2019-2020学年高中数学 第一章 集合 1.2 子集、全集、补集 1.2.2 全集、补集教案 苏教版必修1.doc

合集下载

2019—2020年苏教版高中数学必修一全册课时同步练习及答案解析.doc

2019—2020年苏教版高中数学必修一全册课时同步练习及答案解析.doc

(新课标)2018-2019学年度苏教版高中数学必修一§1.1 集合的含义及其表示(1)课后训练【感受理解】1.给出下列命题(其中N 为自然数集) :①N 中最小的元素是1 ②若a ∈N 则-a ∉N ③ 若a ∈N,b ∈N ,则a+b 的最小值是2(4)x x 212=+的解可表示为}1,1{, 其中正确的命题个数为 . 2.用列举法表示下列集合.①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a b a b R a b+∈所确定的实数的集合; ④抛物线221y x x =-+ (x 为小于5的自然数)上的点组成的集合.3. 若方程x 2-5x+6=0和方程x 2-x-2=0的解为元素的集合为M ,则M 中元素的个数为4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则a 的取值可以是【思考应用】5.由实数332,,,x x x x --所组成的集合里最多有 个元素.6. 由“,x xy 0,||,x y ”组成的集合是同一个集合,则实数,x y 的值是否确定的?若确定,请求出来,若不确定,说明理由.7.定义集合运算:},),({B y A x y x xy z z B A ∈∈+==Θ,设集合}3,2{},1,0{==B A ,求集合B A Θ.8.关于x 的方程20(0)ax bx c a ++=≠,当,,a b c 分别满足什么条件时,解集为空集、含一个元素、含两个元素?9. 已知集合{,}A x x m m Z N Z ==+∈∈.(1)证明:任何整数都是A 的元素;(2)设12,,x x A ∈求证:12,x x A ⋅∈【拓展提高】9.设S 是满足下列两个条件的实数所构成的集合: ①1S ∉,②若a S ∈,则11S a∈-, 请解答下列问题:(1)若2S ∈,则S 中必有另外两个数,求出这两个数;(2)求证:若a S ∈,则11S a-∈ (3)在集合S 中元素能否只有一个?请说明理由;(4)求证:集合S 中至少有三个不同的元素.§1.1集合的含义及其表示(2)课后训练1. 设a ,b ,c 均为非零实数,则x=||||||||a b c abc a b c abc+++的所有值为元素组成集合是________ 2. 集合}9,7,5,3,1{用描述法表示为 .3. 下列语句中,正确的是 .(填序号)(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,1,2};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2,2} (4)集合}54{<<x x 可以用列举法表示.4.所有被3整除的数用集合表示为 .5.下列集合中表示同一集合的是` (填序号)(1)M={3,2},N={2,3} (2)M={(3,2)},N={(2,3)}(3)M={(,)1},{(,)1}x y x y N y x x y +==+= (4) M={1,2},N={(1,2)}6.下列可以作为方程组⎩⎨⎧-=-=+13y x y x 的解集的是 (填序号) (1){1,2},x y ==(2){1,2}(3){(1,2)} (4){(,)12}(5){(,)12}x y x y x y x y ====且或(6)}0)2()1(),{(22=-+-y x y x7.用另一种方法表示下列集合.(1){绝对值不大于2的整数} (2){能被3整除,且小于10的正数}(3)}5,{Z x x x x x ∈<=且 (4)*},*,6),{(N y N x y x y x ∈∈=+(5){5,3,1,1,3--}8.已知{}{}0|,0|22=+-==++=q px x x B q px x x A .当{}2=A 时,求集合B9.用描述法表示图中阴影部分(含边界)的点的坐标集合.10.对于*,N b a ∈,现规定:⎩⎨⎧⨯+=)()(*的奇偶性不同与的奇偶性相同与b a b a b a b a b a ,集合{(,)*36,,*}M a b a b a b N ==∈ (1) 用列举法表示b a ,奇偶性不同时的集合M.(2) 当b a ,奇偶性相同时的集合M 中共有多少个元素?【拓展提高】11 设元素为正整数的集合A 满足“若x A ∈,则10x A -∈”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?(4)满足条件的集合A 共有多少个?§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是 ①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a ∈R},B ={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a . 10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U={x|x 是三角形},P={x|x 是直角三角形}则U C P = . 3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】6.设全集U={1,2,3,4,5},M={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U=R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ,U C .(2)若}{A x x D ∈=,说明D B A ,,的关系.§1.3 交集·并集(1)课后训练【感受理解】1.设全集{1,2,3,4,5},{1,3,5},{2,4,5}U A B ===,则()()U U C A C B = . 2.设集合{|5,},{|1,}A x x x N B x x x N =≤∈=>∈,那么AB = . 3.若集合22{|21,},{|21,}P y y x x x N Q y y x x x N ==+-∈==-+-∈,则下列各式中正确的是 .(1);(2){0};(3){1};(4)P Q P Q P Q P Q N =∅==-=4.已知集合A={x|-5<x<5},B={x|-7<x<a},C={x|b<x<2},且A ∩B=C ,则 a ,b 的值分别为 .【思考应用】5.设全集U={1,2,3,4},A 与B 是U 的子集,若A ∩B ={1,3 },则称(A,B)为一个“理想配集”.(若A =B ,规定(A,B)=(B, A);若A ≠B ,规定(A,B)与(B, A)是两个不同的“理想配集”).那么符合此条件的“理想配集”的个数是 .6.记{}{},361T ,的三角形,至少有一内角为至少有一边为等腰三角形。

2019-2020学年苏教版必修一 第1章 1.2 第1课时 子集、真子集 课件(38张)

2019-2020学年苏教版必修一 第1章 1.2 第1课时 子集、真子集  课件(38张)
(2)性质 ①∅是任一非空集合的真子集. ②若 A B,B C,则 A C.
栏目导航
1.思考辨析(正确的打“√”,错误的打“×”) (1){2,3}⊆{x|x2-5x+6=0}. (2)∅⊆{0}. (3)∅⊆{∅}. [答案] (1)√ (2)√ (3)√
() () ()
[提示] (1)x2-5x+6=0 的根为 x=2,3,故(1)正确.因∅是任何 集合的子集,故(2)(3)正确.
栏目导航
1.求解有限集合的子集问题,关键有三点 (1)确定所求集合; (2)合理分类,按照子集所含元素的个数依次写出; (3)注意两个特殊的集合,即空集和集合本身. 2.一般地,若集合 A 中有 n 个元素,则其子集有 2n 个,真子集 有 2n-1 个,非空真子集有 2n-2 个.
栏目导航
2.集合 M 满足{4,5}⊆M⊆{1,2,3,4,5},则这样的 M 共有________ 个.

的关系是________.
BA
[∵B=x,yyx=1

={(x,y)|y=x,且 x≠0},故 B

A.]
栏目导航
4.已知集合 A={1,3,-x3},B={x+2,1},是否存在实数 x, 使得 B 是 A 的子集?若存在,求出集合 A,B;若不存在,请说明理 由.
[解] 因为 B 是 A 的子集, 所以 B 中元素必是 A 中的元素, 若 x+2=3,则 x=1,符合题意. 若 x+2=-x3,则 x3+x+2=0, 所以(x+1)(x2-x+2)=0.
8 个 [易知 M 中必含有 4,5 两个元素,但 1,2,3 可有可无,故 M 的个数与{1,2,3}的子集的个数相同,共 8 个.]
栏目导航
集合之间的包含关系 [探究问题] 1.A⊆B 的意义是什么?若 M={x|x≤2},N={x|x≤1},则 N⊆ M 成立吗? [提示] A⊆B 表示集合 A 中所有的元素都在集合 B 中.借助数 轴表示出 M,N 两集合,易见 N⊆M.

1.2子集、全集、补集

1.2子集、全集、补集

4、子集、真子集的一些简单性质: 、子集、真子集的一些简单性质: (1) A⊆A ) ⊆ ⊆ (2) A⊆B, B⊆C ⇒ A⊆C ) ⊆ , ⊆ (3) A ) B, B , C⇒A C
例1
(1)写出集合{a,b}的所有子集; (2)写出集合{a,b,c}的所有子集; (3)写出集合{a}的所有子集; (4)写出∅的所有子集. 请归纳出规律来!
若对任意x∊ , 若对任意 ∊A,有x ∊B,则 A⊆B , ⊆
若A不是B的子集,则记作:A⊈B(或B ⊉A)
注:图示法表示集合间的包含关系 图示法表示集合间的包含关系
A⊆B的图形语言: ⊆ 的图形语言 的图形语言:
用平面上封闭的 曲线的内部表示 集合这个图形叫 文氏图(韦恩图)
A B
2:集合相等 :
一、子集
1、子集的概念 、 一般地,对于两个集合A 一般地,对于两个集合A和B,如果集合A中任意一 如果集合A 个元素都是B中的元素,就说集合A包含于集合B 个元素都是B中的元素,就说集合A包含于集合B, 或集合B包含集合A 或集合B包含集合A, 记作:A⊆B(或B⊇A)。 记作: 读作: 包含于B 读作:A包含于B(或B包含A) 包含A 数学语言表示形式:
个元素, 中增加一个元素, 例 2、集合 A 中有 m 个元素,若 A 中增加一个元素, 则它子集的个数将增加 个
同时满足:( ) 2 3 4 5 ;(2 a ∈ M, 则 例 3、同时满足:( 1 M ⊆ {1,,,,} ) 6 - a ∈ M 的非空集合 M 有( A.16 个 B.15 个 ) D.6 个 C.7 个
总结:元素个数与集合子集个数的关系: 总结:元素个数与集合子集个数的关系
集合 集合元素的个数 集合子集个数 0 1 1 2 3 4 … n个元素 个元素 2 4 8 16 … 2n

1.1.2子集和补集 课件(共63张PPT) (2024) 高中数学湘教版必修第一册

1.1.2子集和补集 课件(共63张PPT) (2024) 高中数学湘教版必修第一册

如果学校里所有同学组成的集合记为S,所有男同学组成的集合 记为M,所有女同学组成的集合记为F,那么:
(1)这三个集合之间有什么联系? (2)如果x∈S且x∉M,你能得到什么结论?
知识点 2 全集与补集 (1)全集 ①定义:如果在某个特定的场合,要讨论的对象都是集合 U 的元素和子集,就可以约定把集合 U 叫作全集(或基本集). ②记法:全集常记作 U .
(2)补集
若 A 是全集 U 的子集,U 中 不属于A 的元素组成的子 文字语言
集叫作 A 的补集,记作∁UA
符号语言
∁UA= {x|x∈U,且 x∉A}
图形语言
当 U 可以从上下文确知时 A 的补集也可以记作-A .显然∁U(∁UA)
=A.一般地,不论 A 是否是 B 的子集,都可用 B\A 表示 B 中不属于
第1章 集合与逻辑
1.1 集合 1.1.2 子集和补集
学习任务
核心素养
1.理解集合之间的包含与相等的含义.(重 1.通过对集合之间包含与
点)
相等的含义以及子集、真
2.能识别给定集合的子集、真子集,会判断 子集概念的理解,培养数
集合间的关系.(难点、易混点)
学抽象素养.
3.了解全集的含义及其符号表示.(易混点) 2.借助子集和真子集、补
2.∅与0,{0},{∅}有何区别?
[提示]
∅与 0
∅与{0}
∅与{∅}
相同点 都表示无的意思 都是集合
都是集合
∅是集合;0 是实 ∅不含任何元素; ∅不含任何元素;{∅}含
不同点

{0}含一个元素 0 一个元素,该元素是∅
关系
0∉∅
∅ {0}
∅ {∅}
空集是任何非空集合的真子集.

1.2 子集、全集、补集讲义

1.2 子集、全集、补集讲义

1.2 子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A”.(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A 是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a 的值为-1,2.2.真子集 (1)定义:如果A B ,并且A≠B ,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例: {1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C . ③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B A A ≠B A B .④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ”“ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }.其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合评点中.2.写出集合A ={p ,q ,r ,s }的所有子集.根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉.解:集合A 的子集分为5类,即 (1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m 个,真子集有(2m -1)个,非空真子集有(2m -2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.从子集、真子集的概念以及空集的特点入手,逐一进行判断. 解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集. 求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A .(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A . 4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ . 根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}. 评点 评点(1)解答此题应首先根据子集与真子集的概念判断出集合M中含有元素的可能情况,然后根据集合M中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a1,a2,…,a m } A {a1,a2,…,a m ,a m+1,…,a n } ,则A的个数为2n-m.若{ a1,a2,…,a m } A {a1,a2,…,a m ,a m+1,…,a n },则A的个数为2n-m -1.若{ a1,a2,…,a m } A {a1,a2,…,a m ,a m+1,…,a n },则A的个数为2n-m -2.要点二补集、全集[重点]1.补集设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作 S A(读作“A在S中的补集”),即S A={ x | x∈S,且x A}.C S A可用图1-2-22.全集.(1)定义:如果集合S包含我们所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.(2)举例:例如,在实数范围内讨论集合时,R便可看做一个全集U,在自然数范围内讨论集合时,N便可看做一个全集U.3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A在全集U中的补集的方法:从全集U中去掉所有属于A的元素,剩下的元素组成的集合即为A在U中的补集.如已知U= a,b,c,d,e,f ,A= b,f ,求C U A.该题中显然A U,从U中除去子集A的元素b、f ,乘下的a、c、d、e组成的集合即为 U A= a,c,d,e .求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R,A= x x > 3 ,求 U A.用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题 例2 不等式组⎩⎪⎨⎪⎧2x -1>0,3x -6≤0的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<x x ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1).C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A .在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍.6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}.(1)判断A 、B 的关系;(2)求C U B 、C U C ,并判断其关系.根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A .若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B . 1212评点若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A .要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论.解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a的取值范围:(1)B A ;(2)AB .紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.(2)因为A B ,B 是A 的子集,如图1-2-6(2),故a ≥5.9.已知M={x |x = a 2+1,a ∈N *},P={ y | y =b 2- 6b +10,b ∈N},判断集合M 与P 之间的关系.解法一:集合P 中,y =b 2-6b +10=(b -3)2+1当b =4,5,6,…时,与集合M 中a =1,2,3,…时的值相同,而当b =3时,y =1∈P ,1 M ,∴M P .解法二:对任意的x 0∈M ,有x 0=a 20+1=(a 0+3)2-6(a 0+3)+10∈P(∵a 0∈N *,∴a 0+3∈ N),∴M P ,又b =3时,y =1,∴1∈P .而1<1+ a 20+1=(a 0∈N *),∴1 M ,从而M P .10.已知全集U ,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合B .求集合B ,需根据题意先求全集U ,由于集合A 及C U A 已知,因此可用V enn 图来表示所给集合,将A 及C U A 填入即可得U解:借助V een 图,如图1-2-7.评点 (2)(1)由题意知U={1,2,3,4,5,6,7,8,9}. ∵C U B={1,4,6,8,9} ∴B={2,3,5,7}.求本题中的全集,用V een 较直观,本题的求解实际上应用了补集的性质C U (C U B)=B .教材问题探究1.教材第8页“思考”对于集合A 、B ,如果A B ,同时B A ,那么A=B .这是因为由A B 可知,集合A 的元素都是集合B 的元素,又由B A 知,集合B 的元素也都是集合A 的元素,这就是说,集合A 和集合B 的元素是完全相同的,因而说集合A 与集合B 是相等的.当A=B 时,集合A 中的每一个元素都在集合B 中,集合B 中的元素也都在集合A 中,即A B 与B A 同时成立.综上所述,A B 与B A 同时成立的等价条件是A=B . 例 判断下列两个集合的关系: (1)A={x |(x -1)(x +1)= 0},B={x | x 2=1};(2)C={x | x =2n ,n ∈Z },D={x | x =2(n -1),n ∈Z }. 解:∵(1)A={-1,1},B={-1,1},∴A=B .(2)易知集合C 为偶数,∵n ∈Z ,n -1∈Z ,∴集合D 也为偶数集,∴C=D .2.教材第9页“思考”在(1)(2)(3)中除有A S ,B S 外,不难看出在S 中属于A 的所有元素均不属于B ,即x i∈S ,x i∈A ,但x iB ,在S 中属于B 的所有元素均不属于A ,即x i∈S ,xi ∈A ,但x iA ,也就是说,A 、B 两个集合没有公共元素,且它们的元素合在一起,恰好是集合S 的全部元素.探究学习1.教材第8页“?”集合{a 1,a 2,a 3,a 4}的子集有: ,{a 1},{a 2},{a 3},{a 4},{a 1,a 2},{a 2,a 3},{a 3,a 4},{a 1,a 4},{a 1,a 3},{a 2,a 4},{a 1,a 2,a 3},{a 1,a 2,a 4},{a 2,a 3,a 4},{a 1,a 3,a 4},{a 1,a 2,a 3,a 4}.拓展:集合{a 1,a 2,a 3,a 4}有多少个真子集?有多少个非空真子集?由上可知,集合{a 1,a 2,a 3,a 4}有15个真子集,有14个非空真子集. 一个集合含有n 个元素,则它的所有自己有2n 个,真子集有(2n-1)个(去掉集合本身),评点非空真子集有(2n -2)个(去掉集合本身及空集).典型例题解析例1 设A={x | ( x 2-16)( x 2+5x +4) = 0},写出集合A 的子集,并指出其中哪些是它的真子集?要确定集合A 的子集、真子集,首先必须清楚集合A 中的元素,由于集合A 中的元素是方程( x 2-16)( x 2+5x +4) = 0的根,所以要先解该方程.解:将方程( x 2-16)( x 2+5x +4) = 0变形,得( x -4)( x +1)( x +4)2=0,则可得方程的根为x =-4 或x =-1或x =4.故集合A={-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4, 4},{-1,4},{-4,-1,4},真子集有 ,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}写出一个集合的所有子集,首先要注意两个特殊的子集— 和自身;其次,依次按含有一个元素的子集,含有两个元素的子集,含有三个元素的子集等一一写处,就可避免重复和遗漏现象的发生.-2},A={| 3a -2 |,4},C U A={3},求实数a 的值.∵C U A={3},∴3∈U ,且3 A ,由补集的定义知A={1,4}. 解:∵C U A={3},说明3∈U ,且3 A ,∴a 2+4a -2=3,∴a =-5或a =1. ①当a =1时,| 3a -2 |=1≠3,此时A={1,4},满足题意. ②当a =-5时,| 3a -2 |=17,此时A={17,4} U ,不满足题意. ∴a 的值为1.例3 已知{1,2} M {1,2,3,4,5},则这样的集合M 有 8 .根据题目给出的条件可知,集合M 中至少含有元素1、2,至多含有元素1、2、3、4、5,故可按M 中所含元素的个数分类写出集合M ,解析:(1)当M 中含有两个元素时,M 为{1,2};(2)当M 中含有三个元素时,M 可能为{1,2,3},{1,2,4},{1,2,5}; (3)当M 中含有两个元素时,M 可能为{1,2,3,4},{1,2,3,5},{1,2,4,5}; (4)当M 中含有两个元素时,M 为{1,2,3,4,5};所有满足条件的M 为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共8个.评点首先根据子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.例4 已知集合A={x | - 2 ≤ x ≤ 5},B={x |m +1≤ x ≤ 2m -1},若B A ,求实数m 的取 值范围.对B 要进行讨论,分B 为空集和非空集合两种情况.解:(1)若B ≠ ,则由B A (如图1-2-5),得 ⎩⎪⎨⎪⎧m +1≤ 2m -1,m +1≥ -2,2m -1≤ 5, 解的2 ≤ m ≤ 3.(2)若B= ,则m +1>2m -1,m <2,此时B A 也成立. 由(1)和(2),得m ≤ 3,所以实数m 的取值范围是{ m | m ≤ 3}. 求解.例5 已知集合A={x | 1 ≤ a x ≤ 2},B={x | | x | < 1},求满足A B 的实数a 的取 值范围.对参数进行讨论,写出集合A 、B ,使其满足,求a 的值. 解:(1)当a = 0时,A= ,满足A B .(2)当a > 0时,{}21A=.B=11,A B x x x x a a ⎧⎫⊂<<-<<=⎨⎬⎩⎭又.∴11 2.21a a a ⎧≥-⎪⎪∴∴≥⎨⎪≤⎪⎩(3)当a < 0时,{}2121A= B=11 2.1 1.ax x x x a a a a⎧≥-⎪⎧⎫⎪<<-<<⊆∴∴≤-⎨⎬⎨⎭⎩⎪≤⎪⎩,,又,A B .综上所述,a = 0,或a ≥2,或a ≤-2. 根据子集的定义,把形如A B 的问题转化为不等式组问题,使问题得以解决.在解决 问题的过程中,应首先考虑A= 的情况.在建立不等式的过程中,借助数轴,是解决本题 重要一环,若不等式中含有参数,一般需对参数进行讨论,进而正确解出不等式.评点 评点例6已知全集S={1,3,x3+3 x2+2x},集合A={1,|2x-1|},如果C S A={0},那么这样的实数x是否存在?若存在,求出x;若不存在,请说明理由.由C S A={0}可知0∈S,但0 A,所以x3+3 x2+2x=0,且|2x-1|=3,从中求出x即可.解法一:∵S={1,3,x3+3 x2+2x},A={1,|2x-1|},C S A={0},∴0∈S,但0 A,∴323201. 213x x xxx++=⎧⎪=-⎨⎪-=⎩,解的,综上知,实数x存在,且x=-1.由C S A={0}可知0∈S,但0 A,由0∈S可求x,然后结合0 A来验证是否有A S及是否符合集合中元素的互异性,从而得出结论.解法二:∵C S A={0},∴0∈S,但0 A,∴x3+3 x2+2x=0,即x(x+1)(x+3)=0,∴x=0或x=-1或x=-2.当x=0时,|2x-1|=1,A中已有元素1,故不符合互异性,舍去;当x=-1时,|2x-1|=3,而3∈S,符合题意;当x=-2时,|2x-1|=5,而5 S,舍去.例7已知A={x|x<-1或x>5},B={x∈R|a<x<a+4},若AB,求实数a的取值范围.注意到B≠ ,将A在数轴上保释出来,再将B在数轴上表示出来,使得A B,即可得a的取值范围.解:如图-2-6,∵A B,∴a+4≤-1或a≥5,∴a≤-5或a≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,方法一数形结合思想1-4a+a4a+51-评点例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符合B A .解:集合A={3,5},当a =0时,B= ,满足B A .∴a =0符合题意. 当a ≠0时,B≠ ,1.x a = ∵B A ,∴综上,a 的值为0或13或15.当B A 时,B 中含有参数,而A 是一个确定的非空集合,要特别注意B= 的情况, 考点点击:高考中对子集、真子集、补集以及集合相等的概念考察较多,但难度不大,命题多为填空题.例1 (2010·重庆高考)设,若,则实数.{}{}{}2U U =0123.A=U 0A=12x x m x ∈+=,,,,若,,ð }{} U 0A=12 m x =,若,,ð则实数m = -3 .解析:{}{}2U A=12A=030 30 3.x mx m ∴∴+-∴=-,,,,,是方程的根,ð 例2 (2010·天津高考)设集合{}{}A=1R B=2R A Bx x a x x x b x -<∈->∈⊆,,,,若, }2R A B x >∈⊆,,若,则实数a ,b 满足 3 a b -≥ .解析:{}{}A=11B=22x a x a x x b x b -<<+>+<-,或,由A B ⊆得12a b +-≤或12a b +-≥,即3a b -≥或3a b --≤,即 3.a b -≥ 例3 (2007·北京高考)记关于x 的不等式01x a x -<+的解集为P ,不等式11x -≤的解集为Q .(1)若a =3,求P ;(2)若Q P ,求整数a 的取值范围. 解:{}3(1)0P =13.1x x x x -<-<<+由得方法二 分类讨论思想 评点{}{}(2)Q =11,02x x x x -≤=≤≤{}0P=1.Q P 2a x x a a >-<<⊆>由,得又,所以,即a 的取值范围是( 2,+ ∞). 学考相联判断两个集合之间的关系是集合中的重要题型,且是高考热点之一.下面举两例介绍几种常用的方法,帮助你开拓思想.1.对比集合的元素例1 {}{}*A =N 8B =2N05,x x x x k k k ∈≤=∈<<已知,,,且那么集合A 与B 的关系为( B A ).解析:因为A={1,2,3,4,5,6,7,8},B={2,4,6,8},集合B 中的元素2,4, 6,8都是集合A 中的元素,而集合A 中的元素1,3,5,7不是集合B 中的元素,所以 B A .2.数形结合比较范围例2 已知{}{}2A=y y=26R B=475x x x x x --∈->,,,那么集合A 与B 的关系为( B A ) .解析:对于二次函数{}{}2A =y y =26RB =475x x x x x --∈->,,,,{}4(6)47A =y y 7.4y ⨯---==-∴≥最小,又{}B=3x x >,由图1-2-7知,B A .3.利用传递性判断例3 已知集合11A B B=Z C =Z 4284k k x x k x x k ⎧⎫⎧⎫⊆=+∈=+∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,,那么集合A 与C 的关系为( A C ).解析:将B 、C 变形得242B =Z C =Z 88k k x x k x x k ⎧+⎫⎧+⎫=∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,,,,可知B C .又A B C ,即A C .例4 已知集合(){}{}22A=4640B=0 6x x m x m -++=,,,若A B ,求实数m 的取值范围.解:{}{}{}{}A B B=0 6 A=A=0A=6A=0 6.⊆∴∅ ,,,或或或, (1)当A= 时,Δ=(4m +6)2-4×4m 2<0,解得m <- 34.(2)当A={0}时,由根与系数的关系得20+0=46004m m +⎧⎨⎩⨯=,,此方程组无解.(3)当A={6}时,由根与系数的关系得26+6=46664m m +⎧⎨⎩⨯=,,此方程组无解.(4)当A={0,6}时,由根与系数的关系得20+6=4606=4m m +⎧⎨⎩⨯,,解得m =0.综上知实数m 的取值范围为m <-34或m =0解决子集问题时,往往易溢漏“ ”和它“本身” ,所以杂解决有关子集的问题时,一定要考虑到两个特殊的子集:“ ”和它“本身” ,并注意单独验证它们是否符合题意.。

第1章-1.2-子集、全集、补集高中数学必修第一册苏教版

第1章-1.2-子集、全集、补集高中数学必修第一册苏教版
44444 4
537
424
= {⋯ , , ,1, , , ,⋯ },易知集合A中任一元素均为B中的元素,但B中的有些元素不在
集合A中,故 ⫋ .

2
1
4
(特征法) 集合A中的元素为 = + =
=

4
1
+
2
=
+2
4
2+1
(
4
∈ ),集合B中的元素为
∈ ,而2 + 1 ∈ 为奇数, + 2 ∈ 为整数,故 ⫋ .
知识点4 有限集合的子集、真子集个数
例4-10 (2024·广东省深圳中学月考)若集合满足 ⫋ {1,2},则的个数为( B
A.2
B.3
C.4
D.5
【解析】集合满足 ⫋ {1,2},集合{1,2}的元素个数为2,则的个数为
22 − 1 = 3.
)
例4-11 (2024·河南模拟)已知集合 = { ∈ | − 2 < < 3},则集合的所有非空真
第1章 集合
1.2 子集、全集、补集
教材帮丨必备知识解读
知识点1 子集、真子集
例1-1 能正确表示集合 = { ∈ |0 ≤ ≤ 2}和集合 = { ∈ | 2 − = 0}关系的
Venn图为( B
A.
)
B.
C.
D.
பைடு நூலகம்
【解析】由2 − = 0得 = 1或 = 0,所以 = {0,1},故 ⫋ .结合选项可知,B正确.
【解析】因为 2 − 5 + 6 = 0的两根为2,3,故A正确;
因为⌀ 是任何集合的子集,故B正确;

人教版高中数学教材目录(全册)(完美版)

人教版高中数学教材目录(全册)(完美版)

人教版高中数学教材目录(全)第一册上第一章集合与简易逻辑一集合1.1集合1.2 子集、全集、补集1.3交集、并集1.4含绝对值的不等式解法1.5一元一次不等式解法阅读材料集合中元素的个数二简易逻辑1.6逻辑联结词1.7四种命题1.8充分条件与必要条件小结与复习复习参考题一第二章函数一函数2.1函数2.2函数的表示法2.3函数的单调性2.4反函数二指数与指数函数2.5指数2.6指数函数三对数与对数函数2.7对数阅读材料对数的发明2.8对数函数2.9函数的应用举例阅读材料自由落体运动的数学模型实习作业建立实际问题的函数模型小结与复习复习参考题二第三章数列3.1数列3.2等差数列3.3等差数列的前n项和阅读材料有关储蓄的计算3.4等比数列3.5等比数列的前n项和研究性学习课题:数列在分期付款中的应用小结与复习复习参考题三第一册下第四章三角函数一任意角的三角函数4.1角的概念的推广4.2弧度制4.3任意角的三角函数阅读材料三角函数与欧拉4.4同角三角函数的基本关系式4.5正弦、余弦的诱导公式二两角和与差的三角函数4.6两角和与差的正弦、余弦、正切4.7二倍角的正弦、余弦、正切三三角函数的图象和性质4.8正弦函数、余弦函数的图象和性质4.9函数y=Asin(ωx+φ)的图象4.10正切函数的图象和性质4.11已知三角函数值求角阅读材料潮汐与港口水深小结与复习复习参考题四第五章平面向量一向量及其运算5.1向量5.2向量的加法与减法5.3实数与向量的积5.4平面向量的坐标运算5.5线段的定比分点5.6平面向量的数量积及运算律5.7平面向量数量积的坐标表示5.8平移阅读材料向量的三种类型二解斜三角形5.9正弦定理、余弦定理5.10解斜三角形应用举例实习作业解三角形在测量中的应用阅读材料人们早期怎样测量地球的半径?研究性学习课题:向量在物理中的应用小结与复习复习参考题五第二册上第六章不等式6.1不等式的性质6.2算术平均数与几何平均数6.3不等式的证明6.4不等式的解法举例6.5含有绝对值的不等式阅读材料n个正数的算术平均数与几何平均数小结与复习复习参考题六第七章直线和圆的方程7.1直线的倾斜角和斜率7.2直线的方程7.3两条直线的位置关系阅读材料向量与直线7.4简单的线性规划研究性学习课题与实习作业:线性规划的实际应用7.5曲线和方程阅读材料笛卡儿和费马7.6圆的方程小结与复习复习参考题七第八章圆锥曲线方程8.1椭圆及其标准方程8.2椭圆的简单几何性质8.3双曲线及其标准方程8.4双曲线的简单几何性质8.5抛物线及其标准方程8.6抛物线的简单几何性质阅读材料圆锥曲线的光学性质及其应用小结与复习复习参考题八第二册下A第九章直线、平面、简单几何体9.1平面9.2空间直线9.3直线与平面平行的判定和性质9.4直线与平面垂直的判定和性质9.5两个平面平行的判定和性质9.6两个平面垂直的判定和性质9.7棱柱9.8棱锥阅读材料柱体和锥体的体积研究性学习课题:多面体欧拉定理的发现阅读材料欧拉公式和正多面体的种类9.9球小结与复习复习参考题九第十章排列、组合和二项式定理10.1分类计数原理与分步计数原理10.2排列10.3组合阅读材料从集合的角度看排列与组合10.4二项式定理小结与复习复习参考题十第十一章概率11.1随机事件的概率11.2互斥事件有一个发生的概率11.3相互独立事件同时发生的概率阅读材料抽签有先有后,对个人公平吗?小结与复习复习参考题十一第二册下B第九章直线、平面、简单几何体9.1平面的基本性质9.2空间的平行直线与异面直线9.3直线和平面平行与平面和平面平行9.4直线和平面垂直9.5空间向量及其运算9.6空间向量的坐标运算9.7直线和平面所成的角与二面角9.8距离阅读材料向量概念的推广与应用9.9棱柱与棱锥研究性学习课题:多面体欧拉定理的发现阅读材料欧拉公式和正多面体的种类9.10球小结与复习复习参考题九第十章排列、组合和二项式定理10.1分类计数原理与分布计数原理10.2排列10.3组合阅读材料从集合的角度看排列与组合10.4二项式定理小结与复习复习参考题十第十一章概率11.1随机事件的概率11.2互斥事件有一个发生的概率11.3相互独立事件同时发生的概率阅读材料抽签有先有后,对各人公平吗?小结与复习复习参考题十一第三册(理科)第一章概率与统计1.1离散型随机变量的分布列1.2离散型随机变量的期望与方差1.3抽样方法1.4总体分布的估计阅读材料累积频率分布1.5正态分布1.6线性回归阅读材料回归直线方程的推导实习作业通过抽样调查,研究实际问题小结与复习复习参考题一第二章极限2.1数学归纳法及其应用举例阅读材料不完全归纳法与完全归纳法研究性学习课题:杨辉三角2.2数列的极限2.3函数的极限2.4极限的四则运算阅读材料无穷等比数列的和2.5函数的连续性小结与复习复习参考题二第三章导数3.1导数的概念3.2几中常见函数的导数阅读材料变化率举例3.3函数的和、差、积、商的导数3.4复合函数的导数3.5对数函数与指数函数的导数阅读材料近似计算3.6函数的单调性3.7函数的极值3.8函数的最大值与最小值3.9微积分建立的时代背景和历史意义小结与复习复习参考题三第四章数系的扩充──复数4.1复数的概念4.2复数的运算4.3数系的扩充研究性学习课题:复数与平面向量、三角函数的联系小结与复习复习参考题四附录一部分中英文词汇对照表附录二导数公式表第三册(文科)第一章统计1.1抽样方法1.2总体分布的估计1.3总体期望值和方差的估计实习作业通过抽样调查研究实际问题小结与复习复习参考题一附录随机数表第二章导数2.1导数的背景2.2导数的概念2.3多项式函数的导数2.4函数的单调性与极值2.5函数的最大值与最小值2.6微积分建立的时代背景和历史意义研究性学习课题:杨辉三角小结与复习复习参考题二附录部分中英文词汇对照表附送教师精彩课堂用语(不需要可自行删除)(听说读问写)☆☆☆☆☆☆☆☆☆☆听☆☆☆☆☆☆☆☆☆☆1、谢谢大家听得这么专心。

子集、补集、全集习题课(2019年新版)

子集、补集、全集习题课(2019年新版)
1.2 子集、补集、全集习题课
一、有关概念
1、元素与集合、集合与集合之间的关系 (1)元素与集合的关系是属于与不属于
的关系用符号∈、表示
(2)集合与集合之间的关系是包含、真 包含、相等的关系,用符号
=表示。
1、判断 (1)若集合A不是集合B的子集,则A中
的元素都不在B中。
(2)若集合A是集合B的子集,则集合B 中一定有不属于A的元素。(3)空 Nhomakorabea没有子集。
(4)若集合A是集合B的子集,则A中的 元素都属于B 。
; https:///%e6%be%b3%e6%b4%b2%e8%ae%ba%e6%96%87%e4%bb%a3%e5%86%99/ 澳洲靠谱代写 澳洲论文代写 ;
高祖初起 ”舜让於德不怿 姓姬氏 散鹿台之钱 虽有周旦之材 ” 管仲富拟於公室 ”使还报 建汉家封禅 弟外壬立 苍以客从攻南阳 天下安宁有万倍於秦之时 围郑三月 韩生推诗之意而为内外传数万言 所以为藉也 冤哉亨也 ”乃许张仪 武庚既死 乞骖乘 生锺分:子一分 是为帝太甲 北自龙门至于朔方 故诸博士具官待问 其明年冬 安在公子能急人之困也 解而去 最小鬼之神者 遵其言 不至而还 遂将兵会垓下 宣侯十三年卒 夫率师 阴阳有分 骂曰:“竖儒 即反接载槛车 其他名殷星、太正、营星、观星、宫星、明星、大衰、大泽、终星、大相、天浩、序星、月纬 和夷厎绩 君俎郊祀 与叔向私语曰:“齐国之政卒归於田氏矣 以故自弃 泰一之佐也 其富如此 五世其昌 绝楚粮食 原效愚忠而未知王之心也 乘法驾 所爱者 王按剑而怒 趣舍有时若此 死後留权 乃复东至海上望 柱国、相国各一人 立二十七年卒 日方南金居其南 毋偏毋党 世世相传 必有大害 太子苏 虏魏王 是为易行 多从人 秦使相国吕不韦诛之 建读之 阳虎执怀 上以寄为将军 二十二年 贰师将军与哆、始

高中数学 第一章 集合 1.2 子集、全集、补集互动课堂

高中数学 第一章 集合 1.2 子集、全集、补集互动课堂

1.2 子集、全集、补集互动课堂疏导引导1.对于两个集合A、B,如果集合A的任意一个元素都是集合B的元素,则称集合A是集合B的子集.记为A ⊆B或B ⊇A.疑难疏引对于两个集合A、B,如果A ⊆B且A≠B,则称集合A是集合B的真子集.记为A⊆B或B ⊇A;如果集合A的任意一个元素都是集合B的元素,同时集合B的任意一个元素都是集合A的元素,则称集合A和集合B相等,记作A=B.2.子集的有关性质(1)A=B ⇔A⊆ B且B ⊆A.(2)A⊆B,B ⊆C ⇔A ⊆C, A B,B ⊆C ⇒A C, A ⊆B,B C ⇒A C.(3)若集合A有n个元素,则A的子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.●案例1集合与集合间的关系是否能用“∈”?【探究】设集合A={0,1},B={x|x⊆A},则集合A、B之间的关系如何?要确定A、B的关系,就必须弄清集合B的元素是什么,集合B的元素x⊆A,所以集合B={∅,{0},{1},{0,1}}.虽然“∈”表示元素与集合的关系,但是集合A作为B的一个元素出现,故A与B之间用的是符号“∈”.【溯源】要认真分析所研究的对象是元素与集合之间的关系还是集合之间的关系.如果是元素和集合,那么只能用“∈”和“∉”,如果是两集合之间的关系,那么应该在“⊆”、“⊇”和“=”中选择合适的符号表示.●案例2写出集合{a,b,c}的所有子集.【探究】本题考查子集的概念,注意不要遗漏,可按元素个数的多少这一顺序书写,养成好的习惯.{a,b,c}的子集是,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.【溯源】空集是任何集合的子集,是任何非空集合的真子集;任何集合都是本身的子集,但不是本身的真子集.●案例3写出满足{1,3}⊆M ⊆{1,3,5,7}的所有集合M.【探究】根据题目条件可以知道集合M中至少含有元素1和3,最多只能有4个元素1、3、5、,7,所以相当在求集合{5,7}的所有子集,然后在这些子集中都加上元素1和3即可.所以所求集合M为{1,3}、{1,3,5},{1,3,7},{1,3,5,7}.【溯源】 1.若条件改为{1,3}M ⊆{1,3,5,7},则符合条件的M应将上述四个集合中的{1,3}去掉.2.若仅需求M的个数则只需用公式24-2=4即可.3.解题时应注意空集的独特性.可采用分类讨论、数形结合、等价转化思想解决集合与二次方程的综合应用题.●案例4已知集合A={1,2},B={1,2,3,4,5},且A M ⊆B,写出满足上述条件的集合M.【探究】集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.疑难疏引利用分类讨论的思想,考虑到集合B的所有可能的情况.这是处理集合与其子集之间关系的常用方法.另外,此题也可以利用韦达定理结合根的判别式求解.此题容易发生的错误是:没有注意题中的已知条件,又多加上B=∅的情形,从而造成画蛇添足!●案例5已知集合A={x|x2-2x-3=0},集合B={x|ax-1=0}.若B是A的真子集,则a的值为多少?【探究】 本题可先从化简集合A 入手.因为 B A ,所以可写出B 的所有结果,再分别代入求值.∵A ={-1,3}, B A ,∴B =∅,{1},{3}.若B =∅,则a =0;若B ={-1},则a =-1;若B ={3},则a =31. 综上,a 的值为-1,0,31. ●案例6已知A ={-3,4},B ={x |x 2-2px +q =0},B ≠∅,且B ⊆A ,求实数p 、,q 的值.【探究】 本题可以先求出集合B 的三种情况,再由方程的根来求出字母的值.由B ⊆A 知,B ={-3}或{4}或{-3,4}.当B ={-3}时,方程x 2-2px +q =0有两个相等的根-3,∴⎩⎨⎧=-=∆=++.044,0692q p q p 解得⎩⎨⎧=-=;9,3q p ; 当B ={4}时,方程x 2-2px +q =0有两个相等的根4,∴⎩⎨⎧=-=∆=+-.044,08162q p q p 解得⎩⎨⎧==;16,4q p p =4,q =16; 当B ={-3,4}时,方程x 2-2px +q =0的根是-3,4,∴⎩⎨⎧=+-=++.0816,069q p q p解得⎪⎩⎪⎨⎧-==.12,21q p【溯源】 本题应从集合B 的三种情况考虑,而不应该盲目地把-3,4带入方程. 活学巧用1.指出下列集合之间的关系:(1){1,2,3}______{3,2,1};(2)∅________{0};(3){3}_________{x |2<x <4};(4){x |x =2n +1,n ∈Z }_________{x |x =4n +1,n ∈Z }.【思路解析】 本题考查几个符号的正确应用情况.【答案】 =2.设集合M ={x |x ≤0},则下列关系中正确的是( )A.0 ⊆MB .{0}∈MC .{0}⊆MD .∅∈M【思路解析】 本题考查几个符号的正确应用.【答案】 C3.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为( )A.A BB.A BC.A =BD.A ≠B【思路解析】 易知集合A 就是奇数集,集合B 通过给k 赋值,也可以取到所有的奇数.【答案】 C4.已知A ={x |x <5},B ={x |x <a },若A ⊆B ,求实数a 的取值范围.【思路解析】 A ⊆B 说明A 的范围比B 的范围小.【解】 a ≥5.5.写出集合{1,2,3}的所有子集并求所有子集中元素之和.【思路解析】 按子集元素个数的多少分别写出它的子集,才能避免不重不漏,同时还应注意两个特殊子集,即和给定集合本身.(1)由本题知,由3个元素组成的集合子集有8个.那么由2个元素组成的集合子集有几个?由4个元素呢?由5个元素呢?推而广之n 个元素组成的集合子集有多少个?(2n 个)(2)A 中每个元素出现在子集中4次,是在写出所有子集后,再观察得出的结果,能否不写出A 的子集也得出同样结论?完全可行.注意到A 中的元素1,出现在A 的子集({1},{1,2},{1,3},{1,2,3}),如果从这些集合中去掉元素1,剩下元素组成的集合依次为,{2},{3},{2,3},即为集合{2,3}的全部子集.一般而言,A 中n 个元素,而每一元素出现于集合中的次数为2n -1.故所有子集元素之和S =(a 1+a 2+…+a n )2n -1.【解】∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.注意到A 中每个元素均出现了4次.故所有子集元素的和为(1+2+3)×4=24.6.己知{1,2}⊆A ⊆{1,2,3,4},求满足条件的集合A .【思路解析】 首先弄清应有怎样的元素组成集合A .【解】 ∵{1,2}⊆A ,∴A 中要有元素1和2.然后将A 中元素增加的状况进行分类讨论:(1)A 中仅有元素1和2时,A ={1,2}.(2)A 在1、2的基础上增加1个,于是有A ={1,2,3}或A ={1,2,4}.(3)A 在1、2的基础上增加2个,于是有A ={1,2,3,4}.这样符合条件的集合A 共有4个:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.7.设集合A ={2,3,a 2+2a -3},B ={2,5,b },并且A =B ,求实数a 、b 的值.【思路解析】 本题考查集合相等的含义,易知{2,5,b }={2,3,a 2+2a -3},解方程组即可.【解】 由已知,{2,5,b }={2,3,a 2+2a -3},∴⎩⎨⎧=-+=.532,32a a b b =3,a 2+2a -3=5. 解得⎩⎨⎧-==4,3a b 或⎩⎨⎧==.2,3a b8.已知A={0,1},B={x|x⊆A},C={x|x∈A,x∈N*},写出A、,B、,C三个集合间的关系.【思路解析】构成集合的元素可以是世界万物,当然可以是集合,集合B中的元素就是集合.【解】B={∅},{0},{1},{0,1},C={1},所以A∈B,C∈B,C⊆A.。

子集和补集 习题课课件-2024-2025学年高一上学期数学湘教版(2019)必修第一册

子集和补集 习题课课件-2024-2025学年高一上学期数学湘教版(2019)必修第一册

、2


0, ,


0, ,

,则−=(
、−2

,且后面一个集合有个元素为

所以 ≠ 0,只能 + = 0


即: = −, =


)。
= −1
可得: 1,0, = 0, −1,
综上, = −1, = 1,−= 1 − (−1) = 2
反馈检测
下面四个命题中正确命题的个数是(
依题意,集合至少有3,4,5中的一个元素;
所以集合的个数等于集合 3,4,5 的非空子集个数:23 − 1 = 7。
反馈检测
已知 = 1,2,3 , = 1,2 ,定义集合、之间的运算“*”:* =
5
| = 1 + 2 , 1 ∈ , 2 ∈ ,那么集合*中最大的元素是_____;
1.1.2子集和补集
习题课
(湘教版2019必修第一册)
熟悉考纲
1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
3、能使用图表达集合之间的关系,尤其要注意空集这一特殊
集合的意义。
知识回顾
子集的概念:
每个元素
包含
①文字语言:如果集合的____________都是集合的元素,就说_____
对于④,空集是任何一个集合的子集,故正确。
反馈检测
已知集合 ⊆ 2,3,9 ,且中至少有一个奇数,则A可能有(
、2个
、4个
、5个
、6个

集合 ⊆ 2,3,9 且至少有一个奇数,由此可知:
当中只含3不含9时, = 2,3 , 3

高中数学 1.2子集、全集、补集课件 苏教版必修1

高中数学 1.2子集、全集、补集课件 苏教版必修1

课堂讲练互动
方法技巧 “正难则反”的补集思想的运用 “正难则反”的策略是指当某一问题从正面解决较困难时, 我们可以从其反面入手解决,这种“正难则反”的策略运用的正 是补集思想,即已知全集 U,求子集 A,若直接求 A 困难,可先 求∁UA,再由∁U(∁UA)=A 求 A,这也是转化思想的一种体现.
课堂讲练互动
课堂讲练互动
【题后反思】 子集、全集、补集的综合问题求解时一般涉及到 补集的运算,可先运算再转化为集合间的包含关系问题求解, 而有关不等式的解构成集合间包含关系中的参数问题,通常 借助于数轴,寻找参数与已知量之间的关系转化为不等式(组) 或方程求解.
课堂讲练互动
【训练 3】 全集 U=R,若集合 A={x|3≤x<10},B={x|2< x≤7},则
课堂讲练互动
试一试:补集有哪些主要性质? 提示 (1)若 U 是全集,A、B⊆U,则∁UU=∅,∁U∅=U, ∁U(∁UA)=A. (2)若∁UA=B,则 A=∁UB;若 A⊆B,则∁UA⊇∁UB 等.
课堂讲练互动
名师点睛 1.A⊆B 等价于对任意 x∈A,都有 x∈B;A B 等价于 A⊆B, 且至少存在一元素 y∈B 且 y∉A.特别地,若 A⊆B,且 B⊆A,则 A =B,这是证明两个集合相等的依据. 2.空集是任何集合的子集,是任何非空集合的真子集,因此, 在处理 A⊆B(B≠∅)的含参数的问题时,要注意讨论 A=∅和 A≠∅ 两种情况. 3.全集是相对于研究的问题而言的,如只在整数范围内研究, 则 Z 为全集,而当问题扩展到实数时,则 R 为全集.补集是相对 于全集而言的,同一集合相对于不同的全集的补集也不同.
解析 M={1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}, {1,2,3,4}.故满足条件的集合 M 的个数为 7.

2019-2020学年高一数学苏教版必修1同步练习:1.2 子集、全集、补集 Word版含答案

2019-2020学年高一数学苏教版必修1同步练习:1.2 子集、全集、补集 Word版含答案

姓名,年级:时间:1.2 子集、全集、补集1、已知全集{}0,1,2,3,5,6,8U =,集合{}1,5,8A =,{}2B =,则集合()U A B =( ) A 。

{}0,2,3,6 B. {}0,3,6 C. {}1,2,5,8 D 。

∅2、已知集合{}{}21,2,3,4,|,A B x x n n A ===∈,则A B ⋂= ( )A. {}1,4B. {}2,3 C 。

{}9,16 D 。

{}1,23、已知集合{}{}2320,0,||5A x x x B x x x N =-+==<<∈,则满足条件A C B ⊆⊆的集合C 有( )A.1个B.2个C.3个D.4个4、已知集合{}14},{A x x B x x a =-<<=<,若AB ,则实数a 满足( )A 。

4a <B. 4a ≤C. 4a >D. 4a ≥5、已知{}{}21,00|,1,M N x x x =-=+=,则能表示,M N 之间关系的Venn 图是( ) A 。

B.C.D 。

6、已知全集{}1,2,3,4,5,6,7U =,集合{}1,3,5,6A =,则U C A =( )A 。

{}1,3,5,6B. {}2,3,7C. {}2,4,7D 。

{}2,5,77、若集合{},,A a b c =,则满足B A ⊆的集合B 的个数是( )A 。

1 B.2 C 。

7 D 。

88、设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U C A =( )A 。

∅B 。

{}2C. {}5D 。

{}2,59、下列集合中,不是集合{}0,1的真子集的是( )A. ∅B. {}0C. {}1D 。

{}0,110、全集{}{}{}1,2,3,4,5,6,2,3,4,4,5U M N ===,则()M N ⋃= ( ) A 。

{}1,3,5B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学第一章集合 1.2 子集、全集、补集 1.2.2
全集、补集教案苏教版必修1
一、教学目标
了解全集的意义,理解补集的概念
二、教学重点
全集、补集的含义
三、教学难点
求集合的补集
四、教学过程
(一)、创设情境,引入新课
下列各组的3个集合中,哪2个集合之间具有包含关系?
(1){}{}{}2,2
-
=B
-
S
=
A
-
,1,1
2,1,1
,
=
,2-
(2){}{}R
=

=
=,0
|
,
>
,0
,
|

B
x
S∈
x
R
x
x
A
R
x
x
(3){}{}{}
,
S|
x
|
=
=
|=
,
x
为地球人x
为中国人
为外国人
A
x
x
x
B
(二)、推进新课
1.全集:
2.补集
文字语言:;
符号语言:;
图形语言:
3.补集性质
(三)、预习巩固
见必修一教材第9页练习2,3,第10页练习5
第一章集合
§1.2.2 全集、补集(课堂强化)
(四)、典型例题
题型一 求给定集合的补集
例1.
不等式组{012063>-≤-x x 的解集为A ,U=R ,试求A 及A C U ,并把它们分别表示在数轴
上.
例2. 已知{}{}{},10,9,8,7,6,8,7,6,5,4,5,4,3,2,1==B =A A C U 求B C U
题型 二 补集的性质的应用
例3. 1.已知{}{}
2,1,,2,122-=+=x A x x U ,{}6=A C U ,求实数x 的值. 2.已知全集{}{}a x x A <≤=≤≤=1|,5x 1|x U ,若{}5x 2|x A C U ≤≤=, 则=a
题型三 已知集合之间的包含关系求参数的取值范围
例4. 设全集{}{}0|,1|,<+=>==a x x B x x A R U ,B 是A C R 的真子集,求实数a 的
取值范围.
变1 :若A C R B ⊆,求实数a 的取值范围.
变2:若{}1|≥=x x A 呢?B 是A C R 的真子集,求实数a 的取值范围. 变3:{}21|≤<=x x A 呢?B 是A C R 的真子集,求实数a 的取值范围.
(五)、 随堂练习
1. 已知{}{}22|,20|≤≤-=<≤=x x U x x A ,求A C U .
2. 已知{}{}a x x P x x U <<=<<-=1|,51|,{}11|≤<-=x x P C U ,
求a 的取值范围.
3. 设{}4,3,2,1=U 且{}0|2=++=n mx x x A ,若{}3,1=A C U ,求m,n 的值.
4. 已知全集{}{}{}5,7,2,32,3,22=+=-+=A C a A a a U U ,求a 的值.
(六)、 课堂小结
(七)、课后作业
课本第18页第6,7,8题。

相关文档
最新文档