2017-2018学年1月广东省普通高中数学学业水平考试真题(一)

合集下载

广东省1月普通高中学业水平考试数学试卷Word版含解析

广东省1月普通高中学业水平考试数学试卷Word版含解析

2018年1月广东省普通高中学业水平考试数学试卷(B卷)一.选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】由题意可知故选B2. 对任意的正实数,下列等式不成立的是()A. B.C. D.【答案】B【解析】∵∴选项错误故选B3. 已知函数,设,则()A. B. C. D.【答案】C【解析】∵函数∵∴故选C4. 设是虚数单位,是实数,若复数的虚部是2,则()A. B. C. D.【答案】D∵复数的虚部为2∴∴故选D5. 设实数为常数,则函数存在零点的充分必要条件是()A. B. C. D.【答案】C【解析】∵若函数存在零点∴∴∴函数存在零点的充分必要条件是故选C6. 已知向量,,则下列结论正确的是()A. B. C. D.【答案】B【解析】对于,若∥,则,因为,故错误;对于,因为,所以,则,故正确;对于,,,故错误;对于,,故错误故选B7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A. 6和9B. 9和6C. 7和8D. 8和7【答案】A∴男女生的比例为,∵用分层抽样的方法,从该班学生中随机选取15人参加某项活动∴男生的人数为,女生的人数为故选A点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.8. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A. B. C. D.【答案】C【解析】由图像可知该空间几何体为长方体,长和宽为2,高为1体积故选C点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.9. 若实数满足,则的最小值为()A. B. C. D.【答案】D【解析】根据已知作出可行域如图所示:,即,斜率为,在处截取得最小值为故选D点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10. 如图,是平行四边形的两条对角线的交点,则下列等式正确的是()A. B.C. D.【答案】D【解析】对于,,故错误;对于,,故错误;对于,,故错误。

(完整版)2018年的1月广东省普通高中的学业水平考试数学试卷真的题目及答案详解解析汇报

(完整版)2018年的1月广东省普通高中的学业水平考试数学试卷真的题目及答案详解解析汇报

2018年1月广东省普通高中学业水平考试数学试卷(B 卷)1、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合,,则( ){}1,0,1,2M =-{}|12N x x =-≤<M N = . . . .A {}0,1,2B {}1,0,1-C M D N2、对任意的正实数,下列等式不成立的是( ),x y . ...A lg lg lgyy x x-=B lg()lg lg x y x y +=+C 3lg 3lg x x =D ln lg ln10x x =3、已知函数,设,则( )31,0()2,0x x x f x x ⎧-≥⎪=⎨<⎪⎩(0)f a =()=f a . . ..A 2-B 1-C 12D 04、设是虚数单位,是实数,若复数的虚部是2,则( )i x 1xi+x =. . . .A 4B 2C 2-D 4-5、设实数为常数,则函数存在零点的充分必要条件是( )a 2()()f x x x a x R =-+∈. . . .A 1a ≤B 1a >C 14a ≤D 14a >6、已知向量,,则下列结论正确的是( )(1,1)a = (0,2)b =. . . .A //a b B (2)a b b -⊥C a b =D 3a b = A7、某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是( ). . . .A 69和B 96和C 78和D 87和8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为( ). .. .A 1B 2C 4D 89、若实数满足,则的最小值为,x y 1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩2z x y =-( ). . . .A 0B 1-C 32-D 2-10、如图,是平行四边形的两条对角线的交点,则下列等式正确的是( )o ABCD . .A DA DC AC -=B DA DC DO +=. .C OA OB AD DB -+= D AO OB BC AC++= 11、设的内角的对边分别为,若,则( )ABC A ,,A B C ,,a b c 2,a b c ===C =.. . .A 56πB 6πC 23πD 3π12、函数,则的最大值和最小正周期分别为( )()4sin cos f x x x =()f x . . . .A 2π和B 4π和C 22π和D 42π和13、设点是椭圆上的一点,是椭圆的两个焦点,若P 2221(2)4x y a a +=>12F F ,12F F =( )12PF PF +=. . . .A 4B 8C D 14、设函数是定义在上的减函数,且为奇函数,若,,则下列结论不()f x R ()f x 10x <20x >正确的是( ). . . .A (0)0f =B 1()0f x >C 221((2)f x f x +≤D 111()(2)f x f x +≤15、已知数列的前项和,则( ){}n a n 122n n S +=-22212n a a a +++= . . ..A 24(21)n -B 124(21)n -+C 4(41)3n -D 14(42)3n -+二、填空题:本大题共4小题,每小题4分,满分16分.16、双曲线的离心率为 .221916x y -=17、若,且,则 .2sin()23πθ-=0θπ<<tan θ=18、笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为 .19、圆心为两直线和的交点,且与直线相切的圆的标20x y +-=3100x y -++=40x y +-=准方程是 .三、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、若等差数列满足,且.{}n a 138a a +=61236a a +=(1)求的通项公式;{}n a(2)设数列满足,,求数列的前项和.{}n b 12b =112n n n b a a ++=-{}n b n n S 21、如图所示,在三棱锥中,,,为的中点,垂P ABC -PA ABC ⊥平面PB BC =F BC DE 直平分,且分别交于点.PC DE AC PC ,,D E (1)证明:;//EF ABP 平面(2)证明:.BD AC ⊥2018年1月广东省普通高中学业水平考试数学试卷(B 卷)答案解析一、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、B 解析:,故选B.{}101M N =- ,,2、B 解析:对于B 项,令,则,而,显然不成1x y ==lg()lg 2lg10x y +=>=lg lg 0x y +=立,故选B.3、C 解析: ,故选C.3(0)011a f ==-=- 11()(1)22f a f -∴=-==4、D 解析: ,故选D.(1)1(1)(1)22x x i x x i i i i -==-++-242xx ∴-=⇒=-5、C 解析:由已知可得,,故选C.11404a a ∆=-≥⇒≤6、B 解析:对于A 项,,错误;12-010⨯⨯≠对于B 项,,,则,正确;2(2,0)a b -= (0,2)b = 20+020(2)a b b ⨯⨯=⇒-⊥对于C 项,,错误;2a = 对于D 项,,错误. 故选B.10122a b =⨯+⨯=A7、A 解析:抽样比为,则应抽取的男生人数为,应抽取的女生人数1535010k ==320=6()10⨯人为,故选A.3(5020)9()10-⨯=人8、C解析:由三视图可知,该几何体为长方体,长为2,宽为2,高为1,则体积为,故选C.2214V =⨯⨯=9、D 解析:(快速验证法)交点为,则分别为,所以11(0,1),(0,0),(,22-2z x y =-32,0,2--的最小值为,故选D.z 2-10、D 解析:对于A 项,,错误;DA DC CA -=对于B 项,,错误;2DA DC DO +=对于C 项,,错误;OA OB AD BA AD BD -+=+=对于D 项,,正确. 故选D.AO OB BC AB BC AC ++=+=11、A解析:由余弦定理,得,又222cos 2a b c C ab +-=== ,故选A.0C π<< 5=6C π∴12、A 解析:,最小正周期为,故选A. ()2sin 2f x x = max ()2f x ∴=22T ππ==13、B 解析:122F F c c ==⇒= 22224164a cb a ∴=+=+=⇒=,故选B.122248PF PF a ∴+==⨯=14、D 解析:对于A 项,为上的奇函数 ,正确;()f x R (0)0f ∴=对于B 项,为上的减函数 ,正确;()f x R 110()(0)0x f x f ∴<⇒>=对于C 项,20x > 222221121x x x x x ∴+≥===(当且仅当,即时等号成立),正确;221()(2)f x f x ∴+≤对于D 项, 10x < 111111(2x x x x ∴+=--+≤-=--ll,错误. 故选D.111()(2)(2)f x f fx∴+≥-=-15、C 解析:当时,;当时,2n≥1122(22)2222n n n n nn n na S S+-=-=---=⨯-=1n=适合上式. 是首项为,公比211222a S==-=222()(2)4n n nn na n N a*∴=∈⇒=={}2n a∴4为的等比数列,故选C.4222124(14)4(41)143n nna a a--∴+++==-二、填空题:本大题共4小题,每小题4分,满分16分.16、解析:由已知,得532293,164a ab b=⇒==⇒= 222916255c a b c∴=+=+=⇒=双曲线的离心率为.∴53cea==17解析:,且2sin()cos23πθθ-==0θπ<< sinθ∴===.sin3tancos2θθθ∴===18、解析:.49224339P⨯==⨯19、解析:联立得22(4)(2)2x y-++=203100x yx y+-=⎧⎨-++=⎩4(4,2)2xy=⎧⇒-⎨=-⎩圆心为则圆心到直线的距离为(4,2)-40x y+-=d圆的标准方程为.∴22(4)(2)2x y-++=3、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、解:(1)设等差数列的公差为.{}n a d ∴1311161211828236511362a a a a d a a a a d a d d +=++==⎧⎧⎧⇒⇒⎨⎨⎨+=+++==⎩⎩⎩ 数列的通项公式为.2(1)22n a n n ∴=+-⨯=∴{}n a 2n a n =(2)由(1)知, 2n a n =1122(1)2222n n n b a a n n n ++∴=-=+-⨯=-+ 又适合上式 2(1)224n b n n ∴=--+=-+12b = 24()n b n n N *∴=-+∈ 数列是首项为,公差为的等差数列.122(24)2n n b b n n +∴-=-+--+=-∴{}n b 22-22(1)2(2)232n n n S n n n n n n -∴=+⨯-=-+=-+21、解:(1)证明:垂直平分 为的中点DE PC E ∴PC 又为的中点 为的中位线 F BC EF ∴BCP A //EF BP∴又 ,EF ABP BP ABP ⊄⊂ 平面平面//EF ABP∴平面(2)证明:连接BE,为的中点 PB BC = E PC PC BE∴⊥垂直平分 DE PC PC DE∴⊥又, BE DE E = ,BE DE BDE ⊂平面PC BDE∴⊥平面又 BD BDE ⊂ 平面PC BD∴⊥ ,PA ABC BD ABC ⊥⊂平面平面PA BD∴⊥又, PC PA P = ,PC PA PAC ⊂平面BD PAC∴⊥平面又 AC PAC ⊂ 平面BD AC∴⊥。

2018年1月广东省普通高中学业水平考试数学试卷真题及答案解析

2018年1月广东省普通高中学业水平考试数学试卷真题及答案解析

2018年1月广东省普通高中学业水平考试数学试卷(B 卷)一、选择题:本大题共15小题. 每小题4分,满分60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合{}1,0,1,2M =-,{}|12N x x =-≤<,则M N =( )A .{}0,1,2B 。

{}1,0,1-C 。

MD 。

N2、对任意的正实数,x y ,下列等式不成立的是( )A 。

lg lg lg y y x x -=B .lg()lg lg x y x y +=+C .3lg 3lg x x =D .ln lg ln10x x = 3、已知函数31,0()2,0x x x f x x ⎧-≥⎪=⎨<⎪⎩,设(0)f a =,则()=f a ( ) A 。

2- B 。

1- C 。

12D .0 4、设i 是虚数单位,x 是实数,若复数1x i+的虚部是2,则x =( ) A .4 B .2 C 。

2- D .4-5、设实数a 为常数,则函数2()()f x x x a x R =-+∈存在零点的充分必要条件是( ) A 。

1a ≤ B 。

1a > C 。

14a ≤ D 。

14a > 6、已知向量(1,1)a =,(0,2)b =,则下列结论正确的是( )A .//a bB 。

(2)a b b -⊥C .a b =D .3a b =7、某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是( )A 。

69和B .96和C 。

78和D .87和8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为( )A 。

1B 。

2C .4D .89、若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则2z x y =-的最小值为( )A 。

0B 。

1-C .32- D .2- 10、如图,o 是平行四边形ABCD 的两条对角线的交点,则下列等式正确的是( ) A .DA DC AC -= B 。

2017年1月广东省普通高中学业水平考试数学试卷真题及答案详细解析

2017年1月广东省普通高中学业水平考试数学试卷真题及答案详细解析

2017年1月广东省普通高中学业水平考试数学试卷真题及答案详细解析2017年1月广东省普通高中学业水平考试数学试卷一、选择题(本题共有15小题,每小题4分,满分60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={0,2,4}。

N={1,2,3}。

P={0,3},则(M∪N)∩P=()A.{0,1,2,3,4}B.{0,3}C.{0,4}D.{0}2.函数y=XXX(x+1)的定义域是()A.(−∞,+∞)B.(0,+∞)C.(−1,+∞)D.[−1,+∞)3.设i为虚数单位,则复数i−1=()A.1+iB.1−iC.−1+iD.−1−i4.命题甲:球的半径为1cm;命题乙:球的体积为πcm³,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知直线l过点A(1,2),且与直线y=4/3x+1垂直,则直线l的方程是()A.y=2xB.y=−2x+4C.y=x+1D.y=x−16.顶点在原点,准线为x=−2的抛物线的标准方程是()A.y²=8xB.y²=−8xC.x²=8yD.x²=−8y7.已知三点A(−3,3),B(0,1),C(1,0),则AB+BC=()A.5B.4C.13+2D.13−28.已知角α的顶点为坐标原点,始边为x轴的正半轴,终边过点P(5,−2),下列等式不正确的是()A.sinα=−1/5B.sin(α+π)=C.cosα=D.tanα=−3/39.下列等式恒成立的是()A.(x≠0)log3(x²+1)+log3(2)=log3(x²+3)B.3x(3x²+1)=(3x)²+1C.x/(x²+1)+x/(x²+4)=2x/(x²+2)D.x²/(x²+1)+4x²/(4x²+1)=5(x²+1)/(x²+1)(4x²+1)10.已知数列{an}满足a1=−x/x³=1,且an+1−an=2,其中x≤3,则{an}的前n项之和Sn=()A.n+1B.n²C.2−1D.211.已知实数x,y,z满足y≤x,则z=2x+y的最大值为()A.3B.5C.9D.1012.已知点A(−1,8)和B(5,2),则以线段AB为直径的圆的标准方程是()A.(x+2)²+(y+5)²=32B.(x+2)+(y+5)=181.(x-2)^2 + (y-5)^2 = 322.(x-2) + (y-5) = 183.A。

[正式]2017年1月广东省学业水平考试数学试题

[正式]2017年1月广东省学业水平考试数学试题

[正式]2017年1月广东省学业水平考试数学试题234522(3)3x x =C.22333log (1)log 2log (3)xx ++=+ D.31log 3x x =-10.已知数列{}na 满足11a =,且12n n a a +-=,则{}n a 的前n 项之和n S =( ) A. 21n + B.2n C. 21n -D.12n -11.已知实数x, y, z 满足32x y x x y ≤⎧⎪≤⎨⎪+≥⎩,则z =2x +y 的最大值为( )A. 3B. 5C. 9D. 1012.已知点A(-1, 8)和B(5, 2),则以线段AB 为直径的圆的标准方程是( )A.22(2)(5)32x y +++= B. 22(2)(5)18x y +++= C.22(2)(5)32x y -+-= D.22(2)(5)18x y -+-= 13.下列不等式一定成立的是( )A.12x x +≥ (0x ≠)B. 22111x x +≥+ (x R ∈)C. 212x x+≤ (x R ∈) D.2560x x ++≥(x R ∈)614.已知f (x )是定义在R 上的偶函数,且当(,0]x ∈-∞时,2()sin f x x x=-,则当[0,)x ∈+∞时,()f x =( )A.2sin x x+ B. 2sin x x-- C. 2sin x x- D.2sin x x-+15.已知样本12345,,,,x x x x x 的平均数为4, 方差为3, 则123456,6,6,6,6x x x x x +++++的平均数和方差分别为( )A. 4和3B. 4和9C. 10和3D. 10和9二、填空题(本大题共4小题,每小题4分,满分16分.)16.已知x >0, 且5,,153x 成等比数列,则x= 17. 函数()sin cos(1)sin(1)cos f x x x x x =+++的最小正周期是18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是19.中心在坐标原点的椭圆,其离心率为12,两个焦点F 1 和F 2在x 轴上,P 为该椭圆上的任意一点,若| PF 1 |+|PF 2|=4,则椭圆的标准方程是7三、解答题(本大题共2小题,每小题12分,满分24分.)20.ABC ∆的内角A, B, C 的对边分别为a, b, c, 已知cos cos a bA B=(1)证明: ABC∆为等腰三角形;(2)若a =2, c=3,求sin C 的值.821.如图,在四棱锥P -ABCD 中,PA AB⊥,PA AD ⊥,AC CD ⊥,60oABC ∠=, PA=AB=BC =2. E 是PC 的中点. (1)证明:PA CD⊥;(2)求三棱锥P -ABC 的体积; (3) 证明:AE PCD⊥平面PBCDAE2017年广东省普通高中学业水平考试数学试卷参考答案一、选择题1.B【解析】M∪N={0,1,2,3,4},(M∪N)∩P={0,3}.2.C【解析】对数函数要求真数大于0, ∴x+1>0即x>-1.3.D【解析】===-i-1=-1-i,其中i2=-1.4.C【解析】充分性:若r=1cm,由V=πr3可得体积为πcm3,同样利用此公式可证必要性.5.B【解析】垂直:斜率互为倒数的相反数(k1k2=-1),所以直线l的斜率为k=-2,根据点斜式方程y-y0=k(x-x0)可得y-2=-2(x-1),整理得y=-2x+4.96.A【解析】准线方程为x=-2可知焦点在x 轴上,且-=-2,∴p=4.由y2=2px得y2=8x.7.A【解析】=(3,-2),=(1,-1),+=(4,-3),∴|+|==5.8.D【解析】r===3,sin α=,cos α=,tan α=∴A,B,C正确,D错误,tan α===-.9.D【解析】 A.=(x≠0)B.(3x)2=32xC.log3(x2+1)+log32=log32(x2+1).10.B【解析】{a n}为公差为2的等差数列,10由S n=na1+d=n+·2=n2.11.C【解析】如图,画出可行域当y=-2x+z移动到A点时与y轴的截距z取得最大值,∵A(3,3),所以z=2x+y的最大值为9.12.D【解析】圆的标准方程(x-a)2+(y-b)2=r2圆心:C(,)=(2,5)半径r===3所以圆的标准方程为(x-2)2+(y-5)2=18.13.B【解析】A选项:错在x可以小于0; B选项:x2+≥2=2=2≥1,其中≤1;C选项:x2-2x+1≥0,∴x2+1≥2x;D选项:设y=x2+5x+6可知二次函数与x轴有两个交点,其值可以小于0.14.A【解析】x∈[0,+∞)时,-x∈(-∞,0],由偶函数性质f(x)=f(-x)=(-x)2-sin(-x)=x2+sin x.15.C【解析】平均数加6,方差不变.二、填空题16.5【解析】,x,15成等比数列,∴x2=×15=25,又∵x>0,∴x=5.17.π【解析】f(x)=sin x cos(x+1)+cos x sin(x+1)=sin[x+(x+1)]=sin(2 x+1)最小正周期T===π.18.【解析】建议文科生通过画树形图的办法解此题.选取十位数: 1 2 3 4选取个位数:2 3 4 1 3 4 1 2 4 1 2 3结果:12 13 14 21 23 24 31 32 34 41 42 43总共:3×4=12种,满足条件的有3种,所以概率为=.19.+=1【解析】根据焦点在x轴上可以设椭圆标准方程为+=1(a>b>0)离心率:e==长轴长:2a=|PF1|+|PF2|=4∴a=2,c=1,b===∴椭圆标准方程为+=1.三、解答题20.(1)证明:∵=,=∴=,即tan A=tan B,又∵A,B∈(0,π),∴A=B∴△ABC为等腰三角形.(2)解:由(1)知A=B,所以a=b=2根据余弦定理:c2=a2+b2-2ab cos C9=4+4-8cos C,∴cos C=∵C∈(0,π),∴sin C>0∴sin C==.21.(1)证明:∵PA⊥AB,PA⊥AD,AB⊂平面ABCD,AD⊂平面ABCD,AB∩AD=A∴PA⊥平面ABCD,又∵CD⊂平面ABCD∴AP⊥CD.(2)解:由(1)AP⊥平面ABC∴V=S△ABC·APP-ABC=×AB·BC·sin∠ABC·AP=××2×2×sin60°×2=.(3)证明:∵CD⊥AP,CD⊥AC,AP⊂平面APC,AC⊂平面APC,AP∩AC=A∴CD⊥平面APC,又∵AE⊂平面APC∴CD⊥AE由AB=BC=2且∠ABC=60°得△ABC为等边三角形,且AC=2又∵AP=2且E为PC的中点,∴AE⊥PC又∵AE⊥CD,PC⊂平面PCD,CD⊂平面PCD,PC∩CD=C∴AE⊥平面PCD.。

广东省2018年1月普通高中学业水平考试数学试卷+Word版含解析

广东省2018年1月普通高中学业水平考试数学试卷+Word版含解析

2018年1月广东省普通高中学业水平考试数学试卷(B卷)一.选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】由题意可知2. 对任意的正实数,下列等式不成立的是()A. B. C. D.【答案】B【解析】∵∴选项错误故选B3. 已知函数,设,则()A. B. C. D.【答案】C【解析】∵函数∵∴故选C4. 设是虚数单位,是实数,若复数的虚部是2,则()A. B. C. D.【答案】D∵复数的虚部为2∴∴故选D5. 设实数为常数,则函数存在零点的充分必要条件是()A. B. C. D.【答案】C【解析】∵若函数存在零点∴∴∴函数存在零点的充分必要条件是故选C6. 已知向量,,则下列结论正确的是()A. B. C. D.【答案】B【解析】对于,若∥,则,因为,故错误;对于,因为,所以,则,故正确;对于,,,故错误;对于,,故错误故选B7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A. 6和9B. 9和6C. 7和8D. 8和7【答案】A∴男女生的比例为,∵用分层抽样的方法,从该班学生中随机选取15人参加某项活动∴男生的人数为,女生的人数为故选A点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.8. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A. B. C. D.【答案】C【解析】由图像可知该空间几何体为长方体,长和宽为2,高为1体积9. 若实数满足,则的最小值为()A. B. C. D.【答案】D【解析】根据已知作出可行域如图所示:,即,斜率为,在处截取得最小值为故选D10. 如图,是平行四边形的两条对角线的交点,则下列等式正确的是()A. B. C. D.【答案】D【解析】对于,,故错误;对于,,故错误;对于,,故错误。

【数学】2017年广东省普通高中学业水平考试真题

【数学】2017年广东省普通高中学业水平考试真题

机密★启用前试卷类型:A2017年1月广东省普通高中学业水平考试数学试卷本试卷共4页,21小题,满分100分。

考试用时90分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.每题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题(本大题共15小题,每小题4分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合}4,2,0{=M ,}3,2,1{=N ,}3,0{=P ,则=P N M )(()A .}4,3,2,1,0{B .}3,0{C .}4,0{D .}0{2.函数)1lg(+=x y 的定义域是()A .},{+∞-∞B .),0(+∞C .),1(+∞-D .),1[+∞-3.设i 为虚数单位,则复数=-i i 1()A .i +1B .i -1C .i +-1D .i--14.命题甲:球体的半径是1cm ,命题乙:球体的体积是π34cm 2,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知直线l 过点A(1,2),且与直线y =21x +1垂直,则直线l 的方程是()A .y =2xB .y =-2x +4C .y =2321+xD .y =2521+x 6.顶点在坐标原点,准线为x =-2的抛物线的标准方程是()A .y 2=8x B .y 2=-8x C .x 2=8y D .x 2=-8y7.已知三点A(-3,3),B(0,1),C(1,0),则|BC AB +|等于()A .5B .4 C.213+ D.213-8.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P )2,5(-,则下列等式不正确的是()A .32sin -=αB .32)sin(=+παC .35cos =αD .23tan -=α9.下列等式恒成立的是()A .3231-=X X B .23)3(2X X =C .)3(log 2log )1(log 23323+=++x x D .x x -=31log 210.已知数列}{n a 满足11=a ,且21=-+n n a a ,则的前n 项和n S =()A .12+nB .2nC .12-nD .12-n 11.已知实数z y x ,,满足⎪⎩⎪⎨⎧≥+≤≤23y x x y x ,则y x z +=2的最大值为()A .3B .5C .9D .1012.已知点A (-1,8)和B 点(5,2),则以线段AB 为直径的圆的标准方程是()A .23)5()2(22=+++y xB .18)5()2(22=+++y xC .23)5()2(22=-+-y xD .18)5()2(22=-+-y x 13.下列不等式一定成立的是()A .)0(21≠≥+x x x B .)(11122R x x x ∈≥++C .)(212R x x x ∈≤+D .)(0652R x x x ∈≥++14.已知)(x f 是定义在R 上的偶函数,且当]0,(-∞∈x 时,x x x f sin )(2-=,则当),0[+∞∈x 时,)(x f =()A .x x sin 2+B .x x sin 2--C .x x sin 2-D .xx sin 2+-15.已知样本54321,,,,x x x x x 的平均数为4,方差为3,则6,6,6,6,654321+++++x x x x x 的平均数和方差分别为()A .4和3B .4和9C .10和3D .10和9二.填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)16.已知0>x ,且15,,35x 成等比数列,则x =________17.函数x x x x x f cos )1sin()1cos(sin )(+++=的最小正周期是_______18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是_______19.中心在坐标原点的椭圆,其离心率为21,两个焦点F 1和F 2在x 轴上,P 为该椭圆上的任意一点,若4||||11=+PF PF ,则此椭圆的标准方程是_______三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.△ABC 的内角A ,B ,C 的对边分别为c b a ,,,已知Bb A a cos cos =(1)证明:△ABC 为等腰三角形;(2)若2=a ,3=c ,求sin C 的值.21.如图,在四棱锥P -ABCD 中,P A ⊥AB ,P A ⊥AD ,AC ⊥CD ,∠ABC =60°,P A =AB =BC =2,E 为PC 的中点.(1)证明:AP ⊥CD ;(2)求三棱锥P -ABC 的体积;(3)证明:AE ⊥平面PCD .。

2018年1月广东省普通高中学业水平考试真题卷 高中数学学业水平测试专题精品

2018年1月广东省普通高中学业水平考试真题卷  高中数学学业水平测试专题精品

2018年1月广东省普通高中学业水平考试真题卷(时间:90分钟 满分:100分)一、选择题(本大题共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={-1,0,1,2},N ={x |-1≤x <2},则M ∪N =( )A .{0,1,2}B .{-1,0,1}C .MD .N 解析:M ∪N ={-1,0,1},故选B. 答案:B2.对任意的正实数x ,y ,下列等式不成立的是( ) A .lg y -lg x =lg yxB .lg(x +y )=lg x +lg yC .lg x 3=3lg xD .lg x =ln xln 10解析:对于B 项,令x =y =1,则lg(x +y )=lg 2>lg 1=0,而lg x +lg y =0,显然不成立,故选B.答案:B3.已知函数f (x )=⎩⎪⎨⎪⎧x 3-1,x ≥02x ,x <0,设f (0)=a ,则f (a )=( )A .-2B .-1 C.12 D .0解析:因为a =f (0)=03-1=-1, 所以f (a )=f (-1)=2-1=12,故选C.答案:C4.设i是虚数单位,x是实数,若复数x1+i的虚部是2,则x=()A.4 B.2 C.-2 D.-4解析:因为x1+i=x(1-i)(1+i)(1-i)=x2-x2i,所以-x2=2⇒x=-4,故选D.答案:D5.设实数a为常数,则函数f(x)=x2-x+a(x∈R)存在零点的充分必要条件是()A.a≤1 B.a>1 C.a≤14D.a>14解析:由已知可得,Δ=1-4a≥0⇒a≤14,故选C.答案:C6.已知向量a=(1,1),b=(0,2),则下列结论正确的是() A.a∥b B.(2a-b)⊥b C.|a|=|b| D.a·b=3解析:对于A项,1×2-0×1≠0,错误;对于B项,2a-b=(2,0),b=(0,2),则2×0+0×2=0⇒(2a-b)⊥b,正确;对于C项,|a|=2,|b|=2,错误;对于D项,a·b=1×0+1×2=2,错误.故选B.答案:B7.某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A.6和9 B.9和6 C.7和8 D.8和7解析:抽样比为k =1550=310,则应抽取的男生人数为20×310=6(人),应抽取的女生人数为(50-20)×310=9(人),故选A.答案:A8.如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A .1B .2C .4D .8解析:由三视图可知,该几何体为长方体,长为2,宽为2,高为1,则体积V =2×2×1=4,故选C.答案:C9.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y ≥0,x ≤0,则z =x -2y 的最小值为()A .0B .-1C .-32D .-2解析:(快速验证法)交点为(0,1),(0,0),⎝⎛⎭⎪⎫-12,12,则z =x -2y 分别为-2,0,-32,所以z 的最小值为-2,故选D.答案:D10.如图,O 是平行四边形ABCD 的两条对角线的交点,则下列等式正确的是()A.DA →-DC →=AC →B.DA→+DC →=DO → C.OA→-OB →+AD →=DB → D.AO →+OB →+BC →=AC → 解析:对于A 项,DA →-DC →=CA →,错误; 对于B 项,DA →+DC →=2DO →,错误;对于C 项,OA →-OB →+AD →=BA →+AD →=BD →,错误; 对于D 项,AO →+OB →+BC →=AB →+BC →=AC →,正确,故选D. 答案:D11.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,c =13,则C =( )A.5π6B.π6C.2π3D.π3 解析:由余弦定理,得cos C =a 2+b 2-c 22ab=(3)2+22- (13)22×3×2=-32,又因为0<C <π,所以C =5π6,故选A.答案:A12.函数f (x )=4sin x cos x ,则f (x )的最大值和最小正周期分别为( )A .2和πB .4和πC .2和2πD .4和2π解析:因为f (x )=2sin 2x ,所以f (x )max =2,最小正周期为T =2π2=π,故选A.答案:A13.设点P 是椭圆x 2a 2+y 24=1(a >2)上的一点,F 1,F 2是椭圆的两个焦点,若|F 1F 2|=43,则|PF 1|+|PF 2|=( )A .4B .8C .4 2D .47解析:因为|F 1F 2|=43=2c ⇒c =23,所以a 2=c 2+b 2=(23)2+4=16⇒a =4,所以|PF 1|+|PF 2|=2a =2×4=8,故选B. 答案:B14.设函数f (x )是定义在R 上的减函数,且f (x )为奇函数,若x 1<0,x 2>0,则下列结论不正确的是( )A .f (0)=0B .f (x 1)>0C .f ⎝⎛⎭⎪⎫x 2+1x 2≤f (2) D .f ⎝ ⎛⎭⎪⎫x 1+1x 1≤f (2)解析:对于A 项,因为f (x )为R 上的奇函数,所以f (0)=0,正确;对于B 项,因为f (x )为R 上的减函数,x 1<0,⇒f (x 1)>f (0)=0,正确;对于C 项,因为x 2>0,所以x 2+1x 2≥2x 2·1x 2=2(当且仅当x 2=1x 2,即x 2=1时等号成立)所以f ⎝ ⎛⎭⎪⎫x 2+1x 2≤f (2),正确; 对于D 项,因为x 1<0,所以x 1+1x 1=-⎝ ⎛⎭⎪⎫-x 1+1-x 1≤-2-x 1g 1-x 1=-2.所以f ⎝ ⎛⎭⎪⎫x 1+1x 1≥f (-2)=-f (2),错误.故选D.。

2017年1月广东省普通高中学业水平考试高中数学试卷及参考答案【解析】

2017年1月广东省普通高中学业水平考试高中数学试卷及参考答案【解析】

2017年1月广东省普通高中学业水平考试数学试卷及参考答案一、选择题(本题共有15小题,每小题4分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,2,4}, N ={1,2,3}, P ={0,3}, 则()MN P =A.{0,1,2,3,4}B.{0,3}C.{0,4}D.{0} 2.函数y =lg (x +1) 的定义域是A.(,)-∞+∞B.(0,)+∞C.(1,)-+∞D.[1,)-+∞3.设i 为虚数单位,则复数1ii -=A.1+iB.1-iC.-1+iD.-1-i4.命题甲:球的半径为1cm;命题乙:球的体积为43πcm 3,则甲是乙的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5.已知直线l 过点A(1,2),且与直线112y x =+垂直,则直线l 的方程是A.y =2xB.y =-2x +4C.1322y x =+ D.1522y x =+6.顶点在原点,准线为x =-2的抛物线的标准方程是A.28y x =B.28y x =-C.28x y =D.28x y =-7.已知三点A(-3, 3), B(0, 1), C(1,0),=+8.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P )2-,下列等式不正确的是A.2sin 3α=-B.2sin()3απ+=C.cos 3α=D.tan 2α=-9.下列等式恒成立的是23x -= (0x ≠) B.22(3)3x x =C.22333log (1)log 2log (3)x x ++=+ D.31log 3x x =-10.已知数列{a }n 满足1a 1=,且1a a 2n n +-=,则{a }n 的前n 项之和n S =A.21n +B.2nC.21n -D.12n -11.已知实数x, y, z 满足32x y xx y ≤≤+≥,则z =2x +y 的最大值为A.3B.5C.9D.1012.已知点A(-1, 8)和B(5, 2),则以线段AB 为直径的圆的标准方程是A.22(2)(5)x y +++=22(2)(5)18x y +++= C.22(2)(5)x y -+-=22(2)(5)18x y -+-= 13.下列不等式一定成立的是 A.12x x +≥ (0x ≠) B.22111x x +≥+ (x R ∈)C.212x x +≤ (x R ∈)D.2560x x ++≥ (x R ∈)14.已知f (x )是定义在R 上的偶函数,且当(,0]x ∈-∞时,2()sin f x x x =-,则当[0,]x ∈+∞时, ()f x =A.2sin x x +B.2sin x x --C.2sin x x -D.2sin x x -+ 15.已知样本12345,,,,x x x x x 的平均数为4, 方差为3, 则123456,6,6,6,6x x x x x +++++的平均数和方差分别为A.4和3B.4和9C.10和3D.10和9 二、填空题(本题共4小题,每小题4分,满分16分)16.已知x >0, 且5,,153x 成等比数列,则x =17. 函数()sin cos(1)sin(1)cos f x x x x x =+++的最小正周期是18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是19.中心在坐标原点的椭圆,其离心率为12,两个焦点F 1 和F 2在x 轴上,P 为该椭圆上的任意一点,若| PF 1 |+|PF 2|=4,则椭圆的标准方程是三、 解答题(本题共2小题,每小题12分,满分24分,解答须写出文字说明,证明过程和验算步骤)20.ABC ∆的内角A, B, C 的对边分别为a, b, c, 已知cos cos a bA B =(1)证明: ABC ∆为等腰三角形;(2)若a =2, c =3,求sin C 的值.21.如图,在四棱锥P-ABCD 中,PA AB ⊥, PA AD ⊥,AC CD ⊥,60oABC ∠=, PA =AB =BC =2.E 是PC 的中点.(1)证明: PA CD ⊥; (2)求三棱锥P-ABC 的体积; (3)证明: AE PCD ⊥平面.2017年1月广东省普通高中学业水平考试数学试卷(答案【试题解析】) 1、B 【试题解析】:{}4,3,2,1,0=N M {}3,0)(=∴P N M . 2、C 【试题解析】: 对数函数要求真数大于0 101->⇒>+∴x x .3、D 【试题解析】:ii i i i i i i i --=--=-+=⋅-=-1111)1(1.4、C 【试题解析】:充分性:若cm R 1=,则233434cm R V ==π;同样利用此公式可证必要性.5、B 【试题解析】:121-=⇒k k 两直线垂直 2-=∴k l 的斜率为直线. 根据点斜式方程)(00x x k y y -=-可得)1(22--=-x y ,整理得42+-=x y .6、A 【试题解析】:由准线方程2-=x 可知焦点在x 轴上 422=⇒-=-∴p p由px y 22=可得x y 82=.7、A 【试题解析】:)1,1(),2,3(-=-=BC AB )3,4(-=+∴BC AB5)3(422=-+=+.8、D 【试题解析】:x y r x r y y x r ====-+=+=αααtan ,cos ,sin ,3)2()5(2222C B A ,,∴正确,D 错误55252tan -=-==x y α. 9、D 【试题解析】:A.)0(1313≠=-x x x;B.x x 223)3(=;C.)1(2log 2log )1(log 22222+=++x x . 10、B 【试题解析】:由已知可得{}n a 为首项为1,公差为2的等差数列2122)1(2)1(n n n n d n n na S n =⨯-+=-+=∴.11、C 【试题解析】:如图,画出可行域,当直线z x y +-=2平移经过点A 时在y 轴上的截距z 取得最大值,由)3,3(333A y x x y x ⇒⎩⎨⎧==⎩⎨⎧==得 9332max =+⨯=∴z .12、D 【试题解析】:圆的标准方程为222)()r b y a x =-+-(,其中圆心为)5,2()228,251(=++-C ,半径为23)28()51(2122=-+--=r∴所求圆的标准方程为18)5()222=-+-y x (. 13、B 【试题解析】:A 选项:错在x 可以小于0;B 选项:1111)1(2111111222222=-+⋅+≥-+++=++x x x x x x(当且仅当11122+=+x x ,即0=x 时等号成立)C 选项:0)1(2122≥-=-+x x x x x 212≥+∴D 选项:设652++=x x y 可知二次函数与x 轴有两个交点,其值可以小于0. 14、A 【试题解析】:)(x f 是定义在R 上的偶函数,且当(,0]x ∈-∞时,2()sin f x x x =- 当[)+∞∈,0x 时,(]0,∞-∈-x )(sin )sin()()(22x f x x x x x f =+=---=-∴ ∴当[)+∞∈,0x 时,x x x f sin )(2+=. 15、C 【试题解析】:平均数加6,方差不变.16、5 【试题解析】:15,,35x 成等比数列 2515352=⨯=∴x 又0>x 5=∴x .17、π 【试题解析】:)12sin()1sin()1sin(cos )1cos(sin )(+=++=+++=x x x x x x x x f∴函数)(x f 的最小正周期为ππωπ===222T .18、41【试题解析】:所有可能的基本事件有12,13,14,21,23,24,31,32,34,41,42,43共12个,其中小于20的两位数有12,13,14共3个,由古典概型计算公式可得该两位数小于20的概率为41123==P .19、13422=+y x 【试题解析】:根据焦点在x 轴上可设椭圆标准方程为12222=+b y a x离心率21==a c e ,长轴长4221=+=PF PF a312,1,22222=-=-===∴c a b c a∴所求椭圆的标准方程为13422=+y x . 20、解:(1)证明:B bA a cos cos =由正弦定理得,B BA A cos sin cos sin =,即B A tan tan =又),0(,π∈B A B A =∴ ∴ABC ∆为等腰三角形. (2)由(1)知B A = 2==∴b a根据余弦定理,得 C ab b a c cos 2222-+=即81cos cos 222223222-=⇒⨯⨯-+=C C又),0(π∈C863)81(1cos 1sin 22=-=-=∴C C . 21、解:(1)证明:AB PA ⊥ ,AD PA ⊥,A AD AB = ,ABCD AD AB 平面⊂,ABCD PA 平面⊥∴ 又 ABCD CD 平面⊂ CD PA ⊥∴(2)由(1)知ABCD PA 平面⊥332260sin 222131sin 213131=⨯⨯⨯⨯⨯=⋅∠⋅⨯=⋅=∴∆- PA ABC BC AB AP S V ABC ABC P(3)证明:CD PA ⊥ ,CD AC ⊥,A AC PA = ,PAC AC PA 平面⊂,PAC CD 平面⊥∴ 又PAC AE 平面⊂ AE CD ⊥∴60,2=∠==ABC BC AB ABC ∆∴为等边三角形,且2=AC2==∴AC PA 又 E 为PC 的中点 PC AE ⊥∴又CD AE ⊥ ,C CD PC = ,PCD CD PC 平面⊂,PCD AE 平面⊥∴.。

2018年1月广东省普通高中学业水平考试数学试卷真题及答案解析(2021年整理精品文档)

2018年1月广东省普通高中学业水平考试数学试卷真题及答案解析(2021年整理精品文档)

(完整版)2018年1月广东省普通高中学业水平考试数学试卷真题及答案解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年1月广东省普通高中学业水平考试数学试卷真题及答案解析)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018年1月广东省普通高中学业水平考试数学试卷真题及答案解析的全部内容。

2018年1月广东省普通高中学业水平考试数学试卷(B 卷)一、选择题:本大题共15小题。

每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合{}1,0,1,2M =-,{}|12N x x =-≤<,则MN =( )A .{}0,1,2B 。

{}1,0,1-C .MD .N2、对任意的正实数,x y ,下列等式不成立的是( )A 。

lg lg lgy y x x -= B 。

lg()lg lg x y x y +=+ C 。

3lg 3lg x x = D .ln lg ln10xx = 3、已知函数31,0()2,0x x x f x x ⎧-≥⎪=⎨<⎪⎩,设(0)f a =,则()=f a ( )A .2-B 。

1-C .12D 。

0 4、设i 是虚数单位,x 是实数,若复数1xi+的虚部是2,则x =( )A 。

4B .2C .2-D 。

4-5、设实数a 为常数,则函数2()()f x x x a x R =-+∈存在零点的充分必要条件是( )A 。

1a ≤B 。

1a >C .14a ≤D 。

14a > 6、已知向量(1,1)a =,(0,2)b =,则下列结论正确的是( )A 。

2018年1月广东省普通高中学业水平考试数学试卷真题与答案解析44030

2018年1月广东省普通高中学业水平考试数学试卷真题与答案解析44030

精品文档2018 年 1 月广东省普通高中学业水平考试数学试卷( B 卷)一、选择题:本大题共15 小题 . 每小题 4 分,满分 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的 .1、已知集合M 1,0,1,2 , N x | 1 x 2 ,则 M N( )A . 0,1,2B .1,0,1 C .M D .N2、对任意的正实数 x, y ,下列等式不成立的是( )A . lg ylg x lgyB . lg( x y)lg x lg yC . lg x33lg xD . lg xln xxln103、已知函数 f (x)x 3 1, x 0(0)a ,则 f (a)= (2x, x 0,设 f)A . 2B . 1C . 1D . 024、设 i 是虚数单位,x 是实数,若复数x 的虚部是 2,则 x ( )1 iA . 4B . 2C . 2D . 45、设实数 a 为常数,则函数f ( x) x2x a( x R) 存在零点的充分必要条件是()A . a 1B . a 1C . a1D . a1446、已知向量 a (1,1), b (0,2) ,则下列结论正确的是()A . a / /bB . (2a b)bC . abD . a b 37、某校高一( 1)班有男、女学生共 50 人,其中男生 20 人,用分层抽样的方法,从该班学生中随机选取 15 人参加某项活动,则应选取的男、女生人数分别是()A .6和9B .9和6C . 7和8D .8和78、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A.1B.2C.4D.8x y109、若实数x, y满足x y0,则 z x 2 y 的最小值为x0()A .0B . 1C .3D .2 210、如图,o是平行四边形ABCD 的两条对角线的交点,则下列等式正确的是()A .DA DC AC B.DA DC DOC .OA OB AD DB D.AO OB BC AC11、设ABC 的内角 A, B, C 的对边分别为a,b,c ,若a3,b 2, c13 ,则C()52A.B.C.D.663312、函数 f (x) 4sin x cos x ,则 f ( x) 的最大值和最小正周期分别为()A .2和B .4和C.2和2 D .4和2x2y2F1, F2是椭圆的两个焦点,若F1F2 4 3,则13、设点P是椭圆1(a 2) 上的一点,a24PF1 PF2()A.4B.8C.42D.4714、设函数 f ( x) 是定义在R上的减函数,且 f ( x) 为奇函数,若x10 , x20 ,则下列结论不正确的是()A .f (0) 0B .f ( x1) 0C . f ( x21) f (2) D .f ( x11) f (2) x2x115、已知数列a n的前n项和 S n2n 1 2 ,则 a12a22a n2()A .4(2n1)2B .4(2n 11)2C. 4(4 n1)D. 4(4 n 12)33二、填空题:本大题共 4 小题,每小题 4 分,满分16 分 .x2y2.16、双曲线 1 的离心率为91617、若sin()2,则 tan.,且 02318、笔筒中放有 2 支黑色和 1 支红色共 3 支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为.19、圆心为两直线x y 2 0 和x 3y 10 0 的交点,且与直线 x y 40 相切的圆的标准方程是.三、解答题:本大题共 2 小题 . 每小题 12 分,满分 24 分 . 解答须写出文字说明、证明过程和演算步骤 .20、若等差数列a n满足 a1a38 ,且 a6a1236 .( 1)求a n的通项公式;( 2)设数列n满足 b1 2 , b n 1a n 1 2a n,求数列n 的前n 项和 S n.b b21、如图所示,在三棱锥P ABC 中, PA 平面 ABC , PB BC,F为BC的中点,DE垂直平分 PC ,且DE分别交AC,PC 于点 D, E .(1)证明:EF / /平面ABP;(2)证明:BD AC .2018 年 1 月广东省普通高中学业水平考试数学试卷( B 卷)答案解析一、选择题:本大题共 15 小题 . 每小题 4 分,满分 60 分 . 在每小题给出的四个选项中,只有一项是符合题目要求的 .1、B解析:M N101,,,故选B.2、B解析:对于 B 项,令x y 1,则 lg( x y) lg 2 lg1 0,而 lg x lg y0 ,显然不成立,故选 B.3、C解析: a f (0)0311 f ( a) f ( 1 ) 1 21,故选 C.24、D解析:x x(1i)x x i x2x 4 ,故选 D.1i (1i)(1i )2225、C解析:由已知可得,14a0 a 1,故选 C. 46、B解析:对于 A 项,12-010,错误;对于 B 项,2a b (2,0) , b (0,2) ,则 2 0+0 2 0 (2 a b) b ,正确;对于 C 项,a2, b 2 ,错误;对于 D 项,a b 1 0122,错误.故选B.7、A解析:抽样比为k153,则应抽取的男生人数为 203=6( 人 ) ,应抽取的女生人数3501010为 (509(人 ) ,故选 A.20)108、C解析:由三视图可知,该几何体为长方体,长为 2,宽为 2 ,高为 1,则体积为V2214,故选 C.9、D解析:(快速验证法)交点为(0,1),(0,0),(1,1) ,则 z x 2 y 分别为 2,0,3,所以 z的最小值为2 ,故选 D.10、 D 解析:对于 A 项, DA DC CA ,错误;对于 B 项, DA DC 2DO ,错误;对于 C 项, OAOB AD BA AD BD ,错误;对于 D 项, AOOB BC AB BC AC ,正确 . 故选 D.11、 A解析:由余弦定理, 得 cosCa2b 2c 2( 3)222( 13)23,又0C2ab23 22C =5,故选 A.62 12、 A 解析:f (x) 2sin 2xf ( x) max2 ,最小正周期为T,故选 A.213、 B 解析:F 1F 2 4 32c c 2 3 a 2c 2b 2(2 3) 24 16 a 4PF 1 PF 2 2a 2 4 8 ,故选 B.14、 D 解析:对于 A 项,f (x) 为 R 上的奇函数f (0)0,正确;对于 B 项,f ( x) 为 R上的减函数x 1 0 f (x 1)f (0) 0 ,正确;x 2 0 x 211 (2当且仅当 x2 1,即 x 21时等号成立 )对于 C 项,x 22 x 2 x 2x 2f ( x 21) f (2) ,正确;x 2对于 D 项,x 1 0 x 11 ( x 11 1 x 1) 2 x 12x 1x 1精品文档f ( x 1 1 ) f ( 2)f (2) ,错误 . 故选 D.x 115 、C解析:当 n2 时, anSS2n 12 (2n2) 2 2n2n2n;当 n 1 时,nn 1a 1 S 1 222 2 适合上式 .a n2n(n N ) a n 2 (2 n )24na n2是首项为 4 ,公比为4 的等比数列2224(1 4n) 4(4n1),故选 C.a 1a 2a n1 43二、填空题:本大题共 4 小题,每小题 4 分,满分 16 分 .16、 5 解析:由已知,得 a29a 3, b216b 4c2a2b 291 62 5c 53双曲线的离心率为 ec 5a.317、5 解析: s i n ( ) c o s 2,且 0sin1 cos21 (2 )2522333tansin 5 3 5 .cos 3 2 218、4 解析: P2 2 4933.919、 (x4)2( y 2)22 解析:联立x y 2 0 得x 4 2圆心为(4, 2)x 3 y 10y则圆心 (4, 2) 到直线 xy 40 的距离为 d4 2 4 2 ,故圆的半径为21212圆的标准方程为(x 4)2 ( y 2)22 .三、解答题:本大题共 2 小题 . 每小题 12 分,满分 24 分. 解答须写出文字说明、证明过程和演算步骤 .20、解:( 1)设等差数列a n 的公差为 d .a1a38a1a12d 8a12a6a1236a15d a1 11d 36d2a n 2 (n 1) 2 2n数列a n的通项公式为a n2n .( 2)由( 1)知,a n 2b n1an 12a n2(n1) 22n2n2 nb n2(n1)22n 4 又b1 2 适合上式b n 2 n 4 (n N )b n 1 bn2n2(2n4)2数列 b n是首项为 2 ,公差为 2 的等差数列.S n2n n( n1)(2)2n n2n n23n221、解:( 1)证明:DE 垂直平分PC E为PC的中点又F为BC的中点EF 为 B C P的中位线EF //BP又EF平面ABP, BP平面ABP EF / /平面 ABP( 2)证明:连接BEPB BC,E为PC的中点PC BEDE 垂直平分PC PC DE又BE DE E,BE,DE平面BDE PC平面BDE 又BD平面BDE PC BDPA 平面ABC,BD平面ABC P A B D又PC PA P,PC,PA平面PAC BD平面P AC 又AC平面PAC BD AC感恩和爱是亲姐妹。

广东省1月普通高中学业水平考试数学试卷Word版含解析

广东省1月普通高中学业水平考试数学试卷Word版含解析

2018年1月广东省普通高中学业水平考试数学试卷(B卷)一.选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. )【答案】B【解析】由题意可知故选B2. )D.【答案】B【解析】∵故选B3. )B. C. D.【答案】C故选C4. 2)【答案】D2故选D5. )【答案】C∴函数故选C6. )【答案】B故选B7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A. 6和9B. 9和6C. 7和8D. 8和7【答案】A∵用分层抽样的方法,从该班学生中随机选取15人参加某项活动故选A点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.8. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()【答案】C【解析】由图像可知该空间几何体为长方体,长和宽为2,高为1故选C点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.9. )C. D.【答案】D【解析】根据已知作出可行域如图所示:故选D点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10. )【答案】D,故故选D11. )【答案】A故选A12. )A. 2【答案】A∴函数的最大值为2故选A13.)【答案】B【解析】∵故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.14. ,确的是()【答案】D正确;对于2是定义域上的减函数,所以,故错误故选D15. )【答案】C故选C二.填空题:本大题共4小题,每小题4分,满分16分.16. ____________.【解析】∵由题可知17.【答案】【解析】∵故答案为18. 笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为____________.【解析】第一次为黑色的概率为19. 圆心为两直线方程是____________.【解析】联立方程组∵圆与直线∴圆的半径点睛:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,当直线与圆相切时,圆心到切线的距离等于圆的半径.属于基础题.三.解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20.(1(2【答案】(12【解析】试题分析:(1组即可求解(2)由(1试题解析:(1(2)由(1.21. 如图所示,在三棱锥中,(1(2【答案】(1)见解析(2)见解析【解析】试题分析:(1(2.试题解析:(1(2点睛:本题主要考查线面平行的判定定理、线面垂直的判定定理等应用,此类题目是立体几何中的常见问题,解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,本题能较好的考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等,试题有一定的综合性,属于中档试题.。

2017-2018年1月广东普通高中学业水平考试试卷及答案(语数英)

2017-2018年1月广东普通高中学业水平考试试卷及答案(语数英)

2018年1月广东省普通高中学业水平考试语文试卷A一、本大题11小题,共26分(1-10题,每题2分,11题6分)阅读下面文字,完成1-3题苏东坡晚年自题画像的两句话“问汝平生功业, 黄州惠州儋州”,带着无限心酸的自我调.侃,蕴含着深刻的人生体认,苦难的□炼成就了他文化创造巨大功绩,促成了他人生思考的深邃.和文化性格的完善,他是中国古代士大夫精英中最为炫目( )最有人格魅力的一位。

1、下列填入文中□处的文字,使用正确的一项是()A、垂B、陲C、锤D、捶2、下列对文中加点的字注意,正确的一项是()A、tiáo suìB、diào suíC、tiáo suíD、diào suì3、下列填入文中()处的标点,使用正确的一项是()A. ,B.:C.、D.……4、在下列横线处依次填入的词语,最恰当的一项是()乡村教育是中国教育的环节,而优秀乡村教师的缺乏又是影响步村教育发展的最关健问题,今年的教育部的的《2017年秋季开学工作专项督导报告》,提出要教师队伍结构,深入实施乡村教师支持计划,加强农村教师队伍的培养培训。

A、虚弱发布优化B、薄弱颁布强化C、虚弱颁布强化D、薄弱发布优化5、下面句子中加点的成语,使用不恰当...的一项是()A、这个幼儿节目的主题曲广受欢迎,小朋友们对它耳熟能详....。

B、冰岛的自然风光美轮美奂....,让远道而来的游人流连忘返。

C、他有时讥评起那些喜欢沽名钓誉的学者来,真是入木三分....。

D、她写这个课本剧一气呵成....,是因为之前做了充分的准备。

6、下列各句中,没有..语病的一项是()A、环保部要求,各地要采取切实有效的措施,保护好国家自然文化遗产。

B、不仅毒品泛滥会诱发大量刑事犯罪,而且会影响物质文明和精神文明的协调发展。

C、复习课不仅要辨析关键知识点,构建知识网络,还要培养运用知识的方法。

D、据统计,2017年广东制造业500强企业平均营业收入约为63亿元左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年1月广东省普通高中学业水平考试真题卷(时间:90分钟满分:100分)一、选择题(本大题共15小题,每小题4分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分) 1.已知集合M={0,2,4},N={1,2,3},P={0,3},则(M∪N)∩P 等于()A.{0,1,2,3,4} B.{0,3} C.{0,4} D.{0}解析:M∪N={0,1,2,3,4},(M∪N)∩P={0,3},故选B.答案:B2.函数y=lg(x+1)的定义域是()A.(-∞,+∞) B.(0,+∞)C.(-1,+∞) D.-1,+∞)解析:对数函数要求真数大于0,所以x+1>0,解得x>-1,故选C.答案:C3.设i为虚数单位,则复数1-ii等于()A.1+i B.1-i C.-1+i D.-1-i解析:1-ii=(1-i)·ii·i=i-i2i2=i+1-1=-1-i,故选D.答案:D4.已知甲:球的半径为1 cm;乙:球的体积为4π3cm3,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:充分性:若r =1 cm ,由V =43πr 3可得体积为43π cm 3,同样利用此公式可证必要性也成立.答案:C5.已知直线l 过点A (1,2),且与直线y =12x +1垂直,则直线l的方程是( )A .y =2xB .y =-2x +4C .y =12x +32D .y =12x +52解析:因为两直线垂直时,斜率互为倒数的相反数(k 1k 2=-1),所以直线l 的斜率k =-2,由点斜式方程y -y 0=k (x -x 0)可得,y -2=-2(x -1),整理得y =-2x +4,故选B.答案:B6.顶点在坐标原点,准线为x =-2的抛物线的标准方程是( ) A .y 2=8x B .y 2=-8x C .x 2=8y D .x 2=-8y解析:因为准线方程为x =-2,所以焦点在x 轴上,且-p2=-2,所以p =4,由y 2=2px 得y 2=8x .答案:A7.已知三点A (-3,3), B (0, 1),C (1,0),则|AB →+BC →|等于( ) A .5 B .4 C.13+ 2 D.13- 2解析:因为AB →=(3,-2),BC →=(1,-1),所以AB →+BC →=(4,-3),所以|AB →+BC →|=42+(-3)2=5,故选A. 答案:A8.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P (5,-2),则下列等式不正确的是( )A.sin α=-23B.sin(α+π)=23C.cos α=53D.tan α=-5 2解析:依题意得,r=x2+y2=5+4=3,sin α=yr,cosα=xr,tan α=y x,所以sin α=-23,cosα=53,tanα=-25=-255,所以A,B,C正确,D错误.答案:D9.下列等式恒成立的是()A.13x=x-23(x≠0) B.(3x)2=3x2C.log3(x2+1)+log32=log3(x2+3) D.log313x=-x解析:13x=x-13(x≠0),故A错;(3x)2=32x,故B错;log3(x2+1)+log32=log32(x2+1),故C错.答案:D10.已知数列{a n}满足a1=1,且a n+1-a n=2,则{a n}的前n项和S n等于()A.n2+1 B.n2C.2n-1 D.2n-1解析:数列{a n}是以1为首项,2为公差的等差数列,由S n=na1+n(n-1)2d=n+n(n-1)2·2=n2,故选B.答案:B11.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,y ≤x ,x +y ≥2,则z =2x +y 的最大值为()A .3B .5C .9D .10解析:如图,画出可行域,当y =-2x +z 移动到A 点时,直线与y 轴的截距z 取得最大值,因为A (3,3),所以z =2x +y 的最大值为9.答案:C12.已知点A (-1,8)和B (5, 2),则以线段AB 为直径的圆的标准方程是( )A .(x +2)2+(y +5)2=3 2B .(x +2)2+(y +5)2=18C .(x -2)2+(y -5)2=3 2D .(x -2)2+(y -5)2=18解析:圆的标准方程(x -a )2+(y -b )2=r 2,圆心为C ⎝ ⎛⎭⎪⎫-1+52,8+22=(2,5),半径r =12(5+1)2+(2-8)2=32,所以圆的标准方程为(x -2)2+(y -5)2=18.答案:D13.下列不等式一定成立的是( ) A .x +2x ≥2(x ≠0) B .x 2+1x 2+1≥1(x ∈R)C .x 2+1≤2x (x ∈R)D .x 2+5x +6≥0(x ∈R)解析:A 选项中,当x <0时,显然不成立;C 选项中,当x =-1时,显然不成立;D 选项中,当x ∈(-3,-2)时,x 2+5x +6<0,所以不成立;B选项中,x2+1x2+1=(x2+1)+1x2+1-1≥2(x2+1)·1x2+1-1=1(x∈R),当且仅当x=0时取“=”.答案:B14.已知f(x)是定义在R上的偶函数,且当x∈(-∞,0]时,f(x)=x2-sin x,则当x∈0,+∞)时,f(x)=()A.x2+sin x B.-x2-sin x C.x2-sin x D.-x2+sin x解析:设x∈0,+∞),则-x∈(-∞,0],所以f(-x)=(-x)2-sin(-x)=x2+sin x,又f(x)是定义在R上的偶函数,所以f(x)=f(-x)=x2+sin x,故选A.答案:A15.已知样本x1,x2,x3,x4,x5的平均数为4, 方差为3,则x1+6,x2+6,x3+6,x4+6,x5+6的平均数和方差分别为() A.4和3 B.4和9 C.10和3 D.10和9解析:由平均数的定义可知x1+6,x2+6,x3+6,x4+6,x5+6的平均数=x-+6=10,方差不变.答案:C二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)16.已知x>0,且53,x,15成等比数列,则x=____________.解析:因为513,x,15成等比数列,所以x2=53×15=25,又x>0,所以x=5.答案:517.函数f(x)=sin x cos(x+1)+sin(x+1)cos x的最小正周期是____________.解析:f(x)=sin x cos(x+1)+sin(x+1)cos x=sin x+(x+1)]=sin(2x +1),所以最小正周期T=2π2=π.答案:π18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是____________.解析:从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数一共有如下12个基本事件:12,13,14,21,23,24,31,32,34,41,42,43;其中该两位数小于20的共有12,13,14三个,所以该两位数小于20的概率为312=14.答案:1 419.中心在坐标原点的椭圆,其离心率为12,两个焦点F1和F2在x轴上,P为该椭圆上的任意一点,若|PF1|+|PF2|=4,则椭圆的标准方程是________.解析:根据焦点在x轴上可以设椭圆的标准方程为x2a2+y2b2=1(a>b>0),因为长轴长2a=|PF1|+|PF2|=4,离心率e=ca=12,所以a=2,c=1,b=a2-c2=3,所以椭圆的标准方程为x24+y23=1.答案:x24+y23=1三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且acos A=bcos B.(1)证明:△ABC为等腰三角形;(2)若a=2,c=3,求sin C的值.(1)证明:因为acos A=bcos B,所以a cos B=b cos A,由正弦定理知sin A cos B=sin B cos A,所以tan A=tan B,又A,B∈(0,π),所以A=B,所以△ABC为等腰三角形.(2)解:由(1)可知A=B,所以a=b=2,根据余弦定理有:c2=a2+b2-2ab cos C,所以9=4+4-8cos C,解得cos C=-18,因为C∈(0,π),所以sin C>0,所以sin C=1-cos2C=638.21.(12分)如图,在四棱锥PABCD中,PA⊥AB,PA⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC=2,E为PC的中点.(1) 证明:AP⊥CD;(2) 求三棱锥PABC的体积;(3) 证明:AE⊥平面PCD.(1)证明:因为PA⊥AB,PA⊥AD,AB⊂平面ABCD,AD⊂平面ABCD,AB∩AD=A,所以PA⊥平面ABCD,又CD⊂平面ABCD,所以AP⊥CD.(2)解:由(1)可知AP⊥平面ABC,所以V P-ABC=13S△ABC·AP,又S△ABC=12AB·BC·sin ∠ABC=12×2×2×sin 60°=3,所以V P-ABC=13×3×2=233.(3)证明:因为CD⊥AP,CD⊥AC,AP⊂平面APC,AC⊂平面APC,AP∩AC=A,所以CD⊥平面APC,又AE⊂平面APC,所以CD⊥AE,由AB=BC=2且∠ABC=60°得△ABC为等边三角形,且AC=2,又因为AP=2,且E为PC的中点,所以AE⊥PC,又AE⊥CD,PC⊂平面PCD,CD⊂平面PCD,PC∩CD=C,所以AE⊥平面PCD.。

相关文档
最新文档