ==中至少有两个成立”或“(4,5,6)i i f d i ==中至少有两个成立”中必有一个成立.所以71||2i i i f c =-∑≤和71||2i i i f d =-∑≤中必有一个成立.这与题意矛盾,所以T 中的元素个数小于或等于16.…………13分。
北京市西城区中考数学一模试题

北京市西城区2016年中考数学一模试题一、选择题(共10道小题,每小题3分,共30分)1.2016年春节假期期间,我市接待旅游总人数达到9186000人次,比去年同期增长1.9%.将9186000有科学计数法表示应为()A .9186×103B .9.186×105C .9.186×106D .9.186×1072.如图,实数3-,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最大的数对应的点是() A .点MB .点NC .点PD .点Q3.如图,直线,直线EF 分别与AB ,CD 交于点E ,F ,FP EF ⊥,且与BEF ∠的平分线交于P ,若120∠=︒,则2∠的度数是()A .35°B .30°C .25°D .20° 4.下列几何体中,主视图和俯视图都为矩形的是()ABCD5.关于x 的一元二次方程21302x x k ++=有两个不相等的实数根,则k 的取值范围是() A .92k <B .94k =C .92k ≥D .94k >6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是() A .110B .310C .15D .127.李阿姨是一名健步走运动爱好者,她用手机软件记录了某月(30天)每天健步走的步骤(单位:万步),将记录结果绘制成了突入所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是() A .1.2,1.3 B .1.4,1.3 C .1.4,1.35 D .1.3,1.38.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径.如图,直角角尺中,90AOB ∠=︒,将点O 放在圆周上,分别确定OA ,OB 与圆的交点C ,D ,读得数据8OC =,9OD =,则此圆的直径约为()A .17B .14C .12D .109.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C 观测水平雪道一端A 处的俯角为30°,另一端B 处的俯角为45°.若直升机镜头C 处的高度CD 为300米,点A ,D ,B 在同一直线上,则雪道AB 的长度为() A .300米B .1502米C .900米D .(3003300+)米10.如图,在等边三角形ABC 中,2AB =.动点P 从点A 出发,沿三角形边界按顺指针方向匀速运动一周,点Q 在线段AB 上,且满足2AQ AP +=.设点P 运动的时间为x ,AQ 的长为y ,则y 与x 的函数图像大致是()A .B .C .D .二、填空题(本题共18分,每小题3分) 11.分解因式:34ab ab -=_______________.12.在平面直角坐标系xOy 中,将点()2,3-绕原点O 旋转180o ,所得到的对应点的坐标为_______________.13.已知函数满足下列两个条件:①当0x >时,y 随x 的增大而增大;②它的图象经过点()1,2,请写出一个符合上述条件的函数的表达式_______________. 14.已知O e ,如图所示.(1)求作O e 的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2)若O e 的半径为4,则它的内接正方形的边长为_______________.15.阅读下面材料:如图,C 是以点O 为圆心,AB 为直径的半圆上一点,且CO AB ⊥,在OC 两侧分别作矩形OGHI 和正方形ODEF ,且点I ,F 在OC 上,点H ,E 在半圆上,求证:IG FD =.小云发现连接已知点得到两条线段,便可证明IG FD =.请回答:小云所作的两条线段分别是__________和___________,证明IG FD =的依据是___________________________.IEA B H F16.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是,此时按游戏规则填写空格,所有可能出现的结果共有__________________种.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:()212sin 452320163π-⎛⎫--+ ⎪⎝⎭o18.已知:230a a --=,求代数式()()()232a a b a b a b ---+-的值.如图,在ABC V 中,AB AC =,AD 是BC 边上的中线,AE BE ⊥于点E ,且12BE BC =.求证:AB 平分EAD ∠.20.解不等式组()+21243512x x x x -≥-⎧⎪⎨+>-⎪⎩21.如图,在ABCD Y 中,过点A 作AE DC ⊥交DC 的延长线于点E ,过点D 作DF EA P 交BA 的延长线于点F .(1)求证:四边形AEDF 是矩形;(2)连接BD ,若2AB AE ==,25tan FAD ∠=,求BD 的长.EFDACB22.在平面直角坐标系xOy 中,直线314y x =+与x 轴交于点A ,且与双曲线ky x =的一个交点为8,3B m ⎛⎫⎪⎝⎭. (1)求点A 的坐标和双曲线ky x=的表达式; (2)若y BC //轴,且点C 到直线314y x =+的距离为2,求点C 的纵坐标.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:1.如果选择在乐园内,会比住在乐园外少用一天的时间就能体验完他们感兴趣的项目; 2.一家三口住在乐园内的日均支出是住在乐园外的日均支出的1.5倍;3.无论是住在乐园内还是乐园外,一家三口这次旅行的总费用都是9810元;新东方北京 请问:如果小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩多少天?24.如图,在ABC V 中,AB 是O e 的直径,AC 与O e 交于点D .点E 在»BD上,连接DE ,AE ,连接CE 并延长交AB 于点F ,AED ACF ∠=∠.(1)求证:CF AB ⊥;(2)若4CD =,45CB =4cos 5ACF ∠=,求EF 的长. FEDO AC25.阅读下列材料:据报导,2014年北京市环境空气中PM 2.5年平均浓度为85.9微克/立方米,PM 2.5一级优天数达到93天,较2013年大辅度增加了22天.PM 2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京市环境空气中PM 2.5年平均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题.市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM 2.5一级优的天数增加了13天.2015年本市PM 2.5重污染天数占全年总天数的11.5%,其中在11-12月中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天.根据以上材料解答下列问题: (1)2014年本市空气质量达标天数为____________天;PM 2.5年平均浓度的国家标准限值是______________微克/立方米;(结果保留整数)(2)选择统计表或.统计图,将2013—2015年PM 2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11—12月当中发生重污染22天,占11月和12月天数的36%与去年同期相比增加15天”,他由此推断“2015年全年的PM 2.5重污染天数比2014年要多”,你同意他的结论吗?并说明你的理由.26.有这样一个问题:如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究. 下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整; 已知:如图,在筝形ABCD 中,AB AD =,CB CD = 求证:___________________________. 证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):___________________________________________________________________. (3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.27.在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,.(1)求抛物线1C 的表达式;(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE V 的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.28.在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q .(1)如图1,当点P 与点B 重合时,QPM V 的形状是_____________________; (2)当点P 在线段CB 的延长线上时,如图2. ①依题意补全图2;②判断QPM V 的形状,并加以证明;(3)点P '与点P 关于直线AB 对称,且点P '在线段BC 上,连接AP ',若点Q 恰好在直线AP '上,正方形ABCD 的边长为2,请写出求此时BP 长的思路.(可以不写出计算结果) QNDA DA DA C图1图2图329.在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是;②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为___________________;(2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E在直线l y =+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围;(3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT ∆的“阴影点”,直接写出NQT ∆的周长的最小值.xx11图1图2图3。
2016西城一模高三数学文科带答案

北京市西城区2016年高三一模试卷数学(文科)2016.4第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 设集合2{|}4Ax x x ≤,集合{1,2,3,4}B,则A B ()2. 设命题p :0,sin 21xxx,则p 为()3. 如果()f x 是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是()4.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示. 若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为()5. 在平面直角坐标系xOy 中,向量OA =(1, 2),OB =(2, m) ,若O, A, B 三点能构成三角形,则()6. 执行如图所示的程序框图,若输入的,A S 分别为0, 1,则输出的S()(A )4 (B )16 (C )27 (D )36(A ){1,2}(B ){2,4}(C ){3,1}(D ){1,2,3,4}(A )0,sin 21xxx ≤(B )0,sin 21xxx(C )0,sin 21xxx(D )0,sin 21xx x ≤(A )()y x f x (B )()y xf x (C )2()yxf x (D )2()yx f x (A ){2}(B ){1,2}(C ){0,1,2}(D ){2,3}(A )4m (B )4m (C )1m(D )mR输出S 2kkA AkSS A 是否4k ≥输入A,S1k开始结束甲队乙队8 91m8 237. 设函数12()log f x x x a ,则“(1,3)a”是“函数()f x 在(2,8)上存在零点”的()(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件8. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元. 已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于13,且获得一等奖的人数不能少于2人,那么下列说法中错误..的是()(A )最多可以购买4份一等奖奖品(B )最多可以购买16份二等奖奖品(C )购买奖品至少要花费100元(D )共有20种不同的购买奖品方案第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在复平面内,复数1z 与2z 对应的点关于虚轴对称,且11i z ,则12z z ____.10.在△ABC 中,7b,3a,3tan 2C,则c _____.11.若圆22(2)1x y与双曲线C :2221(0)xya a的渐近线相切,则a _____;双曲线C 的渐近线方程是____.12.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为____.13. 有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.房间 A 房间B 房间C 35 m220 m228 m2涂料 1 涂料2 涂料3 16元/ m218元/ m220元/ m2侧(左)视图正(主)视图俯视图1114. 设函数24,41,()log ,04,x f x xx x≥则(8)f ______;若()()f a f b c ,()0f b ,则,,a b c 的大小关系是______. 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)设函数2π()sin cos sin ()4f x x x x. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数π()6f x在π[0,]2上的最大值与最小值.16.(本小题满分13分)已知等差数列{}n a 的公差0d ,2610a a ,2621a a .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2na nb ,记数列{}n b 前n 项的乘积..为n T ,求n T 的最大值.17.(本小题满分14分)如图,在四棱柱1111ABCDA B C D 中,1BB 底面ABCD ,//AD BC ,90BAD,ACBD .(Ⅰ)求证:1//BC 平面11ADD A ;(Ⅱ)求证:1AC B D ;(Ⅲ)若12ADAA ,判断直线1B D 与平面1ACD 是否垂直?并说明理由.D 1DAC 1A 1B 1BC18.(本小题满分13分)某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”. 已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为a b c ,,,且分别在[70,80),[80,90),[90,100]三组中,其中a b cN ,,.当数据a b c ,,的方差2s 最大时,写出a b c ,,的值.(结论不要求证明)(注:2222121[()()()]nsx x x x x x n,其中x 为数据12,,,n x x x 的平均数)19.(本小题满分14分)已知椭圆C :221(0)3xym m m的长轴长为26,O 为坐标原点.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ)设动直线l 与y 轴相交于点B ,点(3,0)A 关于直线l 的对称点P 在椭圆C 上,求||OB 的最小值.20.(本小题满分13分)已知函数2()ln 1f x x x ax,且(1)1f .(Ⅰ)求()f x 的解析式;(Ⅱ)若对于任意(0,)x ,都有1()f x mx ≤,求m 的最小值;(Ⅲ)证明:函数2()exy f x x x 的图象在直线21yx 的下方.O体育成绩45556575859514 2 412 10 68 各分数段人数北京市西城区2016年高三一模试卷参考答案及评分标准高三数学(文科)2016.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.A 3.B 4.C 5.B6.D7.A8.D二、填空题:本大题共6小题,每小题5分,共30分.9.210.211.333yx12.23313.146414.32b ac≥注:第11,14题第一问2分,第二问3分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分.15.(本小题满分13分)(Ⅰ)解:因为2π()sin cos sin ()4f x x xxπ1cos(2)12sin 222xx ,,,,,,4分111πsin 2cos(2)2222xx111sin 2sin 2222x x 1sin 22x.,,,,,,6分所以函数()f x 的最小正周期为π. ,,,,,,7分(Ⅱ)解:由(Ⅰ),得ππ1()sin(2)632f xx.,,,,,,8分因为π02x ≤≤,所以ππ2π2333x≤≤,所以3πsin(2)123x≤≤. 所以31π11sin(2)22322x ≤≤.,,,,,,11分且当5π12x时,π()6f x 取到最大值12;当0x 时,π()6f x取到最小值3122.,,,,,,13分16.(本小题满分13分)(Ⅰ)(Ⅰ)解:由题意,得1111()(5)10,()(5)21,a d a d a d a d ,,,,,,3分解得18,1,a d或12,1a d(舍).,,,,,,5分所以1(1)9na a n d n .,,,,,,7分(Ⅱ)解:由(Ⅰ),得92nnb . 所以12122222nna a a a a a nT .所以只需求出12n n S a a a 的最大值. ,,,,,,9分由(Ⅰ),得2121(1)17(1)222n nn n nS a a a na n .因为2117289()228n S n ,,,,,,,11分所以当8n,或9n时,n S 取到最大值8936S S .所以n T 的最大值为36892T T .,,,,,,13分17.(本小题满分14分)(Ⅰ)证明:因为//AD BC ,BC平面11ADD A ,AD 平面11ADD A ,所以//BC 平面11ADD A . ,,,,2分因为11//CC DD ,1CC 平面11ADD A ,1DD 平面11ADD A ,所以1//CC 平面11ADD A .又因为1BC CC C ,所以平面11//BCCB 平面11ADD A . ,,,,3分又因为1BC 平面11BCC B ,所以1//BC 平面11ADDA .,,,,,,4分(Ⅱ)证明:因为1BB 底面ABCD ,AC 底面ABCD ,所以1BB AC .,,,,,,5分D 1D AC 1A 1B 1BC又因为AC BD ,1BB BD B ,所以AC 平面1BB D . ,,,,,,7分又因为1B D 底面1BB D ,所以1ACB D .,,,,,,9分(Ⅲ)结论:直线1B D 与平面1ACD 不垂直.,,,,,,10分证明:假设1B D 平面1ACD ,由1AD 平面1ACD ,得11B DAD .,,,,,,11分由棱柱1111ABCD A B C D 中,1BB 底面ABCD ,90BAD 可得111A B AA ,1111A B A D ,又因为1111AA A D A ,所以11A B 平面11AA D D ,所以111A B AD .,,,,,,12分又因为1111A B B DB ,所以1AD 平面11A B D ,所以11AD A D .,,,,,,13分这与四边形11AA D D 为矩形,且1=2AD AA 矛盾,故直线1B D 与平面1ACD 不垂直.,,,,,,14分18.(本小题满分13分)(Ⅰ)解:由折线图,知样本中体育成绩大于或等于70分的学生有30人,,,,,,,2分所以该校高一年级学生中,“体育良好”的学生人数大约有30100075040人. ,,4分(Ⅱ)解:设“至少有1人体育成绩在[60,70)”为事件M ,,,,,,,5分记体育成绩在[60,70)的数据为1A ,2A ,体育成绩在[80,90)的数据为1B ,2B ,3B ,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:12(,)A A ,11(,)A B ,12(,)A B ,13(,)A B ,21(,)A B ,22(,)A B ,23(,)A B ,12(,)B B ,13(,)B B ,23(,)B B .而事件M 的结果有7种,它们是:12(,)A A ,11(,)A B ,12(,)A B ,13(,)A B ,21(,)A B ,22(,)A B ,23(,)A B ,,,,,,,7分因此事件M 的概率7()10P M .,,,,,,9分(Ⅲ)解:a ,b ,c 的值分别是为70,80,100.,,,,,,13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C :2213xym m,所以23a m ,2bm ,,,,,,,1分故22326am,解得2m,所以椭圆C 的方程为22162xy .,,,,,,3分因为222cab,所以离心率63c ea.,,,,,,5分(Ⅱ)解:由题意,直线l 的斜率存在,设点000(,)(0)P x y y ,则线段AP 的中点D 的坐标为03(,)22x y ,且直线AP 的斜率003APy k x ,,,,,,,7分由点(3,0)A 关于直线l 的对称点为P ,得直线lAP ,故直线l 的斜率为031AP x k y ,且过点D ,所以直线l 的方程为:00033()22y x x yxy ,,,,,,,9分令0x ,得2292x y y y ,则229(0,)2x y B y ,由2200162x y ,得22063x y ,化简,得223(0,)2y B y .,,,,,,11分所以223||||2y OB y 003||2||y y 0032||2||y y ≥6.,,,,,,13分当且仅当003||2||y y ,即06[2,2]2y 时等号成立.所以||OB 的最小值为6.,,,,,,14分20.(本小题满分13分)(Ⅰ)解:对()f x 求导,得()1ln 2f x x ax ,,,,,,,,1分所以(1)121f a ,解得1a ,所以2()ln 1f x x x x.,,,,,,,3分(Ⅱ)解:由1()f x mx ≤,得20ln x xxmx ≤,因为(0,)x,所以对于任意(0,)x,都有ln m x x ≤.,,,,,,,4分设()ln g x xx ,则1()1g x x .令()0g x ,解得1x .,,,,,,,5分当x 变化时,()g x 与()g x 的变化情况如下表:x(0,1)1(1,)()g x 0()g x Z极大值]所以当1x时,max()(1)1g x g .,,,,,,,7分因为对于任意(0,)x,都有()m g x ≤成立,所以1m ≥.所以m 的最小值为1.,,,,,,,8分(Ⅲ)证明:“函数2()exyf x x x 的图象在直线21y x 的下方”等价于“2()e210xf x x xx ”,即要证ln e20xx xx x ,所以只要证ln e2xx . 由(Ⅱ),得1()ln g x xx ≤,即1ln x x ≤(当且仅当1x 时等号成立).所以只要证明当(0,)x时,1e2xx 即可.,,,,,,,10分设()(e2)(1)e 1xxh x x x ,所以()e1xh x ,令()0h x ,解得0x .由()0h x ,得0x,所以()h x 在(0,)上为增函数.所以()(0)0h x h ,即1e 2xx .所以ln e2xx .故函数2()exyf x x x 的图象在直线21yx 的下方.,,,,13。
高三西城一模理科数学解析

北京市西城区2016 年高三一模试卷参考答案及评分标准高三数学(理科)学而思高考研究中心-曲丹、唐云、张剑邓一维、武洪姣1. C【解析】解不等式x2 + 4x < 0 得-4 < x < 0 ,即 A = {x -4 < x < 0} ,又B = {n n = 2k - 1, k ∈ Z} ,故A B = {-3, -1} ,选C.2. A【解析】曲线C 的参数方程化为普通方程即为( x- 2)2 + y2 = 2 ,即曲线C 是圆心在横轴上的圆,故曲线C 关于x 轴对称,选A.3. B【解析】根据奇偶性的四则运算两个定义域为R 的函数,奇函数×奇函数=偶函数, y = x 为奇函数,所以xf ( x) 一定为偶函数.4. Bm 2【解析】如果OAB 能够成三角形,只要OA 与OB 向量不共线即可,所以2≠, m ≠ -4 -15. D【解析】A = 0, S = 1, k = 1, A = A + k = 0 + 1 = 1, S = S ⋅ A = 1⋅1 = 1, k < 4;k = k + 2 = 3, A = A + k = 1 + 3 = 4, S = S ⋅ A = 1⋅ 4 = 4, k < 4;k = k + 2 = 5, A = A + k = 4 + 5 = 9, S = S ⋅ A = 4 ⋅ 9 = 36, k ≥4.故选D.6.A【解析】a < 0 时,因为0 < x < ,所以log1 x > 1 > x > x + a ,充分性成立;22显然a = 0 时,log1 x > x + a 也成立,因此a < 0 不必要.213 3 ⎨ ⎪ ⎪ ⎪ ⎭⎝ ⎭ 7.D【解析】方法一⎧ π+= π+ 2k π 由图知, ⎪12 2 ⎪ 5 π+= 2π + 2k π⎪⎩ 6所以 f ( x ) = A sin ⎛2x + π ⎫ .k ∈ Z ,解得= 2 ,= π+ 2k π , k ∈ Z 33 ⎪ ⎝ ⎭f ⎛ 5 π⎫= A sin 11 π = - A , f ⎛ - 3 π⎫ = A sin ⎛ - 7 π⎫ = - 1 A , 3 ⎪ 3 2 4 ⎪ 6 ⎪ 2 ⎝ ⎭⎝ ⎭ ⎝ ⎭f⎛ 7 π⎫ = A sin ⎛ 8 π⎫= A 6 ⎪ 3 ⎪ 2 ⎝ ⎭ ⎝ ⎭所以 f ⎛ 5 π⎫ < f ⎛ - 3 π⎫ < f ⎛ 7 π⎫ .⎝ 3 ⎭ ⎝ 4 ⎭ ⎝ 6 ⎭方法二:由于 3 T = 5π - π 4612, T = π其中 f ⎛ - ⎝ 3π ⎫⎛ ⎪ = f - ⎭ ⎝ 9π ⎫ ⎛ 3π ⎫ 12 ⎪ = f 12 ⎪f ⎛ 5π ⎫ = f ⎛ 20π ⎫ = f ⎛ 8π ⎫3 ⎪ 12 ⎪ 12 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭f ⎛ 7π ⎫ = f ⎛ 14π ⎫ = f ⎛ 2π ⎫ 6 ⎪ 12 ⎪ 12 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭由图可知y7π 12Oπ 124π 125π 6x42 2 2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪1 1 1 1 1 13 1⎝ ⎭ 3f ⎛ 8 π⎫ < f ⎛ 3 π⎫ < f ⎛ 2 π⎫ 即 f ⎛ 5 π⎫ < f ⎛ - 3 π⎫ < f ⎛ 7 π⎫⎝ 12 ⎭ ⎝ 12 ⎭⎝ 12 ⎭ ⎝ 3 ⎭ ⎝ 4 ⎭ ⎝ 6 ⎭8.A【解析】正四面体的体积为VA - BCD =2a 3 ,所以V 12A -B 1C 1D 1= V ⋅ x 3 =2 a3 x 3 ,12V V DD 1 - x 因为 A 1- B 1C 1D 1= D - B 1C 1D 1= 1= ,V A - B C D V A - B C D AD 1 x所以 f ( x ) = V = VA -B 1C 1D 1⋅ 1 - x =x a 3 x 3 ⋅ 1 - x = 12 x a 3 x 2 (1 - x ) , 0 < x < 1. 12f '( x ) =2 a 3(2x - 3x 2 ) = 2 a 3 x (2 - 3x ) 12 12当 0 < x < 2时, f '(x ) > 0 , f ( x ) 单调增;当 2< x < 1 时, f '( x ) < 0 , f ( x ) 单调 3减.因此, f ( x )= f⎛ 2 ⎫= 3a 3 = 4 V . max⎪ 81 27 A - BCD(或者由 3 次均值不等式, f ( x ) = a 3 ⋅ x ⋅ x ⋅ (2 - 2x ) ≤ a 3 ⎛ x + x + 2 - 2x ⎫ 亦24 24 3 ⎪⎝ ⎭可) 综上,选 A .9. i ;z-1 + i (-1 + i )(1 - i )【解析】由已知, z 2 = 1 + i ,∴=== i .z 21 + i210. 2n - 9 ; -16 ;【解析】 a 2 a 4 = (-3 - d )(-3 + d ) = 5 ,由 d > 0 解得 d = 2 .∴ a n = -3 + 2(n - 3) = 2n - 9 . a 1 = a 3 - 2d = -7 ,∴ S n = -7n +n (n - 1)⋅ 2 = n 2 2- 8n 故当 n = 4 时, S n 的最小值为 -16 .2 23 1 + a23 4 + 16 2 2 2 11.;y = ± 3 x ;3【解析】双曲线的渐近线为 y = ± x,即 x ± ay = 0 .a由于圆与直线相切, r = 1,∴ d =| 2 ± 0 | = 1 .解得 a = .∴双曲线的渐近线为 y = ±3 x .312. 6【解析】由题意可知原图应为:C其中: AC = BC = = 2AB = 2 , CD = 3 ,所以S = 1⨯ 2 ⨯ 3 = 6 △ ABC 213. 21【解析】①乙参加 A 项目;B 项目甲乙均不能参加,有三种选法;C 项目乙不能参加,B 项目的人也不能参加,有三种选法.共1⨯ 3 ⨯ 3 = 9 种方法.②乙不参加 A 项目;A 项目甲乙不参加,有 3 种方法;B 项目甲乙不能参加,A 项目的人也不能参加,有两种选法;C 项目乙不能参加,A 项目和 B 项目的人也不能参加,有 2 种选法.共 3 ⨯ 2 ⨯ 2 = 12 种方法.ADB523 ⎪ 综上,由分类计数原理知共有 21 种不同的分配志愿者方法.14.①④【解析】由图看,在 2.6km 到 2.8km 之间,赛车速度从100 逐渐增加到140 km / h ,①对;从 0.4km 到 1.2km 这段,赛车应该是直道加速到平稳行使,最长直线路程超过0.6km ,②错;从1.4km 到1.8km 之间,赛车开始最长直线路程行使,③错;从图 1 看,赛车先直线行使一小段,然后减速拐弯,然后直线行驶一大段距离, 再减速拐弯,再直线行使一大段,拐弯后直线行使一中段距离,曲线 B 最符合, ④对.15.【解析】(Ⅰ)因为 sin B = 3sin C ,由正弦定理 a = sin A b sin B =c, sin C得 b = 3c .3 分由余弦定理 a 2 = b 2 + c 2 - 2bc cos A 及 A = π, a = 3,5 分得 7 = b 2 + c 2 - bc ,所以 b 2+ ⎛ b ⎫⎝ ⎭2 b 2 -3 = 7 ,解得 b = 3 ,7 分(Ⅱ)由 A = π,得 B =2π- C . 33所以 sin ⎛ 2π - C ⎫= 3sin C .8 分3 ⎪ ⎝ ⎭72 5即 3 cos C + 1sin C = 3sin C ,11 分2 2所以 3 cos C = 5sin C .2 2所以 tan C =3 . 13 分516.【解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于 70 分的学生有 30 人, 2 分所以该校高一年级学生中,“体育良好”的学生人数大约有 1000× 30= 75040人 . 4分(Ⅱ)设“至少有 1 人体育成绩在[60 ,70) ”为事件 A ,5 分由题意,得P ( A ) = 1 - C 3 = 1 - 3 = 7, 210 10 因此至少有 1 人体育成绩在[60 ,70) 的概率是 710 .9 分(Ⅲ) a ,b ,c 的值分别是为 79,84,90;或 79,85,90.13 分17.【解析】(Ⅰ)证明:由 CC 1D 1D 为矩形,得 CC 1 ∥ DD 1 ,又因为 DD 1 ⊂ 平面 ADD 1 , CC 1 ⊄ 平面 ADD 1 ,所以 CC 1 ∥平面 ADD 1 ,2 分同理 BC ∥平面 ADD 1 ,又因为 BC CC 1 = C ,C所以平面 BCC 1 ∥平面 ADD 1 ,3 分又因为 BC 1 ⊂ 平面 BCC 1 ,所以 BC 1 ∥平面 ADD 1 .4 分(Ⅱ)由平面 ABCD 中, AD ∥ BC ,∠BAD = 90︒ ,得 AB ⊥ BC ,又因为 AB ⊥ BC 1 , BC BC 1 = B ,所以 AB ⊥平面 BCC 1 ,所以 AB ⊥ C C 1 ,又因为四边形 CC 1D 1D 为矩形,且底面 ABCD 中 AB 与 CD 相交一点,所以 CC 1 ⊥平面 ABCD ,因为 CC 1 ∥ DD 1 ,所以 DD 1 ⊥ 平面 ABCD .过 D 在底面 ABCD 中作 DM ⊥ AD ,所以 DA , DM , DD 1 两两垂直,以DA , DM , DD 1 分别为 x 轴、 y 轴和 z 轴,如图建立空间直角坐标系,6 分则 D (0△ 0△ 0) , A (4△ 0△ 0) , B (4△ 2△ 0) , C (3△ 2△ 0) , C 1 (3△ 2△ 2) ,D 1 (0△ 0△ 2) ,所以 AC 1 = (-1△ 2△ 2) , AD 1 = (-4△ 0△ 2) .设平面 AC 1D 1 的一个法向量为 m = (x △ y △ z ) .m ⋅ nm n3 293 29 ⎩⎧-x + 2 y + 2z = 0△由 m ⋅ AC 1 = 0 , m ⋅ AD 1 = 0 ,得 ⎨-4x + 2z = 0△令 x = 2 ,得 m = (2△- 3△ 4) .8 分易得平面 ADD 1 的法向量 n = (0△ 1△ 0) .所以 cos < △ >= = - . m n 29即平面 AC 1D 1 与平面 ADD 1 所成的锐二面角的余弦值为. 10 分29zD 1C 1Px ADBCy(Ⅲ)结论:直线 BC 1 与 CP 不可能垂直.11 分证明:设 DD 1 = m (m > 0) , DP = DC 1 (∈(0△ 1)) ,由 B (4△ 2△ 0) , C (3△ 2△ 0) , C 1 (3△ 2△ m ) ,D (0△ 0△ 0) ,得 BC 1 = (-1△ 0△ m ) , DC 1 = (3△ 2△ m ) , DP = DC 1 = (3△ 2△ m ) ,CD = (-3△ - 2△ 0) ,CP = CD + DP = (3- 3△ 2- 2△ m ) . 12 分若 BC 1 ⊥ C P ,则 BC 1 ⋅ CP = -(3- 3) + m = 0 ,即(m 3 - 3)= -3 ,因为 ≠ 0 ,2所以 m 2 = - 3+ 3 > 0 ,解得 > 1 ,这与 0 < < 1矛盾.所以直线 BC 1 与 CP 不可能垂直.18.14 分【解析】(Ⅰ)对 f (x ) 求导,得 f '(x ) = (1 + x )e x- a ex -1,2 分所以 f '(1) = 2e - a = e ,解得 a = e .3 分故 f (x ) = x e x- e x, f '(x ) = x e x.令 f '(x ) = 0 ,得 x = 0 .当 x 变化时, f '(x ) 与 f (x ) 的变化情况如下表所示:x(-∞△ 0) 0 (0△ + ∞)f '(x ) -+f (x )所以函数 f (x ) 的单调减区间为 (-∞△ 0) ,单调增区间为 (0△ + ∞) .5 分(Ⅱ)方程 f (x ) = kx 2 - 2 ,即为 (x - 1)e x - kx 2 + 2 = 0 .设函数 g (x ) = (x - 1)e x - kx 2 + 2 .6 分求导,得 g '(x ) = x e x - 2kx = x (e x - 2k ) .由 g '(x ) = 0 ,解得 x = 0 ,或 x = ln(2k ) .7 分所以当 x ∈(0△ + ∞) 变化时, g '(x ) 与 g (x ) 的变化情况如下表所示:所以函数 g (x ) 在 (0△ ln(2k )) 单调递减,在 (ln(2k )△ + ∞) 上单调递增.9 分由 k > 2 ,得 ln(2k ) > ln 4 > 1.又因为 g (1) = - k + 2 < 0 ,所以 g (ln(2k )) < 0 .不妨设 x 1 < x 2 (其中 x 1 , x 2 为 f (x ) = kx - 2 的两个正实数根),因为函数 g (x ) 在 (0△ ln 2k ) 单调递减,且 g (0) = 1 > 0 , g (1) = - k + 2 < 0 ,所以 0 < x 1 < 1.11 分同理根据函数 g ( x ) 在 (ln 2k △ + ∞) 上单调递增,且g (ln (2k )) < 0 ,可得 x 2 > ln (2k ) > ln 4 ,所以 x - x = x - x > ln 4 - 1 = ln 4 ,1221e即 x 1 - x 2 > ln 4e.13 分19.x 2 y 2【解析】(Ⅰ)由题意,椭圆 C : + 1 1 m 3m所以 a 2 = 1 , b 2 = 1,m3m= 1 .1 分26 a 2 - b 2 ⎪故 2a = 2 = 2 ,解得m = 1 , 6所以椭圆 C 的方程为 x y 2+ = 1 .(3 分)6 2因为 c = = 2 ,所以离心率 e = c=a 6 .(5 分) 3(Ⅱ)设线段 AP 的中点为 D ,因为 BA = BP ,所以 BD ⊥ AP ,(7 分)由题意,直线 BD 的斜率存在,设点 P ( x 0 △ y 0 )( y 0 ≠ 0),则点 D 的坐标为 ⎛ x 0 + 3△ y 0 ⎫ ,2 2 ⎪⎝ ⎭且直线 AP 的斜率 k AP = y 0 x 0 - 3,(8 分)所以直线 BD 的斜率为 - 1 k AP = 3 - x 0 ,y 0所以直线 BD 的方程为: y -y 0 = 3 - x 0 ⎛ x - x 0 + 3 ⎫.(10 分)2 y 0 ⎝ 2 ⎭x 2 + y 2- 9⎛ x 2 + y 2 - 9 ⎫ 令 x = 0 ,得 y = 0 0 ,则 B 0 △ 0 0 ⎪ ,2 y 0 ⎝ 2 y 0 ⎭x 2 y 2 由 0 + 0 = 1,得 x 2 = 6 - 3y 2 , 62化简,得 B ⎛ 0 △ -2 y 2- 3 ⎫ 0 ⎪ .(11 分) ⎝ 2 y 0 ⎭所以四边形 OPAB 的面积 S OPAB = S △ OAP + S △ OAB1 1 -2 y 2- 3 = ⨯ 3⨯ | y 0 | + ⨯ 3⨯ | 0 | (12 分) 2 2 2 y 01 m 23 3 2 2 3 0 ⎭⎝ 3 ⎛= | y 0 - 3 ⎫ | + 0 ⎪ 2 ⎝ 2 y 0 ⎭=3 ⎛ 2 | y | + 3 ⎫ 0 2 | y | ⎪≥ 3⨯ 2 2= 3 .当且仅当 2 y 0 = ,即y 0 = ± ∈ ⎡- △ ⎤ 时等号成立. 2 y 0 2 ⎣⎦所以四边形 OPAB 面积的最小值为 3 .(14 分)20.【解析】(Ⅰ)由题意,数列 1,3,5,6 和数列 2,3,10,7 的距离为 7.(2 分)(Ⅱ)设 a 1 = p ,其中 p ≠ 0 ,且 p ≠ ±1 .由 a n +1 = 1 + a n 1 - a n ,得 a 2 = 1 + p 1 - p 1 , a 3 = - p ,a 4 = p -1 p +1, a 5 = p ,所以 a 1 = a 5 ,因此 A 中数列的项周期性重复,且每隔 4 项重复一次.(4 分)11 *所以{b n } 中, b 4k -3 = 2 , b 4k -2 = -3 , b 4k -1 = ,b 4k = (k ∈ N ) ,23所以{c n } 中, c 4k -3 = 3 , c 4k -2 = -2 , c 4k -1 = - 31, c 4k = 2(k ∈ N * ).5 分k +1k由 ∑ b i - c i ≥ ∑ b i - c i ,得项数m 越大,数列{b n } 和{c n } 的距离越大. i =1i =12 | y | ⨯ 032 | y |0 2 3 14由 ∑ b i - c i i =1= 7 , 6 分334564⨯8647. 得 ∑ b i - c i i =1 = ∑ b i - c i i =1= ⨯ 864 = 2016 3m所以当 m < 3456 时, ∑ b i - c i i =1< 2016 .故 m 的最大值为 3455.8 分(Ⅲ)证明:假设 T 中的元素个数大于或等于 17 个.因为数列{a n } 中, a i = 0 或 1,所以仅由数列前三项组成的数组 (a 1 ,a 2 ,a 3 ) 有且只有 8 个: (0 ,0 ,0) ,(1,0 ,0) , (0 ,1,0) , (0 ,0 ,1) , (1,1,0) , (1,0 ,1) , (0 ,1,1) ,(1,1,1) .那么这 17 个元素(即数列)之中必有三个具有相同的 a 1 , a 2 , a 3 .10 分设这三个数列分别为 {c n } : c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 ; {d n } :d 1 ,d 2 , d 3 , d 4 , d 5 , d 6 , d 7 ; { f n } : f 1 , f 2 , f 3 , f 4 , f 5 , f 6 , f 7 ,其中 c 1 = d 1 = f 1 , c 2 = d 2 = f 2 , c 3 = d 3 = f 3 .因为这三个数列中每两个的距离大于或等于 3,所以{c n } 与{d n } 中, c i ≠ d i ( i = 4 ,5 ,7 )中至少有 3 个成立.不妨设 c 4 ≠ d 4 ,c 5 ≠ d 5 , c 6 ≠ d 6 .由题意,得 c 4 , d 4 中一个等于 0,而另一个等于 1.又因为 f 4 = 0 或 1,所以f4 = c4和f4= d4中必有一个成立,同理,得f5 = c5和f5= d5中必有一个成立,f6= c6 和f6= d6中必有一个成立,所以“fi = ci(i = 4 ,5 ,6 )中至少有两个成立”或“fi= di(i = 4 ,5 ,6)中至少有两个成立”中必有一个成立.7 7所以∑ f i - c i ≤2 和∑ f i - d i ≤2 中必有一个成立.i =1 i =1这与题意矛盾,所以T 中的元素个数小于或等于16.13 分。
.4.西城.高三数学答案

高中数学学习材料金戈铁骑整理制作北京市西城区2016年高三一模试卷参考答案及评分标准高三数学(理科)2016.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.A 3.B 4.B 5.D 6.A 7.D 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.i 10.29n - 16- 11.3 33y x =±12.6 13.21 14.○1○4注:第10,11题第一问2分,第二问3分;第14题多选、少选或错选均不得分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为 sin 3sin B C =, 由正弦定理sin sin sin a b cA B C==, 得 3b c =. ………………3分 由余弦定理 2222cos a b c bc A =+-及π3A =,7a =, ………………5分 得 227b c bc =+-,所以 222()733b b b +-=,解得 3b =. ………………7分 (Ⅱ)解:由π3A =,得2π3B C =-. 所以 2πsin()3sin 3C C -=. ………………8分 即31cos sin 3sin 22C C C +=, ………………11分 所以35cos sin 22C C =,所以3tan 5C =. ………………13分16.(本小题满分13分)(Ⅰ)解:由折线图,知样本中体育成绩大于或等于70分的学生有30人,………………2分 所以该校高一年级学生中,“体育良好”的学生人数大约有30100075040⨯=人. ……4分 (Ⅱ)解:设 “至少有1人体育成绩在[60,70)”为事件A , ………………5分由题意,得2325C 37()11C 1010P A =-=-=,因此至少有1人体育成绩在[60,70)的概率是710. ………………9分 (Ⅲ)解:a , b , c 的值分别是为79, 84, 90;或79, 85, 90. ………………13分17.(本小题满分14分)(Ⅰ)证明:由11CC D D 为矩形,得11//CC DD ,又因为1DD ⊂平面1ADD ,1CC ⊄平面1ADD ,所以1//CC 平面1ADD , ……………… 2分 同理//BC 平面1ADD , 又因为1BCCC C =,所以平面1//BCC 平面1ADD , ……………… 3分 又因为1BC ⊂平面1BCC ,所以1//BC 平面1ADD . ……………… 4分 (Ⅱ)解:由平面ABCD 中,//AD BC ,90BAD ∠=,得AB BC ⊥,又因为1AB BC ⊥,1BC BC B =,所以AB ⊥平面1BCC , 所以1AB CC ⊥,又因为四边形11CC D D 为矩形,且底面ABCD 中AB 与CD 相交一点, 所以1CC ⊥平面ABCD , 因为11//CC DD , 所以1DD ⊥平面ABCD .过D 在底面ABCD 中作DM AD ⊥,所以1,,DA DM DD 两两垂直,以1,,DA DM DD 分 别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分则(0,0,0)D ,(4,0,0)A ,(4,2,0)B ,(3,2,0)C ,1(3,2,2)C ,1(0,0,2)D , 所以1(1,2,2)AC =-,1(4,0,2)AD =-. 设平面11AC D 的一个法向量为(,,)x y z =m ,由10AC ⋅=m ,10AD ⋅=m ,得220,420,x y z x z -++=⎧⎨-+=⎩令2x =,得(2,3,4)=-m . ………………8分易得平面1ADD 的法向量(0,1,0)=n . 所以329cos ,||||29⋅<>==-m n m n m n . 即平面11AC D 与平面1ADD 所成的锐二面角的余弦值为32929. ………………10分 (Ⅲ)结论:直线1BC 与CP 不可能垂直. ………………11分证明:设1(0)DD m m =>,1((0,1))DP DC λλ=∈, 由(4,2,0)B ,(3,2,0)C ,1(3,2,)C m ,(0,0,0)D ,ABCDD 1C 1Pyxz得1(1,0,)BC m =-,1(3,2,)DC m =,1(3,2,)DP DC m λλλλ==,(3,2,0)CD =--, (33,22,)CP CD DP m λλλ=+=--. ………………12分 若1BC CP ⊥,则21(33)0BC CP m λλ⋅=--+=,即2(3)3m λ-=-, 因为0λ≠, 所以2330m λ=-+>,解得1λ>,这与01λ<<矛盾.所以直线1BC 与CP 不可能垂直. ………………14分18.(本小题满分13分)(Ⅰ)解:对()f x 求导,得1()(1)e e x x f x x a -'=+-, ………………2分 所以(1)2e e f a '=-=,解得e a =. ………………3分 故()e e x x f x x =-,()e x f x x '=. 令()0f x '=,得0x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:x(,0)-∞0 (0,)+∞()f x ' -0 +()f x↘↗所以函数()f x 的单调减区间为(,0)-∞,单调增区间为(0,)+∞. ………………5分(Ⅱ)解:方程2()2f x kx =-,即为2(1)e 20x x kx --+=,设函数2()(1)e 2x g x x kx =--+. ………………6分 求导,得()e 2(e 2)x x g x x kx x k '=-=-.由()0g x '=,解得0x =,或ln(2)x k =. ………………7分 所以当(0,)x ∈+∞变化时,()g x '与()g x 的变化情况如下表所示:x (0,ln(2))kln(2)k (ln(2),)k +∞()g x ' -0 +()g x↘↗所以函数()g x 在(0,ln(2))k 单调递减,在(ln(2),)k +∞上单调递增. ………………9分由2k >,得ln(2)ln 41k >>.又因为(1)20g k =-+<, 所以(ln(2))0g k <.不妨设12x x <(其中12,x x 为2()2f x kx =-的两个正实数根),因为函数()g x 在(0,ln 2)k 单调递减,且(0)10g =>,(1)20g k =-+<,所以101x <<. ………………11分 同理根据函数()g x 在(ln 2,)k +∞上单调递增,且(ln(2))0g k <, 可得2ln(2)ln 4x k >>,所以12214||ln 41ln ex x x x -=->-=,即 124||ln ex x ->. ………………13分19.(本小题满分14分)(Ⅰ)解:由题意,椭圆C :221113x y m m+=, ………………1分所以21a m =,213b m=, 故12226a m ==,解得16m =, 所以椭圆C 的方程为22162x y +=. ………………3分因为222c a b =-=, 所以离心率63c e a ==. ………………5分 (Ⅱ)解:设线段AP 的中点为D ,因为||||BA BP =,所以BD AP ⊥, ………………7分 由题意,直线BD 的斜率存在,设点000(,)(0)P x y y ≠,则点D 的坐标为003(,)22x y +,且直线AP 的斜率003AP y k x =-, ………………8分 所以直线BD 的斜率为031AP x k y --=, 所以直线BD 的方程为:000033()22y x x y x y -+-=-. ………………10分 令0x =,得2200092x y y y +-=,则220009(0,)2x y B y +-, 由2200162x y +=,得22063x y =-, 化简,得20023(0,)2y B y --. ………………11分 所以四边形OPAB 的面积OPAB OAP OAB S S S ∆∆=+200023113||3||222y y y --=⨯⨯+⨯⨯………………12分 2000233(||||)22y y y --=+ 0033(2||)22||y y =+003322||22||y y ⨯⨯≥ 33=.当且仅当00322y y =,即03[2,2]2y =±∈-时等号成立. 所以四边形OPAB 面积的最小值为33. ………………14分 20.(本小题满分13分)(Ⅰ)解:由题意,数列1,3,5,6和数列2,3,10,7的距离为7. ………………2分 (Ⅱ)解:设1a p =,其中0p ≠,且1p ≠±.由111n n n a a a ++=-,得211p a p +=-,31a p=-,411p a p -=+,5a p =,所以15a a =,因此A 中数列的项周期性重复,且每隔4项重复一次. ………………4分 所以{}n b 中,432k b -=,423k b -=-,4112k b -=-,413k b =(*k ∈N ),所以{}n c 中,433k c -=,422k c -=-,4113k c -=-,412k c =(*k ∈N ). ……………5分由111||||k ki i i i i i b c b c +==--∑∑≥,得项数m 越大,数列{}n b 和{}n c 的距离越大.由417||3i i i b c =-=∑, ………………6分 得34564864117||||86420163i i i ii i b c b c ⨯==-=-=⨯=∑∑.所以当3456m <时,1||2016mi i i b c =-<∑.故m 的最大值为3455. ………………8分 (Ⅲ)证明:假设T 中的元素个数大于或等于17个. 因为数列{}n a 中,0i a =或1,所以仅由数列前三项组成的数组123,,)(a a a 有且只有8个:,0,0)(0,,0,0)(1,,1,0)(0,,0,1)(0,,1,0)(1,,0,1)(1,,1,1)(0,,1,1)(1.那么这17个元素(即数列)之中必有三个具有相同的123,,a a a . ………………10分设这三个数列分别为1234567,,,,,,{}n c c c c c c c c :;1234567,,,,,,{}n d d d d d d d d :;123456,,,,,,{}n f f f f f f f f :,其中111d f c ==,222d f c ==,333d f c ==.因为这三个数列中每两个的距离大于或等于3,所以{}n c 与{}n d 中,(4,5,6,7)i i c d i ≠=中至少有3个成立.不妨设445566,,c d c d c d ≠≠≠.由题意,得44,c d 中一个等于0,而另一个等于1.又因为40f =或1,所以44f c =和44f d =中必有一个成立, 同理,得55f c =和55f d =中必有一个成立,66f c =和66f d =中必有一个成立,所以“(4,5,6)i i f c i ==中至少有两个成立”或“(4,5,6)i i f d i ==中至少有两个成立”中必有一个成立.所以71||2i i i f c =-∑≤和71||2i i i f d =-∑≤中必有一个成立.这与题意矛盾,所以T 中的元素个数小于或等于16. ………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年北京市西城区九年级中考一模试卷数学一、选择题(共10道小题,每小题3分,共30分)1.2016年春节假期期间,我市接待旅游总人数达到9186000人次,比去年同期增长1.9%.将9186000有科学计数法表示应为()A .9186×103B .9.186×105C .9.186×106D .9.186×1072.如图,实数3-,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最大的数对应的点是()A .点MB .点NC .点PD .点Q3.如图,直线AB CD ,直线EF 分别与AB ,CD 交于点E ,F ,FP EF ⊥,且与BEF ∠的平分线交于P ,若120∠=︒,则2∠的度数是()A .35°B .30°C .25°D .20°4.下列几何体中,主视图和俯视图都为矩形的是()ABCD5.关于x 的一元二次方程21302x x k ++=有两个不相等的实数根,则k 的取值范围是() A .92k <B .94k =C .92k ≥D .94k >6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是()A .110B .310C .15D .127.李阿姨是一名健步走运动爱好者,她用手机软件记录了某月(30天)每天健步走的步骤(单位:万步),将记录结果绘制成了突入所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A .1.2,1.3B .1.4,1.3C .1.4,1.35D .1.3,1.38.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径.如图,直角角尺中,90AOB ∠=︒,将点O 放在圆周上,分别确定OA ,OB 与圆的交点C ,D ,读得数据8OC =,9OD =,则此圆的直径约为()A .17B .14C .12D .109.某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C 观测水平雪道一端A 处的俯角为30°,另一端B 处的俯角为45°.若直升机镜头C 处的高度CD 为300米,点A ,D ,B 在同一直线上,则雪道AB 的长度为()A .300米B .1502米C .900米D .(3003300+)米10.如图,在等边三角形ABC 中,2AB =.动点P 从点A 出发,沿三角形边界按顺指针方向匀速运动一周,点Q 在线段AB 上,且满足2AQ AP +=.设点P 运动的时间为x ,AQ 的长为y ,则y 与x 的函数图像大致是()A .B .C .D .二、填空题(本题共18分,每小题3分) 11.分解因式:34ab ab -=_______________.12.在平面直角坐标系xOy 中,将点()2,3-绕原点O 旋转180,所得到的对应点的坐标为_______________.13.已知函数满足下列两个条件:①当0x >时,y 随x 的增大而增大;②它的图象经过点()1,2,请写出一个符合上述条件的函数的表达式_______________. 14.已知O ,如图所示.(1)求作O 的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2)若O 的半径为4,则它的内接正方形的边长为_______________.15.阅读下面材料:如图,C是以点O为圆心,AB为直径的半圆上一点,且CO AB⊥,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,求证:IG FD=.小云发现连接已知点得到两条线段,便可证明IG FD=.请回答:小云所作的两条线段分别是__________和___________,证明IG FD=的依据是___________________________.IEA BHF16.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是,此时按游戏规则填写空格,所有可能出现的结果共有__________________种.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:()2012sin452320163π-⎛⎫+--+ ⎪⎝⎭18.已知:230a a--=,求代数式()()()232a ab a b a b---+-的值.19.如图,在ABC中,AB AC=,AD是BC边上的中线,AE BE⊥于点E,且12BE BC=.求证:AB平分EAD∠.20.解不等式组()+21243512x x x x -≥-⎧⎪⎨+>-⎪⎩21.如图,在ABCD 中,过点A 作AE DC ⊥交DC 的延长线于点E ,过点D 作DF EA 交BA 的延长线于点F .(1)求证:四边形AEDF 是矩形;(2)连接BD ,若2AB AE ==,25tan FAD ∠=,求BD 的长.D22.在平面直角坐标系xOy 中,直线314y x =+与x 轴交于点A ,且与双曲线ky x =的一个交点为8,3B m ⎛⎫⎪⎝⎭. (1)求点A 的坐标和双曲线ky x=的表达式; (2)若y BC //轴,且点C 到直线314y x =+的距离为2,求点C 的纵坐标.23.上海迪士尼乐园将于2016年6月正式开园,小芳打算在暑假和爸爸、妈妈一起去上海迪士尼乐园游玩,她综合考虑了交通、门票、住宿等方面的因素,得出如下结论:请问:如果小芳家选择住在乐园内,那么他们预计在迪士尼乐园游玩多少天? 24.如图,在ABC 中,AB 是O 的直径,AC 与O 交于点D .点E 在BD 上,连接DE ,AE ,连接CE 并延长交AB 于点F ,AED ACF ∠=∠. (1)求证:CF AB ⊥;(2)若4CD =,CB =4cos 5ACF ∠=,求EF 的长.AB25.阅读下列材料:据报导,2014年北京市环境空气中PM 2.5年平均浓度为85.9微克/立方米,PM 2.5一级优天数达到93天,较2013年大辅度增加了22天.PM 2.5导致的重污染天数也明显减少,从2013年的58天下降为45天,但严重污染天数增加2天.2015年北京市环境空气中PM 2.5年平均浓度为80.6微克/立方米,约为国家标准限值的2.3倍,成为本市大气污染治理的突出问题.市环保局数据显示,2015年本市空气质量达标天数为186天,较2014年增加14天,其中PM 2.5一级优的天数增加了13天.2015年本市PM 2.5重污染天数占全年总天数的11.5%,其中在11-12月中发生重污染22天,占11月和12月天数的36%,与去年同期相比增加15天.根据以上材料解答下列问题:(1)2014年本市空气质量达标天数为____________天;PM 2.5年平均浓度的国家标准限值是______________微克/立方米;(结果保留整数)(2)选择统计表或.统计图,将2013—2015年PM 2.5一级优天数的情况表示出来;(3)小明从报道中发现“2015年11—12月当中发生重污染22天,占11月和12月天数的36%与去年同期相比增加15天”,他由此推断“2015年全年的PM 2.5重污染天数比2014年要多”,你同意他的结论吗?并说明你的理由.26.有这样一个问题:如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究. 下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整; 已知:如图,在筝形ABCD 中,AB AD =,CB CD = 求证:___________________________. 证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):___________________________________________________________________.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.27.在平面直角坐标系xOy 中,抛物线21C y x bx c ++:=经过点()2,3A -,且与x 轴的一个交点为()30B ,.(1)求抛物线1C 的表达式;(2)D 是抛物线1C 与x 轴的另一个交点,点E 的坐标为()0m ,,其中0m >,ADE 的面积为214. ①求m 的值;②将抛物线1C 向上平移n 个单位,得到抛物线2C ,若当0x m ≤≤时,抛物线2C 与x 轴只有一个公共点,结合函数的图象,求n 的取值范围.28.在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q .(1)如图1,当点P 与点B 重合时,QPM 的形状是_____________________; (2)当点P 在线段CB 的延长线上时,如图2. ①依题意补全图2;②判断QPM 的形状,并加以证明;(3)点P '与点P 关于直线AB 对称,且点P '在线段BC 上,连接AP ',若点Q 恰好在直线AP '上,正方形ABCD 的边长为2,请写出求此时BP 长的思路.(可以不写出计算结果)NA DC图1图2图329.在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是; ②线段11A B AB ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为___________________;(2)如图2,已知点()13C ,,C 与y 轴相切于点D .若E 的半径为32,圆心E 在直线l y =+:上,且E 上的所有点都是关于C 的“阴影点”,求圆心E 的横坐标的取值范围;(3)如图3,M 的半径是3,点M 到原点的距离为5.点N 是M 上到原点距离最近的点,点Q 和T是坐标平面内的两个动点,且M 上的所有点都是关于NQT ∆的“阴影点”,直接写出NQT ∆的周长的最小值.xx11图1图2图3。