二次函数与点的存在性问题
二次函数存在性问题
二次函数存在性问题一、存在三角形:1、如图,已知抛物线y=-x 2+2x+3交x 轴于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。
(1)求点A 、B 、C 的坐标。
(2)若点M 为抛物线的顶点,连接BC 、CM 、BM ,求△BCM 的面积。
(3)连接AC ,在x 轴上是否存在点P 使△ACP 为等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由。
2、如图,直线AC :1y x =--与抛物线24y ax bx =+-都经过点(1,0)A -、(3,4)B -.(1)求抛物线的解析式;(2) 动点P 在线段AC 上,过点P 作x 轴的垂线与抛物线相交于点E ,求线段PE 长度的最大值; (3) 当线段PE 的长度取得最大值时,在抛物线上是否存在点Q ,使△PCQ 是以PC 为直角边的直角三角形?若存在,请求出Q 点的坐标;若不存在.请说明理由.3、已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA<OB ),直角顶点C 落在y 轴正半轴上(如图11)。
(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式。
(4分) (2)如图12,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E 。
①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标。
(3分) ②又连接CD 、CP (如图13),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没 有,请说明理由。
(3分)图11A B O C 图9 yx P E 图12 图13二、 存在四边形:1、如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D . (1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上, 问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在, 求点F 的坐标;若不存在,请说明理由.2、在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值. (3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3、如图,在平面直角坐标系中CDA Rt AOB Rt ∆≅∆,且)2,0(),0,1(B A -抛物线22-+=ax ax y 经过点C 。
二次函数的存在性问题(Word版解析+答案)
中考压轴题解析二次函数的存在性问题【典例分析】【考点 1】二次函数与相似三角形问题例1】已知抛物线y ax2 bx 3与 x轴分别交于A( 3,0),B(1,0)两点,与 y轴交于点 C.2)点 F 是线段 AD 上一个动点.1AD .2ABC 相似?若相似,求出点 F 的坐标;若不相似,请说明理由.变式1-1】如图,抛物线y ax2 2x c经过A( 1,0),B两点,且与y轴交于点C(0,3) ,抛物线与直线y x 1交于A,E 两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B 的左侧,若以P,B,C为顶点的三角形与ABE相似,求点P的坐AF①如图 1,设k ,当 k 为何值时,CFAD1)求抛物线的表达式及顶点 D 的坐标;标.1【变式1-2】如图,已知抛物线y m(x 2)(x m)(m > 0)与 x 轴相交于点 A,B,与 y轴相交于点 C,且点 A 在点 B 的左侧 .( 1)若抛物线过点( 2, 2),求抛物线的解析式;(2)在( 1)的条件下,抛物线的对称轴上是否存在一点H ,使 AH+CH 的值最小,若存在,求出点 H 的坐标;若不存在,请说明理由;(3)在第四象限内,抛物线上是否存在点M ,使得以点 A,B,M 为顶点的三角形与△ACB 相似?若存在,求出 m 的值;若不存在,请说明理由 .考点 2】二次函数与直角三角形问题BC交于点D,连接AC 、AD ,求VACD的面积;3 点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F ,问是否存在点E使VDEF 为直角三角形?若存在,求出点E 坐标,若不存在,请说明理由.例2】如图,抛物线y ax2bx c a 0的顶点坐标为2, 1 ,图象与y 轴交于点C 0,3 ,与x轴2 设抛物线对称轴与直线【变式2-1】如图,经过x 轴上A( 1,0), B(3,0)两点的抛物线y m(x 1)2 4m (m 0)交y 轴于点C ,设抛物线的顶点为D ,若以DB 为直径的⊙ G 经过点C ,求解下列问题:1)用含m的代数式表示出C,D 的坐标;2)求抛物线的解析式;3)能否在抛物线上找到一点Q,使△BDQ 为直角三角形?如能,求出Q点的坐标,若不能,请说明理由。
二次函数-存在性问题-备战2023年中考数学考点微专题
考向3.9 二次函数-存在性问题例1、(2021·湖南湘潭·中考真题)如图,一次函数333y x =-图象与坐标轴交于点A 、B ,二次函数233y x bx c =++图象过A 、B 两点. (1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.解:(1)对于33y x =:当x =0时,3y = 当y =0时,3303x -=,妥得,x =3 ∴A (3,0),B (0,3- 把A (3,0),B (0,3-23y bx c ++得: 33+3+=03b c c ⎧⎪⎨=-⎪⎩解得,233b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为:23233y =-(2)抛物线的对称轴为直线23312323b x a -=-=-=⨯故设P (1,p ),Q (m ,n ) ①当BC 为菱形对角线时,如图,∵B ,C 关于对称没对称,且对称轴与x 轴垂直, ∴∴BC 与对称轴垂直,且BC //x 轴 ∵在菱形BQCP 中,BC ⊥PQ ∴PQ ⊥x 轴 ∵点P 在x =1上, ∴点Q 也在x =1上, 当x =1时,232343113=333y =⨯-⨯--∴Q (1,433-); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,∴BC //PQ ,且BC =PQ ∵BC //x 轴,∴令3y =23233=3y解得,120,2x x == ∴(2,3)C - ∴PQ =BC =2 ∵22(3)12+= ∴PB =BC =2 ∴迠P 在x 轴上, ∴P (1,0) ∴Q (3,0);若点Q 在点P 的左侧,如图,同理可得,Q (-1,0) 综上所述,Q 点坐标为(1,433-)或(3,0)或(-1,0)1、存在性问题的解题思路:假设存在,推理论证,得出结论;2、解決线段存在性问题的方法:将军饮马问题、垂线段问题、三角形三边关系、函数最值等;3、本题考查的知识点有用待定系数法求出二次函数的解析式,菱形的性质和判定,解一元二次方程,主要考查学生综合运用这些性质进行计算和推理的能力.同时注意用分类讨论思想解决问题。
二次函数与几何的动点及最值、存在性问题(解析版)
二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。
二次函数存在性问题
类型3直角三角形存在性问题
3、如图,抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点,与x轴交于另一点B. (1)求抛物线的表达式; (2)已知点D(m,m+1)在第一象限的抛物线上,连接CD,BD,把△BCD沿BC折叠, ①求点D的对应点D′的坐标; ②在抛物线上是否存在点P,使得△DD′P是以DD′为一直角边的直角三角形?若存在,求 出点P的坐标;若不存在,请说明理由.
体验中考
7、[2017·齐齐哈尔] 如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在的直线 折叠,点B落在点D处,DC与y轴相交于点E.矩形OABC的边OC,OA的长是关于x的一元二次 方程x2-12x+32=0的两个根,且OA>OC. (1)求线段OA,OC的长.(2)证明△ADE≌△COE,并求出线段OE的长. (3)直接写出点D的坐标. (4)若F是直线AC上的一个动点,在平面直角坐标系内是否存在点P,使以点E,C,P,F为 顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
二次函数存在性问题
上次作业处理
类型1全等三角形存在性问题
1、已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物 线的顶点,点B在x轴上. (1)求抛物线对应的函数表达式. (2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在, 求出点P的坐标;若不存在,请说明理由. (3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
(3)如图②,取一根橡皮筋两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在 直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是 否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果 不存在,请简要说明理由.
二次函数中点的存在性问题
二次函数中的存在性问题1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由.2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式;(2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由.3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3).(1)求直线AC及抛物线的解析式;(2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积;(3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C.(1)求直线BC的解析式;(2)求抛物线的顶点及对称轴;(3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由;(4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,2.与y轴交于点C.在直线CA上方的抛物线上是否存在3.一点D,使得△ACD的面积最大?若存在,求出点D4.的坐标;若不存在,请说明理由.解答:解:对于抛物线y=﹣x2+x﹣3,令y=0,得到﹣x2+x﹣3=0,解得:x=1或x=4,∴B(1,0),A(4,0),令x=0,得到y=﹣3,即C(0,﹣3),设直线AC解析式为y=kx+b,将A与C坐标代入得:,解得:k=,b=﹣3,∴直线AC解析式为y=x﹣3,设平行于直线AC,且与抛物线只有一个交点的直线方程为y=x+m,此时直线与抛物线交于点D,使得△ACD的面积最大,与二次函数解析式联立消去y得:﹣x2+x﹣3=x+m,整理得:3x2﹣12x+4m+12=0,∴△=144﹣12(4m+12)=0,解得:m=0,∴此时直线方程为y=x,点D坐标为(2,).2.(2008•宁波校级自主招生)已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式;(2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由.解答:解:(1)∵直线y=kx+4过A(1,m),B(4,8)两点,∴,解得,∴y=x+4,把O、A、B三点坐标代入抛物线解析式,得,,∴y=﹣x2+6x;∴S△OCD=2S△OAB=12,×6×h=12,解得h=4,由﹣x2+6x=4,得x=3±,∴D(3+,4)或(3﹣,4).3.(2014春•昌平区期末)已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.解答:解:(1)把x=0代入y=x﹣3得y=﹣3,则C点坐标为(0,﹣3),把y=0代入y=x﹣3得x﹣3=0,解得x=4,则A点坐标为(4,0),把A(4,0),C(0,﹣3)代入y=﹣x2+mx+n得,解得,所以二次函数解析式为y=﹣x2+x﹣3;(2)存在.过D点作直线AC的平行线y=kx+b,当直线y=kx+b与抛物线只有一个公共点时,点D到AC的距离最大,此时△ACD的面积最大,∵直线AC的解析式为y=x﹣3,∴k=,即y=x+b,由直线y=x+b和抛物线y=﹣x2+x﹣3组成方程组得,消去y得到3x2﹣12x+4b+12=0,∴△=122﹣4×3×(4b+12)=0,解得b=0,∴3x2﹣12x+12=0,解得x1=x2=2,把x=2,b=0代入y=x+b得y=,∴D点坐标为(2,).4.(2010•孝感模拟)在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3).(1)求直线AC及抛物线的解析式;(3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.解答:解:(1)∵点C(2,3)在直线y=kx+1上,∴2k+1=3.解得k=1.∴直线AC的解析式为y=x+1.∵点A在x轴上,∴A(﹣1,0).∵抛物线y=﹣x2+bx+c过点A、C,∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4,可得抛物线的对称轴为x=1,B(3,0).∴E(1,2).根据题意,知点A旋转到点B处,直线l过点B、E.设直线l的解析式为y=mx+n.将B、E的坐标代入y=mx+n中,联立可得m=﹣1,n=3.∴直线l的解析式为y=﹣x+3.∴P(0,3).过点E作ED⊥x轴于点D.∴S△PAE=S△PAB﹣S△EAB=AB•PO﹣AB•ED=×4×(3﹣2)=2.(3)存在,点F的坐标分别为(3﹣,0),(3+,0),(﹣1﹣,0)(﹣1+,0).5.(2013秋•红安县校级月考)如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C.(1)求直线BC的解析式;(3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由;(4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)令y=0,解关于x的一元二次方程求出点B的坐标,令x=0求出点C的坐标,设直线BC的解析式为y=kx+b,然后利用待定系数法求一次函数解析式解答即可;(2)把二次函数解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据轴对称确定最短路线问题,直线BC与对称轴的交点即为使线段AQ+CQ最小的点Q,然后利用直线解析式求解即可;(4)过点P作PD∥y轴与BC相交于点D,根据抛物线解析式与直线BC的解析式表示出PD,再根据S△PBC=S△PCD+S△PBD列式整理,然后利用二次函数最值问题解答.解答:解:(1)令y=0,则﹣x2+x+2=0,整理得,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以,点B的坐标为(3,0),令x=0,则y=2,所以,点C的坐标为(0,2),设直线BC的解析式为y=kx+b,则,解得,所以,直线BC的解析式为y=﹣x+2;(2)∵y=﹣x2+x+2,=﹣(x2﹣2x+1)+2+,=﹣(x﹣1)2+,∴顶点坐标为(1,),(3)由轴对称确定最短路线问题,直线BC与对称轴的交点即为使线段AQ+CQ最小的点,x=1时,y=﹣×1+2=,所以,存在Q(1,),使线段AQ+CQ最小;(4)如图,过点P作PD∥y轴与BC相交于点D,则PD=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,所以,S△PBC=S△PCD+S△PBD,=×(﹣x2+2x)×3,=﹣x2+3x,=﹣(x﹣)2+,所以,当x=时,△PBC的面积最大为,此时,y=﹣×()2+×+2=,所以,存在P(,),使S△PBC最大=.点评:本题是二次函数综合题型,主要利用了抛物线与x轴的交点坐标的求解,待定系数法求一次函数解析式,二次函数的顶点坐标与对称轴的求法,轴对称确定最短路线问题,二次函数的最值问题.。
(完整版)二次函数中的存在性问题(等腰三角形的存在性问题)
二次函数中的存在性问题(等腰三角形)[07福建龙岩]如图,抛物线254y ax ax =-+经过ABC △已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点, 是否存在PAB △是等腰三角形.若存在,求出所有符合条 件的点P 坐标;不存在,请说明理由. 解:(1)抛物线的对称轴5522a x a -=-= (2)(30)A -, (54)B , (04)C ,把点A 坐标代入254y ax ax =-+中,解得16a =-215466y x x ∴=-++(3)存在符合条件的点P 共有3个.以下分三类情形探索.设抛物线对称轴与x 轴交于N ,与CB 交于M .过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =, 5.5AN =,2BM = ① 以AB 为腰且顶角为角A 的PAB △有1个:1P AB △.222228480AB AQ BQ ∴=+=+= 在1Rt ANP △中,1PN ==== 152P ⎛∴ ⎝⎭ ② AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,22MP ==== 252P ⎛∴ ⎝⎭③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△.312P K BQ CK AQ ∴==. 3 2.5P K = 5CK ∴= 于是1OK = 3(2.51)P ∴-,[07广西河池]如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S , 求S 与x 的函数关系式,并指出自变量x 的取值范围.(3)在线段BC 上是否存在点Q ,使得△DBQ 成为以BQ 等腰三角形?若存在,求出点Q 的坐标,若不存在,说明理由.(1)把x =0代入224233y x x =-++得点C 的坐标为C (0,2) 把y =0代入224233y x x =-++得点B 的坐标为B (3,0)(2)连结OP ,设点P 的坐标为P (x ,y )OBPC S 四边形=OPC S △+OPB S △ =112322x y ⨯⨯+⨯⨯= 3223x ⎛+- ⎝∵ 点M 运动到B 点上停止,∴03x ≤≤∴23324S x ⎛⎫=--+ ⎪⎝⎭(03x ≤≤)(3)存在. BC=13 ① 若BQ = DQ∵ BQ = DQ ,BD = 2 ∴ BM = 1 ∴OM = 3-1 = 2 ∴2tan 3QM OC OBC BM OB ∠=== ∴QM =23 所以Q的坐标为Q (2,23) . ② 若BQ =BD =2 ∵ △BQM ∽△BCO ,∴BQ BC =QM CO =BMBO∴=2QM∴ QM∵BQ BC =BM OB ∴ 3BM∴ BM ∴ OM = 3 ··················································· 11分 所以Q 的坐标为Q (313-,13) ··················································· 12分[07年云南省]已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ), 请求出△CBE 的面积S 的值;(3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并 写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由. 解:(1)∵抛物线经过点(1,0)A 、(5,0)B ∴(1)(5)y a x x =--. 又∵抛物线经过点(0,5)C ∴55a =,1a =.∴抛物线的解析式为2(1)(5)65y x x x x =--=-+.(2)∵E 点在抛物线上, ∴m = 42–4×6+5 = -3.∵直线y = kx +b 过点C (0, 5)、E (4, –3), ∴5,4 3.b k b =⎧⎨+=-⎩解得k = -2,b = 5.设直线y =-2x +5与x 轴的交点为D ,当y =0时,-2x +5=0,解得x =52.∴D 点的坐标为(52,0). ∴S =S △BDC + S △BDE =1515(5)5+(5)32222⨯-⨯⨯-⨯=10.(3)∵抛物线的顶点0(3,4)P -既在抛物线的对称轴上又在抛物线上,∴点0(3,4)P -为所求满足条件的点.(4)除0P 点外,在抛物线上还存在其它的点P 使得△ABP 为等腰三角形.理由如下:∵220024254AP BP ==+=>,∴分别以A 、B 为圆心半径长为4画圆,分别与抛物线 交于点B 、1P 、2P 、3P 、A 、4P 、5P 、6P , 除去B 、A 两个点外,其余6个点为满足条件的点. (说明:只说出P 点个数但未简要说明理由的不给分)xyC B AE–1 1 O[07山东威海]如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式. (3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.解:(1)有多种答案,符合条件即可.例如21y x =+,2y x x =+,2(1)2y x =-+或223y x x =-+,2(1)y x =+,2(1y x =-.(2)设抛物线2l 的函数表达式为2y x bx c =++,点(12)A ,,(31)B ,在抛物线2l 上,12931b c b c ++=⎧∴⎨++=⎩,解得9211.2b c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线2l 的函数表达式为291122y x x =-+. (3)229119722416y x x x ⎛⎫=-+=-+ ⎪⎝⎭,C ∴点的坐标为97416⎛⎫⎪⎝⎭,.过A B C ,,三点分别作x 轴的垂线,垂足分别为D E F ,,, 则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =. ABC ADEB ADFC CFEB S S S S ∴=--△梯形梯形梯形117517315(21)22122164216416⎛⎫⎛⎫=+⨯-+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭.x图①x图②x图③x延长BA 交y 轴于点G ,设直线AB 的函数表达式为y mx n =+, 点(12)A ,,(31)B ,在直线AB 上,213.m n m n =+⎧∴⎨=+⎩,解得125.2m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的函数表达式为1522y x =-+.G ∴点的坐标为502⎛⎫ ⎪⎝⎭,. 设K 点坐标为(0)h ,,分两种情况: 若K 点位于G 点的上方,则52KG h =-.连结AK BK ,. 151553122222ABK BKG AKG S S S h h h ⎛⎫⎛⎫=-=⨯⨯--⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭△△△. 1516ABK ABC S S ==△△,515216h ∴-=,解得5516h =.K ∴点的坐标为55016⎛⎫ ⎪⎝⎭,.若K 点位于G 点的下方,则52KG h =-.同理可得,2516h =.K ∴点的坐标为25016⎛⎫⎪⎝⎭,. (4)作图痕迹如图③所示. 由图③可知,点P 共有3个可能的位置.注:作出线段AB 的中垂线得1分,画出另外两段弧得1分.x[07山东泰安]如图,在OAB △中,90B ∠=,30BOA ∠=,4OA =,将OAB △绕点O 按逆时针方向旋转至OA B ''△,C 点的坐标为(0,4). (1)求A '点的坐标; (2)求过C ,A ',A 三点的抛物线2y ax bx c =++的解析式;(3)在(2)中的抛物线上是否存在点P ,使以O A P ,,为顶点的三角形 是等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由 解:(1)过点A '作A D '垂直于x 轴,垂足为D ,则四边形OB A D ''为矩形 在A DO '△中,A D OA ''=sin 4sin 6023A OD '∠=⨯=2OD A B AB''=== ∴点A '的坐标为(2 (2)(04)C ,在抛物线上,4c ∴= 24y ax bx∴=++(40)A ,,(2A ',在抛物线24y ax bx =++上 16440424a b a b ++=⎧⎪∴⎨++=⎪⎩,3a b ⎧=⎪⎨⎪=⎩ ∴所求解析式为23)42y x x =++. (3)①若以点O 为直角顶点,由于4OC OA ==,点C 在抛物线上,则点(04)C ,为满足条件的点. ②若以点A 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(44),或(44)-,,经计算知;此两点不在抛物线上.③若以点P 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(22),或(22)-,,经计算知;此两点也不在抛物线上.综上述在抛物线上只有一点(04)P ,使OAP △为等腰直角三角形[08广东梅州]如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB , AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于 AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L . (3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)解: (1) DC ∥AB ,AD =DC =CB , ∴ ∠CDB =∠CBD =∠DBA , ∠DAB =∠CBA , ∴∠DAB =2∠DBA ,∠DAB +∠DBA =90 , ∴∠DAB =60 , ∠DBA =30 , AB =4, ∴DC =AD =2, R t ∆AOD ,OA =1,OD =3,.∴A (-1,0),D (0, 3),C (2, 3).(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A (-1,0),B (3,0), 故可设所求为 y =a (x +1)( x -3) 将点D (0,3)的坐标代入上式得, a =33-. 所求抛物线的解析式为 y =).3)(1(33-+-x x ···································· 7分 其对称轴L 为直线x =1. ········································································· 8分 (3) ∆PDB 为等腰三角形,有以下三种情况:①因直线L 与DB 不平行,DB 的垂直平分线与L 仅有一个交点P 1,P 1D =P 1B ,∆P 1DB 为等腰三角形; ·········································································· 9分 ②因为以D 为圆心,DB 为半径的圆与直线L 有两个交点P 2、P 3,DB =DP 2,DB =DP 3, ∆P 2DB , ∆P 3DB 为等腰三角形;③与②同理,L 上也有两个点P 4、P 5,使得 BD =BP 4,BD =BP 5. ··················· 10分 由于以上各点互不重合,所以在直线L 上,使∆PDB 为等腰三角形的点P 有5个.[08福建南平]如图,平面直角坐标系中有一矩形纸片OABC ,O 为原点,点A C ,分别在x 轴,y 轴上,点B 坐标为(2)m ,(其中0m >),在BC 边上选取适当的点E 和点F ,将OCE △沿OE 翻折,得到OGE △;再将ABF △沿AF 翻折,恰好使点B 与点G 重合,得到AGF △,且90OGA ∠=.(1)求m 的值;(2)求过点O G A ,,的抛物线的解析式和对称轴; (3)在抛物线的对称轴...上是否存在点P ,使得OPG △是 等腰三角形?若不存在,请说明理由;若存在,直接答出.... 所有满足条件的点P 的坐标(不要求写出求解过程). (1)(2)B m ,,由题意可知2AG AB ==2OG OC ==OA m =90OGA ∠=,222OG AG OA ∴+= 222m ∴+=.又0m >,2m ∴=(2)过G 作直线GH x ⊥轴于H ,则1OH =,1HG =,故(11)G ,.又由(1)知(20)A ,, 设过O G A ,,三点的抛物线解析式为2y ax bx c =++ 抛物线过原点,0c ∴=.又抛物线过G A ,两点,1420a b a b +=⎧∴⎨+=⎩解得12a b =-⎧⎨=⎩∴所求抛物线为22y x x =-+ ∴它的对称轴为1x =.(3)答:存在,满足条件的点P 有(10),,(11)-,,(112),,(112)+,.[08湖南株洲]如图(1),在平面直角坐标系中,点A 的坐标为(1,-2),点B 的坐标为(3,-1),二次函数2y x =-的图象为1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛物线2l 的函数解析式及顶点C 的坐标.(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三角形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.(1)222345y x x y x x =-+-=-+-或等 (满足条件即可) ……1分(2)设2l 的解析式为2y x bx c =-++,联立方程组21193b c b c-=-++⎧⎨-=-++⎩, 解得:911,22b c ==-,则2l 的解析式为291122y x x =-+-, ……3分点C 的坐标为(97,416-) ……4分(3)如答图23-1,过点A 、B 、C 三点分别作x 轴的垂线,垂足分别为D 、E 、F ,则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =.得:1516ABC ABED BCFE CFD S S S S ∆=--=梯形梯形梯形A . ……5分延长BA 交y 轴于点G ,直线AB 的解析式为1522y x =-,则点G 的坐标为(0,52-),设点P 的坐y ox 图(1)yo x 图(2) l 1l 2标为(0,h )①当点P 位于点G 的下方时,52PG h =--,连结AP 、BP ,则52ABP BPG APG S S S h ∆∆∆=-=--,又1516ABC ABP S S ∆∆==,得5516h =-,点P 的坐标为(0,5516-). …… 6分②当点P 位于点G 的上方时,52PG h =+,同理2516h =-,点P 的坐标为(0,2516-).综上所述所求点P 的坐标为(0,5516-)或(0,2516-) …… 7分(4) 作图痕迹如答图23-2所示.由图可知,满足条件的点有1Q 、2Q 、3Q 、4Q ,共4个可能的位置. …… 10分答图23-2EF 答图23-1[08浙江温州]如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在, 请求出所有满足要求的x 的值;若不存在,请说明理由. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=. 点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 10C ∴∠===,45QM QP ∴=,1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=.②当PQ RQ =时,312655x -+=,6x ∴=. ③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BA C CR CA ==, 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.A BCD ER P H QA BCD ER P H QM2 1 HA B CDE RPHQ二次函数中的存在性问题(直角三角形)[08辽宁十二市]如图16,在平面直角坐标系中,直线y =-x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.x。
二次函数存在性问题,角度问题
二次函数存在性问题,角度问题1.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.2.如图,在直角坐标系中,二次函数经过A(﹣2,0),B(2,2),C(0,2)三个点.(1)求该二次函数的解析式.(2)若在该函数图象的对称轴上有个动点D,求当D点坐标为何值时,△ACD的周长最小.(3)在直线y=x上是否存在一点E,使得△ACE为直角三角形?有,请求出E点坐标;没有,说明理由.3.如图抛物线y=ax2+bx+c与x轴交于A(1,0)、B(4,0)两点,与y轴交于点C(0,﹣3),抛物线顶点为点D.(1)求抛物线的解析式;(2)P是抛物线上直线BC上方的一点,过点P作PQ⊥BC于点Q,求PQ的最大值及此时P点坐标;(3)抛物线上是否存在点M,使得∠BCM=∠BCO?若存在,求直线CM的解析式.4.如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度;最大时,求点E的坐标及S△ABF(3)点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.6.如图,已知抛物线y=﹣x2+2x+3与x轴交于点A、B,与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)点A的坐标为,点B的坐标为;(2)如图1,当点P在直线BC上方时,过点P作PD⊥x轴于点D,交直线BC于点E.若PE=2ED,求△PBC 的面积;(3)抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.7.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求这个抛物线的解析式及顶点D的坐标;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)设动点P的横坐标为m,△PAC的面积为S.请直接写出面积S随着m的增大而减小时m的取值范围.8.如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B.(1)求抛物线解析式;(2)E(m,0)是x轴上一动点,过点E作ED⊥x轴于点E,交直线AB于点D,交抛物线于点P,连接PB.①点E在线段OA上运动,若△PBD是等腰三角形时,求点E的坐标;②点E在x轴的正半轴上运动,若∠PBD+∠CBO=45°,请直接写出m的值.9.如图在平面直角坐标系中,已知抛物线y=x2﹣2x+c与两坐标轴分别交于A,B,C三点,且OC=OB,点G是抛物线的顶点.(1)求抛物线的解析式.(2)若点M为第四象限内抛物线上一动点,点M的横坐标为m,四边形OCMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是x轴上的动点,判断有几个位置能够使得点P、Q、A、G为顶点的四边形为平行四边形,直接写出相应的点P的坐标.10.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n 与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣2,0),D(10,﹣12),P点为抛物线y=﹣x2+bx+c上一动点(不与A,D重合).(1)求抛物线和直线l的解析式.(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线于点E,作PF∥y轴交直线l于点F,求PE+PF 的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N,C,M,P为顶点的四边形为平行四边形?若存在,直接写出M的坐标;若不存在,请说明理由.11.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n 与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y =﹣x2+bx+c上一动点(不与A、D重合).(1)直接写出抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,连接PA、PD,①当△PAD的面积最大时,P点的坐标是;②当AB平分∠DAP时,求线段PA的长.(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.12.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,经过B、C两点的抛物线y=ax2+x+c与x轴的另一个交点为A.(1)求抛物线的解析式;(2)点E是直线BC上方抛物线上的一个动点,过点E作y轴的平行线交直线BC于点M,当△BCE面积最大时,求出点M的坐标;(3)在(2)的结论下,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形是平行四边形?如果存在,请求出点P的坐标:如果不存在,请说明理由.13.已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3),点D是顶点,过:S△CEB=3:5.点C的直线交线段AB于点E,且S△ACE(1)求抛物线的解析式及直线CE的解析式;(2)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(3)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使AF+FH的值最小此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.14.如图,抛物线与x轴交于A(﹣1,0)、B(3,0),交y轴于C(0,3).(1)求抛物线的解析式;(2)P是直线BC上方的抛物线上的一个动点,设P的横坐标为t,P到BC的距离为h,求h与t的函数关系式,并求出h的最大值;(3)设点M是x轴上的动点,在平面直角坐标系中,存在点N,使得以点A、C、M、N为顶点的四边形是菱形,直接写出所有符合条件的点N坐标.15.如图,抛物线y=x2+bx+c过A(4,0),B(2,3)两点,交y轴于点C.动点P从点C出发,以每秒5个单位长度的速度沿射线CA运动,设运动的时间为t秒.(1)求抛物线y=﹣x2+bx+c的表达式;(2)过点P作PQ∥y轴,交抛物线于点Q.当t=时,求PQ的长;(3)若在平面内存在一点M,使得以A,B,P,M为顶点的四边形是菱形,求点M的坐标.16.如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.已知直线y=kx+n 过B,C两点.(1)求抛物线和直线BC的表达式;(2)点P是抛物线上的一个动点.①如图1,若点P在第一象限内,连接PA,交直线BC于点D.设△PDC的面积为S1,△ADC的面积为S2,求的最大值;②如图2,抛物线的对称轴l与x轴交于点E,过点E作EF⊥BC,垂足为F.点Q是对称轴l上的一个动点,是否存在以点E,F,P,Q为顶点的四边形是平行四边形?若存在,求出点P,Q的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣的图象经过点A(﹣1,0),C(2,0),与y轴交于点B,其对称轴与x轴交于点D.(1)求二次函数的表达式及其顶点的坐标;(2)若P为y轴上的一个动点,连接PD,求PB+PD的最小值;(3)M(x,t)为抛物线对称轴上一个动点,若平面内存在点N,使得以A、B、M、N为顶点的四边形为菱形,则这样的点N共有个.18.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.19.如图,抛物线y=ax2﹣6x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+5经过点B(5,0),C(0,5).(1)求抛物线的解析式;(2)抛物线的对称轴直线l与直线BC相交于点P,连接AC,AP,判定△APC的形状,并说明理由;(3)在直线BC上是否存在点M,使AM与直线BC的夹角等于∠ACB的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.20.如图,抛物线y=ax2+bx+6与x轴交于A(2,0),B(8,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,当∠PCB=∠BCO时,求点P的横坐标.21.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴正半轴交于点A(4,0),与y轴交于点B(0,2),点C在该抛物线上且在第一象限.(1)求该抛物线的表达式;(2)将该抛物线向下平移m个单位,使得点C落在线段AB上的点D处,当AD=3BD时,求m的值;(3)连接BC,当∠CBA=2∠BAO时,求点C的坐标.22.如图①,在平面直角坐标系中,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图②,若点D是抛物线上一动点,设点D的横坐标为m(0<m<3),连接CD,BD,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)抛物线上是否存在点P,使∠CBP+∠ACO=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由.23.如图1,抛物线y=﹣x2+bx+c与x轴相交于点A(﹣1,0)和点B,交y轴于点C,CO=3AO,点P是抛物线上第一象限内的一动点,点Q在抛物线上.(1)求抛物线的解析式;(2)过点P作PD∥y轴交BC于点D,求线段PD长度的最大值;(3)如图2,当BQ交y轴于点M,∠QBC=∠PBC,∠BCP=45°,求点M的坐标.。
专题27 二次函数-存在性问题(全国通用)(解析版)
专题27 二次函数-存在性问题存在性问题是判断事物是否存在的问题,其知识点较广,综合性强,解题方法较灵活,对学生解决问题能力要求高,中考题中往往出现在压轴题中,其解题的一般思路是:假设存在--推理论证--得出结论---合理就存在在,反之不存在。
存在性的问题有点、线段、图形的存在等等。
解题方法多以设参数--表示点坐标--表示线段长--表示面积---建立方程等方法解决问题。
1.如图,二次函数的图象交x 轴于点()()1,0,4,0A B -,交y 轴于点()0,4,C P -是直线BC 下方抛物线上一动点.(1)求这个二次函数的表达式;(2)连接,PB PC ,是否存在点P ,使PBC ∆面积最大,若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)234y x x =--;(2)存在点P ,使PBC ∆面积最大,点P 的坐标为()2, 6-. 【分析】(1)由A 、B 、C 三点的坐标,利用待定系数法可求得抛物线解析式;(2)过P 作PE ⊥x 轴,交x 轴于点E ,交直线BC 于点F ,用P 点坐标可表示出PF 的长,则可表示出△PBC 的面积,利用二次函数的性质可求得△PBC 面积的最大值及P 点的坐标.【详解】(1)∵二次函数的图象交y 轴于点()0,4C -,∴设二次函数表达式为24y ax bx =+-, 把A 、B 二点坐标代入可得4016440a b a b --=⎧⎨+-=⎩,解这个方程组,得13a b =⎧⎨=-⎩, ∴抛物线解析式为:234y x x =--;(2))∵点P 在抛物线上,∴设点P 的坐标为()2,34t t t --过P 作PE x ⊥轴于E ,交直线BC 于F设直线BC 的函数表达式y mx n =+,将B (4,0),C (0,-4)代入得404m n n +=⎧⎨=-⎩, 解这个方程组,得14m n =⎧⎨=-⎩, ∴直线BC 解析式为4y x =-,∴点F 的坐标为(),4t t -,()()224344PF t t t t t ∴=----=-+, ()2114422PBC S PF OB t t ∆∴==-+⨯ ()2228t =--+,∵20a =->,∴当2t =时,PBC S ∆最大,此时223423246y t t =--=-⨯-=-,所以存在点P ,使PBC ∆面积最大,点P 的坐标为()2, 6-.【点睛】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中用P 点坐标表示出△PBC 的面积是解题的关键.2.如图,二次函数 22y ax bx =++经过点()1,0A -和点()4,0B ,与y 轴交于点C . ()1求抛物线的解析式;()2D 为y 轴右侧抛物线上一点,是否存在点D ,使若存在2 3ABC ABD S S ∆∆=,请直接写出点D 的坐标;若不存在,请说明理由.【答案】(1) 213222y x x =-++;(2) 存在,D (1,3)或(2,3)或(5,-3) 【分析】 (1)利用待定系数法将点A 和点B 的坐标代入,求出a 和b 的值即可;(2)求出△ABC 的面积,根据23ABC ABD S S ∆∆=求出△ABD 的面积,得出△ABD 中AB 边上的高,从而分点D 在x 轴上方和x 轴下方分别求出点D 的坐标.【详解】解:(1)把点()1,0A -和点()4,0B 代入22y ax bx =++中,得0201642a b a b =-+⎧⎨=++⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为213222y x x =-++; (2)存在,()()()231,3,2,3,5,3D D D -,理由是:∵A (-1,0),B (4,0),C (0,2), ∴()141252ABC S ∆=⨯+⨯=, ∵23ABCABD S S ∆∆=, ∴315522ABD S ∆=⨯=, 在△ABD 中,∵AB=5,∴AB 边上的高,即点D 到x 轴的距离为3, ∵抛物线表达式为213222y x x =-++, 若点D 的纵坐标为3,令y=3,解得x=1或2,∴点D 的坐标为(1,3)或(2,3);若点D 的纵坐标为-3,令y=-3,解得x=5或-2(舍),∴点D 的坐标为(5,-3).综上:存在()()()231,3,2,3,5,3D D D -,使得23ABC ABD S S ∆∆=. 【点睛】本题考查了待定系数法求二次函数的解析式,二次函数上点的坐标,解题的关键是注意分类讨论思想的运用.3.如图,在平面直角坐标系中,己知二次函数283y ax x c =++的图像与y 轴交于点B (0, 4),与x 轴交于点A (-1,0)和点D .(1)求二次函数的解析式;(2)求抛物线的顶点和点D 的坐标;(3)在抛物线上是否存在点P ,使得△BOP 的面积等于52?如果存在,请求出点P 的坐标?如果不存在,请说明理由.【答案】(1)248433y x x =-++;(2)D 的坐标为(3,0),顶点坐标为(1,163);(3)满足条件的点P 有两个,坐标分别为P 1(54,214)、P 2(517,412--). 【分析】(1)利用待定系数法求出二次函数解析式即可;(2)根据二次函数的解析式得点D 的坐标,将解析式化为顶点式可得顶点的坐标;(3)设P 的坐标为P (x ,y ),到y 轴的距离为|x|,则S △BOP =12•BO •|x|,解出x=±54,进而得出P 点坐标.【详解】解:(1)把点A (-1,0)和点B (0, 4)代入二次函数283y ax x c =++中得: ()()280=1134a c c⎧-+⨯-+⎪⎨⎪=⎩ 解得:434a c ⎧=-⎪⎨⎪=⎩ 所以二次函数的解析式为:248433y x x =-++ ; (2)根据(1)得点D 的坐标为(3,0),248433y x x =-++=()()224416241333x x x --+=--+, ∴顶点坐标为(1,163); (3)存在这样的点P ,设P 的坐标为P (x ,y ),到y 轴的距离为∣x ∣∵ S △BOP =12•BO •∣x ∣ ∴52=12×4•∣x ∣ 解得:∣x ∣=54所以x =±54把x =54代入248433y x x =-++中得: 2458543434y ⎛⎫=-⨯+⨯+ ⎪⎝⎭ 即:y =214, 把x =-54代入248433y x x =-++中得: 2458543434y ⎛⎫⎛⎫=-⨯-+⨯-+ ⎪ ⎪⎝⎭⎝⎭即:y =-1712∴满足条件的点P 有两个,坐标分别为P 1(54,214)、P 2(517,412--). 【点睛】本题考查待定系数法求二次函数解析式、抛物线的顶点坐标以及三角形面积等知识,掌握二次函数的性质、灵活运用待定系数法是解题的关键.4.如图,已知二次函数2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知BAC ∆的面积是6.(1)求a 的值;(2)在抛物线上是否存在一点P ,使ABP ABC S S ∆∆=.存在请求出P 坐标,若不存在请说明理由.【答案】(1)3a =-;(2)存在,P 点的坐标为(2,3)-或(13)-+-或(13)---.【分析】(1)根据求出A,B,C 的坐标,再由BAC ∆的面积是6得到关于a 的方程即可求解;(2)根据ABP ABC S S ∆∆=得到P 点的纵坐标为±3,分别代入解析式即可求解.【详解】(1)∵2(1)y x a x a =-++-,令0x =,则y a =-,∴(0,)C a -,令0y =,即2(1)0x a x a -++-=解得1x a =,21x =由图象知:0a <∴(,0)A a ,(1,0)B∵6ABC S ∆= ∴1(1)()62a a --= 解得:3a =-,(4a =舍去);(2)∵3a =-,∴(0,3)C ,∵ABP ABC S S ∆∆=.∴P 点的纵坐标为±3,把3y =代入223y x x =--+得2233x x --+=,解得0x =或2x =-,把3y =-代入223y x x =--+得2233x x --+=-,解得1x =-+1x =--∴P 点的坐标为(2,3)-或(13)-+-或(13)--.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的应用.5.如图所示,二次函数2y ax bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB OC <)是方程210160x x -+=的两个根,且A 点坐标为(60)-,.(1)求此二次函数的表达式;(2)若点E 是线段AB 上的一个动点(与点A 、B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE . 设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(3)在(2)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.【答案】(1)228833y x x =--+;(2)2142S m m =-+(0<m<8);(3)当4m =时S 有最大值8,此时点E 的坐标为(20)-,,△BCE 为等腰三角形. 【分析】(1)通过解方程x 2−10x +16=0得到二次函数图象上的点B 、C 的坐标,再结合A 的坐标,利用待定系数法求出函数解析式;(2)用m 表述出AE 、BE 的长,得到△BEF ∽△BAC ,再利用相似三角形的性质得到比例式8108EF m -=,求出EF 的表达式,利用sin ∠FEG =sin ∠CAB =45得到45FG EF =,求出FG 的表达式,再根据S =S △BCE −S △BFE 求S 与m 之间的函数关系,m 的值不超过AB 的长.(3)将S =12-m 2+4配方为S =12-(m −4)2+8,求出S 的最大值,进而判断出此时△BCE 的形状.【详解】(1)方程210160x x -+=的两个根为2和8.由于OB OC <,所以2OB =,8OC =,故8c =,点B 坐标为(20),. 因为点A 坐标为(60)-,,所以22(6)(6)802280a b a b ⎧⨯-+⨯-+=⎨⨯+⨯+=⎩. 解得23a =-,83b =-. 故此二次函数的表达式为228833y x x =--+. (2)∵AB =8,OC =8,依题意,AE =m ,则BE =8−m ,∵OA =6,OC =8,∴AC =10.∵EF ∥AC ,∴△BEF ∽△BAC . ∴EF BE AC AB=. 即8108EF m -=. ∴EF =4054m -. 过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45. ∴45FG EF =. ∴FG =45•4054m -=8−m . ∴S =S △BCE −S △BFE =12(8−m )×8−12(8−m )(8−m ) =12(8−m )(8−8+m ) =12(8−m )m =2142m m -+,自变量m 的取值范围是0<m <8.(3)存在.理由如下:∵S =2142m m -+=−12(m −4)2+8,且−12<0, ∴当m =4时,S 有最大值,S 最大值=8.∵m =4,∴点E 的坐标为(−2,0).∴△BCE 为等腰三角形.【点睛】本题考查二次函数综合题,涉及函数和方程的关系、二次函数的性质、相似三角形的判定与性质、配方法求函数最大值等知识,是一道好题.6.关于x 的一元二次方程()222110k x k x --+=有两个实数根. ()1求k 的取值范围;()2是否存在实数k ,使方程的实数根互为相反数?若存在,求k ;若不存在,请说明理由.【答案】(1)14k ≤且0k ≠;(2)不存在 【分析】(1)由题意,方程需满足:根的判别式大于0且二次项系数不为0,求不等式的解即可;(2)根据互为相反数的两数和等于0得方程,求解并判断即可.【详解】解:()1有题意得()22202140k k k ⎧≠⎪⎨=--≥⎪⎩,解得,14k ≤且0k ≠ ()2设方程的两根为x1,x 2,依题意, 122210k x x k -+==, ∴12k =, 又∵14k ≤且0k ≠ 所以不存在【点睛】本题考查了一元二次方程根的判别式、根与系数的关系.7.如图,在平面直角坐标系xOy 中,二次函数22y x bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1) 求此二次函数解析式;(2) 点D 为点C 关于x 轴的对称点,过点A 作直线l :33y x =+交BD 于点E ,过点B 作直线BK ∥AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.【答案】(1)2y x =-点P 与点E 重合时,即是满足题意的点,坐标为(2(3)8【解析】试题分析:(1) ∵点A 、B 的坐标分别为(-1,0)、(3,0),∴0,230.b c b c -+=++=解得{2b c ==-∴二次函数解析式为222y x =--(2)可求点C 的坐标为(1,-∴点D 的坐标为(1,.可求直线AD的解析式为y =+由题意可求直线BK的解析式为y =-.∵直线l的解析式为y x =+∴可求出点K 的坐标为(5,易求4AB BK KD DA ====.∴四边形ABKD 是菱形.∵菱形的中心到四边的距离相等,∴点P 与点E 重合时,即是满足题意的点,坐标为(2) .(3) ∵点D 、B 关于直线AK 对称,∴DN MN +的最小值是MB .过K 作KF ⊥x 轴于F 点. 过点K 作直线AD 的对称点P ,连接KP ,交直线AD 于点Q , ∴KP ⊥AD .∵AK 是∠DAB 的角平分线,∴KF KQ PQ ===∴MB MK +的最小值是BP .即BP 的长是DN NM MK ++的最小值.∵BK ∥AD ,∴90BKP ∠=︒.在Rt △BKP 中,由勾股定理得BP =8.∴DN NM MK ++的最小值为8.考点:二次函数点评:本题难度较大,主要考查学生对二次函数性质的掌握,本题难度较高在图像分析较复杂,需要学生有扎实基础来理清思路.一般为压轴题型,基础较好的同学要多加训练,培养解题感觉.8.如图是二次函数()2y x m k =++的图象,其顶点坐标为()1,4M -. (1)直接写出m 、k 的值;(2)求二次函数的图象与x 轴的交点A ,B 的坐标;(3)在二次函数的图象上是否存在点P ,使54PAB MAB S S =△△?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)1m =-,4k =-;(2)()1,0A -,()3,0B ;(3)存在点P ,坐标为()4,5或()2,5-【分析】(1)由顶点坐标确定m 、k 的值;(2)令y=0求得图象与x 轴的交点坐标;(3)设存在这样的P 点,由于底边相同,求出△PAB 中AB 边上的高P y ,然后得出P 点纵坐标代入二次函数表达式求得P 点坐标.【详解】解:(1)由顶点坐标为M (1,-4)可知二次函数解析式为()214y x =--.∴1m =-,4k =-;(2)在()214y x =--中,令0y =得()2140x --=,解得13x =,21x =-,∴()1,0A -,()3,0B .(3)∵PAB △与MAB △同底,且54PAB MAB S S =△△, ∴554544P M y y ==⨯=,即5P y =±. 又∵点P 在()214y x =--的图象上,∴4P y ≥-,∴5P y =,∴()2145x --=,解得14x =,22x =-,∴存在点P ,坐标为()4,5或()2,5-,使54PAB MAB SS =. 【点睛】本题考查了由二次函数顶点式的求法及抛物线与x 轴交点坐标的求法,以及给出面积关系求点的坐标,综合体现了数形结合的思想.9.如图,二次函数212y x bx c =++的图象交x 轴于,A D 两点,并经过B 点,已知A 点坐标是()2,0,B 点坐标是()8,6.(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D 点的坐标;(3)二次函数的对称轴上是否存在一点C ,使得CBD ∆的周长最小?若C 点存在,求出C 点的坐标,若C 点不存在,请说明理由.【答案】(1)21462y x x =-+ (2)(4,−2),(6,0)(3)存在,C(4,2)【分析】(1)只需运用待定系数法就可求出二次函数的解析式;(2)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D 的坐标;(3)连接CA ,由于BD 是定值,使得△CBD 的周长最小,只需CD+CB 最小,根据抛物线是轴对称图形可得CA=CD ,只需CA+CB 最小,根据“两点之间,线段最短”可得:当点A 、C 、B三点共线时,CA+CB 最小,只需用待定系数法求出直线AB 的解析式,就可得到点C 的坐标.【详解】(1)把A(2,0),B(8,6)代入212y x bx c =++,得 1402164862bx c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得46b c =-⎧⎨=⎩∴二次函数的解析式为21462y x x =-+ 故答案为:21462y x x =-+ (2)由221146(4)222y x x x =-+=--得二次函数图象的顶点坐标为(4,−2) 令y=0,得214602x x -+= 解得:x 1=2,x 2=6,∴D 点的坐标为(6,0).故答案为:(4,−2),(6,0)(3)二次函数的对称轴上存在一点C ,使得△CBD 的周长最小.连接CA ,如图,∵点C 在二次函数的对称轴x=4上,∴x C =4,CA=CD ,∴△CBD 的周长=CD+CB+BD=CA+CB+BD ,根据“两点之间,线段最短”,可得当点A 、C 、B 三点共线时,CA+CB 最小,此时,由于BD 是定值,因此△CBD 的周长最小.设直线AB 的解析式为y=mx+n ,把A(2,0)、B(8,6)代入y=mx+n ,得2+086m n m n =⎧⎨+=⎩解得12m n =⎧⎨=-⎩ ∴直线AB 的解析式为y=x −2当x=4时,y=4−2=2,∴当二次函数的对称轴上点C 的坐标为(4,2)时,△CBD 的周长最小.故答案为:存在,C(4,2)【点睛】本题考查了用待定系数法求二次函数的解析式,会将二次函数一般式化为顶点式,表示出顶点坐标,本题是抛物线动点问题的综合题型,在求线段和最短的时候,“两点之间,线段最短”是经常会被用到的知识点.10.如图是二次函数c bx x y ++=2的图象,其顶点坐标为M (1,-4).(1)求出图象与x 轴的交点A ,B 的坐标;(2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;【答案】(1) A (-1,0) B (3,0) (2)P 1(4,5) P 2(-2,5).【解析】试题分析:(1)将顶点M (1,-4)代入二次函数c bx x y ++=2,求出二次函数解析式,令y=0,解方程即可;(2)假设存在点P (x ,y )满足条件,用点P 坐标分别表示出两个三角形的面积,解方程确定点P 的坐标.试题解析::(1)因为M (1,-4) 是二次函数c bx x y ++=2的顶点坐标, 所以222(1)423y x bx c x x x =++=--=--,令解得 ∴A ,B 两点的坐标分别为A (-1,0),B (3,0).(2)在二次函数的图象上存在点P ,使设P (x ,y )则 又∴即y=±5 ∵二次函数的最小值为-4∴当时,或故P 点坐标为(-2,5)或(4,5).考点:1.二次函数的图像;2.一次函数的图像;3.二次函数的最值;4.轴对称 .11.如图,二次函数y =﹣14x 2+bx +c 的图象经过点A (4,0),B (﹣4,﹣4),且与y 轴交于点C .(1)求此二次函数的解析式;(2)证明:AO 平分∠BAC ;(3)在二次函数对称轴上是否存在一点P 使得AP =BP ?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)y =﹣14x 2+12x +2;(2)见解析;(3)存在.点P 的坐标为(1,﹣4); 【解析】【分析】 (1)将点A (4,0)与点B (−4,-4)代入函数解析式即可;(2)求出直线AB 的解析式,求出AB 与y 轴交点D (0,−2),可得OC =OD ,再由AO ⊥CD ,可证AO 平分∠BAC ;(3)二次函数的对称轴为直线x =1,设点P 的坐标为(1,m ),AP 2=(4−1)2+m 2,BP 2=(1+4)2+(m4)2,当AP =BP 时,求出m =−4即可;【详解】(1)∵点A (4,0)与点B (﹣4,-4)在二次函数的图象上, ∴044444b c b c =-++⎧⎨-=--+⎩, 解得122b c ⎧=⎪⎨⎪=⎩,∴二次函数的解析式为y =211242x x -++; (2)设直线AB 的解析式为y =ax +n则有4040a n a n +=⎧⎨-+=⎩, 解得122a b ⎧=⎪⎨⎪=-⎩,故直线AB的解析式为y=12x﹣2,设直线AB与y轴的交点为点D,x=0,则y=﹣2,故点D为(0,﹣2),由(1)可知点C为(0,2),∴OC=OD又∵AO⊥CD,∴AO平分∠BAC;(3)存在.∵y=﹣14x2+12x+2=﹣14(x﹣1)2+14+2,∴二次函数的对称轴为直线x=1,设点P的坐标为(1,m),AP2=(4﹣1)2+m2,BP2=(1+4)2+(m4)2,当AP=BP时,AP2=BP2,则有9+m2=25+m2+16+8m,解得m=﹣4,∴点P的坐标为(1,﹣4);【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式,利用勾股定理求边长是解题的关键.12.(本题满分10分)如图是二次函数的图象,其顶点坐标为M(1,-4).(1)求出图象与轴的交点A ,B 的坐标;(2)在二次函数的图象上是否存在点P ,使,若存在,求出P 点的坐标;若不存在,请说明理由;【答案】(1)A (-1,0) B (3,0);(2)存在,P (-2,5)或 P (4,5)【解析】试题分析:1)由已知得,抛物线解析式令y=0,解得 ∴A (-1,0) B (3,0)(2)84421=⨯⨯=∆MAB S ∴∵AB=4 ∴令y=5,解得∴P (-2,5)或 P (4,5)考点:1.抛物线的顶点式;2.抛物线的值13.如图,二次函数212y x bx c =-++的图象经过A(2,0),B(0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.(3)在x 轴上是否存在一点P ,使△ABP 为等腰三角形,若存在,求出P 的坐标,若不存在,说明理由.【答案】(1)y =-12x 2+4x -6;(2)S △ABC =6;(3)点P 坐标为(-2,0)或()2-或()2+或()80-, 【解析】试题分析:(1)把A 、B 两点的坐标代入y=-12x 2+bx+c 中得到关于b 、c 的方程组,然后解方程求出b 、c 即可得到抛物线解析式;(2)先确定抛物线的对称轴方程,则可得到C 点坐标,然后根据三角形面积公式求解.(3)分类讨论,进行求解即可.试题解析:(1)∵的图象经过A (2,0)、B (0,-6)两点, ∴2206b c c -++⎧⎨-⎩==, 解得b=4,c=-6,∴这个二次函数的解析式为y =−12x 2+4x −6 (2)令-12x 2+4x-6=0 ∴x 2-8x+12=0解得:x 1=2 x 2=6∴C (4,0)∴AC=2∴S △ABC =12×2×6=6 (3)点P 坐标为(-2,0)或()(()2-80+或或, 14.如图,二次函数2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于c 顶点,已知(1,0)A ,(0,3)C -.(1)求此二次函数的解析式及B 点坐标.(2)在抛物线上存在一点P 使ABP ∆的面积为10,不存在说明理由,如果存在,请求出P 的坐标.(3)根据图象直接写出33x -<<时,y 的取值范围.【答案】(1)二次函数解析式为223y x x =+-,B 点坐标为(3,0)-;(2)()4,5-,(2,5);(3)412y -<.【分析】(1)将已知的两点坐标代入抛物线中,即可求得抛物线的解析式;.(2)设()2,23P x x x +-,然后利用三角形的面积计算即可;(3)根据图象可得出y 的取值范围..【详解】解:(1)将(1,0)A ,(0,3)C -代入2y x bx c =++中, 得:103b c c ++=⎧⎨=-⎩, 解得23b c =⎧⎨=-⎩. 所以二次函数解析式为223y x x =+-.令0y =,即2230x x +-=,解得:11x =,23x =-.∴B 点坐标为(3,0)-.(2)设()2,23P x x x +-,∵ABP ∆的面积为10, ∴21423102x x ⨯⨯+-=, 解方程2235x x +-=得14x =-,22x =,此时P 点坐标为()4,5-,(2,5).方程2235x x +-=-没有实数解.综上所述,P 点坐标为()4,5-,(2,5).(3)如图所示,当33x -<<时,当1x =-时,y 有最小值,将1x =-代入223y x x =+-中,得4y =-. 当3x =时,y 有最大值.将3x =代入223y x x =+-中,得12y =. ∴y 的取值范围是412y -<.【点睛】本题考查了二次函数解析式的确定以及图形面积的求法,不规则图形的面积通常转化为规则图形的面积的和差.15.如图,已知二次函数223y x x =+-的图象与x 轴相交于C D 、两点(点C 在点D 的左边),与y 轴交于点B ,点A 在二次函数的图像上,且AB ∥x 轴.问线段BC 上是否存在点P ,使△POC 为等腰三角形;如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】存在,点33(,)22P --或(0,3)P -或(3,22P -+-.【分析】由抛物线解析式可得出C 、B 坐标,利用待定系数法可得直线BC 的解析式为y=-x-3,分三个情况讨论:当PC PO =时,点P 在OC 的垂直平分线上,根据O 、C 坐标可得OC 中点坐标,把OC 中点的横坐标代入BC 解析式即可得P 点坐标;当PO CO =时,设P (x ,-x-3),利用两点间距离公式即可得P 点坐标;当PC CO =时,利用利用两点间距离公式即可得P 点坐标.【详解】当0y =时,2230x x +-=,解得:123,1x x =-=,∵点C 在点D 的左边,∴(3,0)C -当x=0时,y=-3,∴B (0,-3),设直线BC 的函数解析式为y kx n =+∴0330k n n=-+⎧⎨-=+⎩, 解得13k n =-⎧⎨=-⎩, ∴直线BC 的解析式为y=-x-3,①当PC PO =时,点P 在OC 的垂直平分线上,∵点C (-3,0),O (0,0),∴OC 中点坐标为(32-,0), 把x=32-代入y=-x-3得:y=32-3=32-, ∴点33(,)22P -- ②当PO CO =时,设P (x ,-x-3),,解得:x 1=0,x 2=-3(舍去),∴-x-3=-3,∴点(0,3)P -,③当PC CO =时,设点(,3)P x x --,3=,解得13x =-+,232x =--(不合题意,舍去)∴(3P -+∴存在,点33(,)22P --或(0,3)P -或(3,)22P -+-. 【点睛】本题考查二次函数图象上的点的坐标特征、待定系数法求一次函数解析式及等腰三角形的判定,注意分类讨论思想的运用是解题关键.16.已知二次函数:2(21)2(0)y ax a x a =+++<.(1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,B (A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P 使75PCA ︒∠=?如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)见解析;(2)1a =-,22y x x =--+,函数图象如图所示见解析;(3)存在这样的点P ,点P 的坐标为35,33⎛⎫ ⎪ ⎪⎝⎭或1).【解析】【分析】(1)1)将解析式右边因式分解得抛物线与x 轴的交点为(−2,0)、(−1a,0),结合a <0即可得证;(2)根据题意求出1a =-,再求出函数与x 轴的交点,即可作图;(3)根据题意作出图像,根据题意分两种情况讨论:①当点P 在直线AC 上方时,记直线PC 与x 轴的交点为E ,根据75PCA ︒∠=求出30OEC ︒∠=,因此OC tan OEC OE ===∠E ,则可求出求得直线CE解析式为2y x =+,再联立两直线即可求出P 点坐标;②当点P 在直线AC 下方时, 同理求出P 的坐标.【详解】(1)∵2(21)2(2)(1)y ax a x x ax =+++=++,且0a <,∴抛物线与x 轴的交点为(2,0)-、1,0a ⎛⎫- ⎪⎝⎭, 则二次函数的图象与x 轴有两个交点;(2)∵两个交点的横坐标均为整数,且a 为负整数,∴1a =-,则抛物线与x 轴的交点A 的坐标为(2,0)-、B 的坐标为(1,0),∴抛物线解析式为(2)(1)y x x =+-+22x x =--+21924x ⎛⎫=-++ ⎪⎝⎭, 当0x =时,2y =,即(0,2)C ,函数图象如图1所示:(3)存在这样的点P ,∵2OA OC ==,∴45ACO ︒∠=,如图2,当点P 在直线AC 上方时,记直线PC 与x 轴的交点为E ,∵75PCA ︒∠=,∴120PCO ︒∠=,60OCE ︒∠=,则30OEC ︒∠=,∴OC tan OEC OE ===∠则E ,求得直线CE解析式为2y x =+,联立2232y x y x x ⎧=+⎪⎨⎪=--+⎩, 解得02x y =⎧⎨=⎩或53x y ⎧=⎪⎪⎨⎪=⎪⎩,∴P ⎝⎭; 如图3,当点P 在直线AC 下方时,记直线PC 与x 轴的交点为F ,∵75ACP ︒∠=,45ACO ︒∠=,∴30OCF ︒∠=,则tan 2OF OC OCF =∠==,∴F ⎫⎪⎪⎝⎭,求得直线PC解析式为2y =+,联立222y y x x ⎧=+⎪⎨=--+⎪⎩, 解得:02x y =⎧⎨=⎩或11x y ⎧=⎪⎨=⎪⎩,∴1)P ,综上,点P 的坐标为⎝⎭或1). 【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,一次函数的图像与性质及三角函数的应用.17.如图,二次函数2y x bx c =-++的图象经过坐标原点,与x 轴的另一个交点为A (-2,0).(1)求二次函数的解析式(2)在抛物线上是否存在一点P ,使△AOP 的面积为3,若存在请求出点P 的坐标,若不存在,请说明理由.【答案】(1)y =-x 2-2x ;(2)(3,-3),(1,-3).【分析】(1)把点(0,0)和点A (-2,0)分别代入函数关系式来求b 、c 的值;(2)设点P 的坐标为(x ,-x 2-2x ),利用三角形的面积公式得到-x 2-2x =±3.通过解方程来求x 的值,则易求点P 的坐标.【详解】解:(1)∵二次函数y =-x 2+bx +c 的图象经过坐标原点(0,0)∴c =0.又∵二次函数y =-x 2+bx +c 的图象过点A (-2,0)∴-(-2)2-2b +0=0,∴b =-2.∴所求b 、c 值分别为-2,0;(2)存在一点P ,满足S △AOP =3.设点P 的坐标为(x ,-x 2-2x )∵S △AOP =3 ∴12×2×|-x 2-2x |=3 ∴-x 2-2x =±3. 当-x 2-2x =3时,此方程无解;当-x 2-2x =-3时,解得 x 1=-3,x 2=1.∴点P 的坐标为(-3,-3)或(1,-3).【点睛】本题考查了抛物线与x 轴的交点.解(1)题时,实际上利用待定系数法来求抛物线的解析式.18.二次函数y=ax 2+bx+c (a ≠0)的图象经过点A (3,0),B (2,﹣3),并且以x=1为对称轴.(1)求此函数的解析式;(2)作出二次函数的大致图象;(3)在对称轴x=1上是否存在一点P ,使△PAB 中PA=PB ?若存在,求出P 点的坐标;若不存在,说明理由.【答案】(1)解析式为y=x 2﹣2x ﹣3;(2)画图见解析;(3)存在,点P 的坐标为(1,﹣1).【解析】试题分析:(1)根据对称轴的公式x =2b a -和函数的解析式,将2b a-=1和A (3,0),B (2,﹣3)代入函数解析式,组成方程组解答即可;(2)求出图象与坐标轴的交点坐标,描点即可;(3)根据两点之间距离公式解答即可.试题解析:解:(1)根据题意得:12930423b a a b c a b c ⎧-=⎪⎪++=⎨⎪++=-⎪⎩,解得:123a b c =⎧⎪=-⎨⎪=-⎩,∴解析式为y =x 2﹣2x ﹣3;(2)二次函数图象如图:(3)存在.作AB 的垂直平分线交对称轴x =1于点P ,连接PA 、PB ,则PA =PB ,设P 点坐标为(1,m ).∵PA =PB ,∴22+m 2=(﹣3﹣m )2+1,解得:m =﹣1,∴点P 的坐标为(1,﹣1). 点睛:(1)所用方法被称为待定系数法;(2)考查了二次函数草图的画法;(3)会用距离公式d19.如图,已知二次函数21:43L y x x =-+与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C .(1)写出A B 、两点的坐标;(2)二次函数()22:430L y kx kx k k =-+≠,顶点为P . ①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②是否存在实数k ,使ABP ∆为等边三角形?如存在,请求出k 的值;如不存在,请说明理由;③若直线8y k =与抛物线2L 交于E F 、两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.【答案】(1)()()1,0,3,0A B ;(2)①对称轴都为直线2x =或顶点的横坐标为2;都经过()()1,0,3,0A B 两点;②存在实数k ,使ABP ∆为等边三角形,k =③线段EF 的长度不会发生变化,值为6.【分析】(1)令2430x x -+=,求出解集即可;(2)①根据二次函数2L 与1L 有关图象的两条相同的性质求解即可;②根据()22432y kx kx k k x k =-+=--,可得到结果;③根据已知条件列式2438kx kx k k -+=,求出定值即可证明.【详解】解:(1)令2430x x -+=,∴()()130x x --=,∴11x =,23x =,∵点A 在点B 的左边,∴()()1,0,3,0A B ;(2)①二次函数2L 与1L 有关图象的两条相同的性质:(I )对称轴都为直线2x =或顶点的横坐标为2;(II )都经过()()1,0,3,0A B 两点;②存在实数k ,使ABP ∆为等边三角形.∵()22432y kx kx k k x k =-+=--,∴顶点()2,P k -,∵()()1,0,3,0A B ,∴2AB =,要使ABP ∆为等边三角形,必满足k -=∴k =③线段EF 的长度不会发生变化.∵直线8y k =与抛物线2L 交于E F 、两点,∴2438kx kx k k -+=,∵0k ≠,∴2438x x -+=,∴11x =-,25x =,∴216EF x x =-=,∴线段EF 的长度不会发生变化.【点睛】本题主要考查了二次函数综合,结合一次函数、等边三角形的性质求解是关键.20.如图,已知二次函数y =x 2﹣2x +m 的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan ∠ABQ =3,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得△QBP ∽△COA ?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)m=﹣3;(2)Q (﹣4,21)或(2,﹣3);(3)不存在,理由见解析【分析】(1)函数的对称轴为:x=1,点C 为AD 的中点,则点A (-1,0),即可求解;(2)tan ∠ABQ=3,点B (3,0),则AQ 所在的直线为:y=±3x (x-3),即可求解;(3)分点Q (2,-3)、点Q (-4,21)两种情况,分别求解即可.【详解】(1)设对称轴交x 轴于点E ,直线AC 交抛物线对称轴于点D ,函数的对称轴为:x=1,点C为AD的中点,则点A(﹣1,0),将点A的坐标代入抛物线表达式并解得:m=﹣3,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)tan∠ABQ=3,点B(3,0),则AQ所在的直线为:y=±3(x﹣3)…②,联立①②并解得:x=﹣4或3(舍去)或2,故点Q(﹣4,21)或(2,﹣3);(3)不存在,理由:△QBP∽△COA,则∠QBP=90°①当点Q(2,﹣3)时,则BP的表达式为:y=﹣13(x﹣3)…③,联立①③并解得:x=3(舍去)或﹣43,故点P(﹣41339,),此时BP:PQ≠OA:AC,故点P不存在;②当点Q(﹣4,21)时,同理可得:点P(﹣21139,),此时BP:PQ≠OA:OB,故点P不存在;综上,点P不存在.【点睛】此题考查二次函数综合运用,一次函数的性质、三角形相似、中点公式的运用等,解题关键在于要注意分类求解,避免遗漏.21.如图,二次函数y =12x 2+bx+c 的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B 点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D 点的坐标;(3)二次函数的对称轴上是否存在一点C ,使得△CBD 的周长最小?若C 点存在,求出C 点的坐标;若C 点不存在,请说明理由.【答案】(1)y=12x 2﹣4x+6;(2)D 点的坐标为(6,0);(3)存在.当点C 的坐标为(4,2)时,△CBD 的周长最小【分析】(1)只需运用待定系数法就可求出二次函数的解析式;(2)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D 的坐标;(3)连接CA ,由于BD 是定值,使得△CBD 的周长最小,只需CD+CB 最小,根据抛物线是轴对称图形可得CA=CD ,只需CA+CB 最小,根据“两点之间,线段最短”可得:当点A 、C 、B 三点共线时,CA+CB 最小,只需用待定系数法求出直线AB 的解析式,就可得到点C 的坐标.【详解】(1)把A (2,0),B (8,6)代入212y x bx c =++,得 14202164862b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得:46b c =-⎧⎨=⎩∴二次函数的解析式为21462y x x =+﹣;(2)由2211464222y x x x =+=﹣(﹣)﹣,得二次函数图象的顶点坐标为(4,﹣2).令y=0,得214602x x +=﹣,解得:x 1=2,x 2=6,∴D 点的坐标为(6,0);(3)二次函数的对称轴上存在一点C ,使得CBD 的周长最小.连接CA ,如图,∵点C 在二次函数的对称轴x=4上,∴x C =4,CA=CD ,∴CBD 的周长=CD+CB+BD=CA+CB+BD ,根据“两点之间,线段最短”,可得当点A 、C 、B 三点共线时,CA+CB 最小,此时,由于BD 是定值,因此CBD 的周长最小.设直线AB 的解析式为y=mx+n ,把A (2,0)、B (8,6)代入y=mx+n ,得208m n m n +=⎧⎨+=⎩解得:12m n =⎧⎨=-⎩ ∴直线AB 的解析式为y=x ﹣2.当x=4时,y=4﹣2=2,∴当二次函数的对称轴上点C 的坐标为(4,2)时,CBD 的周长最小.【点睛】本题考查了(1)二次函数综合题;(2)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.22.已知:如图,二次函数y=x 2+bx+c 的图象过点A (1,0)和C (0,﹣3)(1)求这个二次函数的解析式;(2)如果这个二次函数的图象与x 轴的另一个交点为B ,求线段AB 的长.(3)在这条抛物线上是否存在一点P ,使△ABP 的面积为8?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)二次函数的解析式为223y x x =+- ;(2)=4AB ;(3)存在,点P 的坐标为1(1P -+或2(1P --或3(1,4)P --. 【分析】(1)利用待定系数法把A (1,0),C (0,-3)代入二次函数y=x 2+bx+c 中,即可算出b 、c 的值,进而得到函数解析式是y=x 2+2x-3;(2)首先求出A 、B 两点坐标,再算出AB 的长;(3)设P (m ,n ),根据△ABP 的面积为8可以计算出n 的值,然后再利用二次函数解析式计算出m 的值即可得到P 点坐标.【详解】 解:(1)依题意把()0A 1,,()03C -,代入2y x bx c =++得: 103b c c ++=⎧⎨=-⎩,解得:23b c =⎧⎨=-⎩ , ∴ 该二次函数的解析式为223y x x =+- ;(2)令0y =,则2230x x +-=,解之得:11x =,23x =- ,∴ 点B 坐标为(-3,0),。
二次函数解析几何--存在性问题
二次函数解析几何专题——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
一、方法总结解存在性问题的一般步骤: (1)假设点存在;(2)将点的坐标设为参数;(3)根据已知条件建立关于参数的方程或函数。
二、常用公式(1)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB|=221221)()(y y x x -+- (2)中点坐标公式:1212,22x x y y x y ++== (3)斜率公式:①2121y y k x x -=-;②tan k θ=(θ为直线与x 轴正方向的夹角)(4)①对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2 ②如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.题型一面积问题例1.如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.变式练习:1.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.2.(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.例2:如图,在坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC=90°,A (1,0),B (0,2),抛物线y=21x 2+bx-2的图象过C 点. (1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l .当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?x CO yA B D1 1 图2变式练习:如图,抛物线y=ax 2+bx+c 关于直线x=1对称,与坐标轴交与A ,B ,C 三点,且AB=4,点D (2,23)在抛物线上,直线l 是一次函数y=kx-2(k≠0)的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线l 平分四边形OBDC 的面积,求k 的值;例3:将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点 B (–3,0).(1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE 的面积最大时,求点P 的坐标;y xCBOA变式练习:如图1,抛物线213922y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,联结BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作BC 的平行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;能力提升:1.(2013菏泽)如图1, △ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图像与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图像上,且该二次函数图像上存在一点D 使四边形ABCD 能构成平行四边形. (1)试求b 、c 的值,并写出该二次函数的解析式;(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问:①当P 运动到何处时,由PQ ⊥AC ?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?2.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.3.如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.题型二:构造直角三角形例2.(2010四川乐山)如图所示,抛物线2y x bx c =++与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若tan ∠OAC=2. (1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l 上是否存在点P ,使∠APC=90°?若存在,求出点P 的坐标;若不存在,请说明理由;变式练习: 1.函数218y x =的图象如图所示,过y 轴上一点()02M ,的直线与抛物线交于A ,B 两点,过点A ,B 分别作y 轴的垂线,垂足分别为C ,D .(1)当点A 的横坐标为2-时,求点B 的坐标;(2)在(1)的情况下,分别过点A ,B 作AE x ⊥轴于E ,BF x ⊥轴于F ,在EF 上是否存在点P ,使APB ∠为直角.若存在,求点P 的坐标;若不存在,请说明理由;y D B MA COx3.(2010山东聊城)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90º的点P 的坐标.4.(2012广州)如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1E5.(2013白银)如图,在直角坐标系xOy 中,二次函数y=x 2+(2k ﹣1)x+k+1的图象与x 轴相交于O 、A 两点.(1)求这个二次函数的解析式; (2)在这条抛物线的对称轴右边的图象上有一点B ,使△AOB 的面积等于6,求点B 的坐标; (3)对于(2)中的点B ,在此抛物线上是否存在点P ,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB 的面积;若不存在,请说明理由.6.(2013山西)如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.7.(2013济宁)如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB 与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.8.(2013 绵阳)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,-2),交x轴于A、B两点,其中A(-1,0),直线l:x=m(m>1)与x轴交于D。
二次函数存在性问题(一题多问)
【原题】已知,如图1,经过点A (-3,0)的抛物线2y ax bx c =++与x 轴相交于点B (-2,-2)及原点O .点D 是抛物线第二象限图像上的一点,AH ⊥x 轴与H 点,且tan ∠DAH =4. 【问题】(1)求点D 坐标及抛物线的解析式;(2)在线段OB 下方的抛物线上有一点M ,当△MOB 的面积最大时,求点M 的坐标,并求出最大面积.A 图1xyH BDOA xyBDO(3)在(2)的条件下,抛物线上是否存在点N (不与M 重合),使得S △OBN =S △OBM ,若存在,求出N 点坐标;若不存在,请说明理由. 变式练习:抛物线上是否存在点N ,使得S △OBN =14S △OBD .(4)连接BD ,取BD 中点F ,在抛物线的对称轴上是否存在一点Q ,使得QF +QD 的值最小,求出点Q 坐标,并求出QF +QD 的最小值.变式练习:①连接BD ,取BD 中点F ,点R 、S 分别是x 轴、y 轴上的动点,当四边形DFRS 的周长最小时,求出R 、S 的坐标,并求出四边形DFRS 周长的最小值.②连接BD ,在x 轴上是否存在一点Q ,使得∣QD -QB ∣的值最大,若存在,求出点Q 坐标,并求出最大值;若不存在,请说明理由.③连接AD ,点M 、N 分别是线段OD 、AD 上的动点,连接AM ,MN ,当AM +MN 的值最小时,求出点N 的坐标.④将线段OB 向左移动m 个单位长度,得到线段O ′B ′连接O ′D 、B ′D ,是否存在这样的m ,使得O ′D +B ′D 的值最小?若存在,求出m 的值;若不存在,请说明理由.⑤已知P (0,a )、Q (0,a +3)是y 轴上的两个动点,当四边形BDQP 的周长最小时,求a 的值.A xyBDOA xyBDO(5)在(4)的条件下,点G 是线段OD 上的动点,当△DFG 是等腰三角形时,求点G的坐标.(6)在(4)的条件下,点G 是线段OD 上的动点,把△BFG 沿着线段FG 翻折,是否存在这样的点G ,使△BFG 与△DFG 的重叠部分的面积等于△BDG 的14,若存在,求出DG 的长;若不存在,请说明理由.(7)若点K 在抛物线上,点L 在抛物线的对称轴上,且A 、O 、K 、L 为顶点的四边形是平行四边形,求点K 的坐标;A xyBDOA xyBDOA xyBDO变式练习:若点K 在抛物线上,点L 在x 轴上,且A 、B 、K 、L 为顶点的四边形是平行四边形,求点K 的坐标.(若求L 的坐标呢?)(8)若点U 是抛物线对称轴上一点,当△ADU 是Rt △时,求点U 的坐标.A xyBDOA xyBDO(9)连接BD ,点N 是直线BD 上的一点,在y 轴的正半轴,是否存在一点M ,使得∠MNO =45°,且存在唯一的N 点,若存在,求出M 点坐标;若不存在,请说明理由.变式训练:连接BD ,把△OBD 沿着OD 翻折,使得点B 落在第一象限的点B ˊ处,点P从点D 出发向点B 作匀速运动,点Q 从点B ˊ出发向点D 作匀速运动,两点同时出发,速度均为每秒一个单位长度,连接OP ,OQ ,当时间t 为多少秒时,PO 平分∠BPQ 的同时,QO 平分∠PQ B ˊ?A xyBDOA xyBDOB ˊ(10)P 是抛物线上的第一象限内的动点,过点P 作PT ⊥x 轴,垂足为T ,是否存在点P ,使得以P 、T 、A 为顶点的三角形△BOD 相似?若存在,求出点P 的坐标;若不存在,请说明理由.变式练习:P 是抛物线上的一点,过点P 作PT ⊥x 轴,垂足为T ,过点B 作BI ⊥x 轴,垂足为I ,是否存在点P ,使得以P 、T 、A 为顶点的三角形△ABI 相似?若存在,求出点P 的坐标;若不存在,请说明理由.(11)若点C 在抛物线上,且∠CDO =∠BDO ,试探究:在(2)的条件下,是否存在点G ,使得△GOD ∽△COB ?若存在,请求出所有满足条件的点G 坐标;若不存在,请说明理由.I A xyBDOCA xyBDO。
点的存在性问题
二次函数中存在点的问题1、如图,在平面直角坐标系xOy 中,AB ⊥x 轴于点B ,AB=3,tan ∠AOB=3/4。
将△OAB 绕着原点O 逆时针旋转90o ,得到△OA 1B 1;再将△OA 1B 1绕着线段OB 1的中点旋转180o ,得到△OA 2B 1,抛物线y=ax 2+bx+c (a ≠0)经过点B 、B 1、A 2。
(1)求抛物线的解析式;(2)在第三象限内,抛物线上的点P 在什么位置时,△PBB 1的面积最大?求出这时点P 的坐标;(3)在第三象限内,抛物线上是否存在点Q ,使点Q 到线段BB 1的距离为22?若存在,求出点Q 的坐标;若不存在,请说明理由。
2、如图,经过原点的抛物线y=﹣x 2+2mx (m >0)与x 轴的另一个交点为A .过点P (1,m )作直线PM ⊥x 轴于点M ,交抛物线于点B .记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连接CB ,CP .(1)当m=3时,求点A 的坐标及BC 的长;(2)当m >1时,连接CA ,问m 为何值时CA ⊥CP ?(3)过点P 作PE ⊥PC 且PE=PC ,问是否存在m ,使得点E 落在坐标轴上?若存在,求出所有满足要求的m 的值,并定出相对应的点E 坐标;若不存在,请说明理由.3、如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2 经过A,B两点。
(1)求A点坐标及线段AB的长;(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B 移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒。
①当PQ⊥AC时,求t的值;②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围。
4、如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.。
探解以二次函数为载体的点的存在性问题
探解以二次函数为载体的点的存在性问题作者:孟庆涛来源:《数理化学习·初中版》2013年第04期近年来各地试卷频频出现以二次函数为载体的点的存在性问题,是考察学生分析问题和解决问题能力的探究性题型.解决这类问题时往往要借助数学的分类思想,通过周密的思考和有条理的安排来逐一的解决问题.本文就这类问题进行归类探究,供大家参考.一、等腰三角形中点的存在性问题例1如图1,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).(1)求抛物线的解析式;⑵在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.解析:等腰三角形中何边为腰未确定时,可分下面三种情况.由题意易知抛物线的解析式为:y=-x2+2x+3.设Q点坐标为(1,m),则AQ=4+m2,BQ=1+(3-m)2,又AB=10.①当AB=AQ时,4+m2=10,解得:m=±6,所以Q点坐标为(1,6)或(1,-6).②当AB=BQ时,10=1+(3-m)2,解得:m1=0,m2=6.所以Q点坐标为(1,0)或(1,6).③当AQ=BQ时,4+m2=1+(3-m)2,解得:m=1,所以Q点坐标为(1,1).所以抛物线的对称轴上存在着点Q(1,6)、(1,-6)、(1,0)、(1,6)、(1,1),使△ABQ是等腰三角形.二、直角三角形中点的存在性问题例2在平面直角坐标系中,现将一块等腰直角三角形ABC放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图2所示;抛物线y=ax2-ax-2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使ΔACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.解析:过点B作BD⊥x轴,垂足为D,可知△BDC≌△CAO=90°,所以点B的坐标为(3,1),可得抛物线的解析式为y=12x2-12x-2.假设存在点P,使得△ACP是直角三角形,可分三种情况:①若以AC为直角边,点C为直角顶点;则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图3.可证△MCP1≌△BCD,于是CM=CD=2,P1M=BD=1,可求得点P1(-1,-1);经检验点P1(-1,-1)在抛物线y=12x2-12x-2上.②若以AC为直角边,点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图4.同理可得△AP2N≌△CAO,于是NP2=OA=2,AN=OC=1,可求得点P2(-2,1),经检验点P2(-2,1)也在抛物线y=12x2-12x-2上.[TP.tif>,BP#][TS(][HT5”SS][JZ]图4图5[TS)]③若以AC为直角边,点A为直角顶点;则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图5同理可得△AP3H≌△CAO;所以HP3=OA=2,AH=OC=1,可求得点P3(2,3),经检验点P3(2,3)不在抛物线y=12x2-12x-2上.故符合条件的点有P1(-1,-1),P2(-2,1)两个.三、相似三角形中点的存在性问题例3如图6,已知抛物线过点A(0,6),B(2,0),C(7,52).(1)求抛物线的解析式;(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似,若有,请求出所有符合条件的点P的坐标;若没有,请说明理由.解析:(1)由题意知抛物线经过点A(0,6),B(2,0),C(7,52),可得抛物线的解析式为y=12x2-4x+6.(2)过点A作AM∥x轴,交FC于点M,交对称轴于点N.由抛物线的解析式y=12x2-4x+6可知抛物线对称轴是直线x =4,顶点D的坐标为(4,-2).则AN=4.又知直线AC过A(0,6),C(7,52).所以直线AC的解析式为y=-12x+6.可得点E的坐标为(4,4),F的坐标为(4,-8).于是可证△ANF≌△MNF,得∠CFE=∠AFE.(3)假设△AFP与△FDC相似可分两种情况.由C的坐标为(7,52),F坐标为(4,-8),A的坐标为(0,6).所以CF=(52+8)2+(7-4)2=3532,FA=(6+8)2+42=253.又DF=6,由题意易知∠PAF=∠DFC,①若△AFP1∽△FCD,则P1ADF=AFCF,即P1A6=2533532,解得P1A=8,求得0 P1=8-6=2,所以P1的坐标为(0,-2).②若△AFP2∽△FDC.则P2ACF=AFDF,即P2A3532=2536,解得P2A=532,求得0 P2=532-6=412.所以P2的坐标为(0,-412).所以符合条件的点P的坐标是两个,分别是P1(0,-2),P2(0,-412).四、特殊四边形中点的存在性问题例4如图7,抛物线y=13x2-mx+n与x轴交于A、B两点,与y轴交于点C(0,-1),且对称轴x=1.(1)求出抛物线的解析式及A、B两点的坐标;(2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标.[TP.tif>,BP#][TS(][HT5”SS][JZ]图7图8[TS)]解析:(1)由对称轴x=1可知--m2×13=1得m=23,又n=-1,所以抛物线的解析式为y=13x2-23x-1,由13x2-23x-1=0得x=-1或x=3,所以A(-1,0),B(3,0).(2)假设四边形QPAB是平行四边形,则PQ与AB存在两种位置关系平行或平分,故可分两种情况讨论:①当PQ平行等于AB时,PQ=4,当P在y轴右侧时,P的横坐标为4,当P在y轴左侧时,P的横坐标为-4,所以P1(4,53),P2(-4,7).②当PQ与AB互相平分时,PQ过AB的中点(1,0),可得P的横坐标为2,所以P3(2,-1).综上所述P的坐标为(4,53)或(-4,7)或(2,-1).数学分类思想,就是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想.它既是一种重要的数学思想,又是一种重要的数学逻辑方法.在运用分类思想解决点的存在性问题时,其关键是抓住图形的特征,进行系统的分类,既不重复、也不遗漏. 另外在解决此问题时往往先假设问题的存在,再通过对图形的特性的分类得出相应线段的等量关系,并转化为方程来解决问题.。
中考数学 二次函数存在性问题 及参考答案
中考数学二次函数存在性问题及参考答案中考数学二次函数存在性问题及参考答案一、二次函数中相似三角形的存在性问题1.如图,把抛物线 $y=x^2$ 向左平移1个单位,再向下平移4个单位,得到抛物线 $y=(x-h)^2+k$。
所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D。
1)写出h、k的值;2)判断△ACD的形状,并说明理由;3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由。
2.如图,已知抛物线经过A($-2,0$),B($-3,3$)及原点O,顶点为C。
1)求抛物线的解析式;2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;3)P是抛物线上的第一象限内的动点,过点P作PM⊥x 轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。
二、二次函数中面积的存在性问题3.如图,抛物线 $y=ax^2+bx$ ($a>0$)与双曲线$y=\frac{k}{x}$ 相交于点A,B。
已知点B的坐标为($-2,-2$),点A在第一象限内,且 $\tan\angle AOX=4$。
过点A作直线AC∥x轴,交抛物线于另一点C。
1)求双曲线和抛物线的解析式;2)计算△ABC的面积;3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积。
若存在,请写出点D的坐标;若不存在,请说明理由。
4.如图,抛物线 $y=ax^2+c$ ($a>0$)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A($-2,0$),B($-1,-3$)。
1)求抛物线的解析式;2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;3)在第(2)问的结论下,抛物线上的点P使$\triangle PAD=4\triangle ABM$ 成立,求点P的坐标。
二次函数解析几何--存在性问题
二次函数解析几何专题——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
一、方法总结解存在性问题的一般步骤:(1)假设点存在;(2)将点的坐标设为参数;(3)根据已知条件建立关于参数的方程或函数。
二、常用公式(1)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB|=221221)()(y y x x -+-(2)中点坐标公式:1212,22x x y y x y ++==(3)斜率公式:①;②(为直线与x 轴正方向的夹角)2121y y k x x -=-tan k θ=θ(4)①对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2②如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.题型一 面积问题例1.如图,抛物线y =-x 2+bx +c 与x 轴交于A (1,0),B (-3,0)两点.(1)求该抛物线的解析式;(2)在(1)中的抛物线上的第二象限内是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存在,请说明理由.变式练习:1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.O B A CyxA xy BO能力提升:1.(2013菏泽)如图1,△运动到何处时,四边形PDCQ的面积最小?此时四边形2.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.3.如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.yD BMA CO xE 图1的坐标,并求出△POB的面积;若不存在,请说明理由.)中抛物线的第二象限图象上是否存在一点与△POC的坐标;若不存在,请说明理由;c的图象的顶点C的坐标为(0,-2),交m(m>1)与x轴交于D。
二次函数图象上点的存在性问题
联合函数y=x2 可得
ቤተ መጻሕፍቲ ባይዱ
P(3,9)
M
练习:(2009—2010 昌平二模)如图,抛物线y=ax2+bx-4a经 过A(-1,0)、C(0,4)两点,与x轴交于另一点B. (1)求抛物线的解析式; (2)已知点D(m,m+1)在第一象限的抛物线上,求点D关 于直线BC对称的点的坐标; (3)在(2)的条件下,连接BD,点P为抛物线上一点, 且∠DBP=45°,求点P的坐标.
例1已知抛物线 y=x2-2x-3 的的顶点为 D,点 P、 Q 是抛 物线上的动点,若△DPQ 是等边三角形,求△DPQ的面积。
解:根据 y=x2-2x-3可得D(1,-4),因为△QPD是等边三
角形,所以直线DQ的斜率为 ,因为D(1,-4),
所以l DQ: y= x-4-
,与二次函数y=x2-2x-3联立起来解方 程,可得xQ=1+
∵P点在抛物线上,
∴P (
)
全等、相似与角度
板块二:二次函数与多个角
技巧和方法: 在抛物线上找点,满足两角和(差)关系。
例1二次函数 y=x2-2x-3 的图象与 x 轴交于 A、 B 两点 (点 A 在点 B 的左侧),与 y 轴交于 C 点,在二次函数的图 象上是否存在点 P,使锐角∠PCO>∠ACO?若存在,请你 求出 P 点的横坐标的取值范围;若不存在,请你说明理由。
例3 (2010 苏州)如图,以 A 为顶点的抛物线与 y 轴交于点 B。 已知 A、 B 两点的坐标分别为(3, 0)、 (0, 4)。 ⑶在⑵的条件下,试问:对于抛物线对称轴上的任意一点 P, PA2+PB2+PM2>28 是否总成立? 请说明理由
解:(1) (1)设y=a(x-3)2,把B(0,4)代入,得a= (2)∵m,n为正整数∴ (m-3)2 应该是9的整数,∴m是3的倍数, 又∵m>3,∴m=6,9,12..., 当m=6时,n=4,此时MA=5,MB=6, ∴四边形OAMB的四边长为3,4,5,6, 当m≥9时,MB>6,∴四边形OAMB的四边长不能是四个连续的 正整数,∴点M坐标只有一种可能(6,4); (3)设P(3,t),MB与对称轴交点为D,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与点的存在性问题
1. (09朝阳期末25)如图,抛物线2
23y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛
物线交于A 、C 两点,其中C 点的横坐标为2。
(1)求A 、B 两点的坐标及直线AC 的函数表达式;
(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由(请直接写出点的坐标,不要求写过程)。
主题干已知抛物线解析式:
2y=x 23x -- 变式1:
若一个动点P 自OC 的中点M 出发,先达到x 轴上某点(设为点E ),再达到抛物线的对称轴上某点(设为点F ),最后运动点C.求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长。
变式2:在线段BC上是否存在一点P,使得B、C两点到直线AP的距离之和最大?若存在,请求出P点的坐标;若不存在,请说明理由。
变式3:若P点坐标为(4,5),则在抛物线上是否存在点Q,使得△PAQ和△PBQ的面积相等?若存在,求出Q点的坐标;若不存在,请说明理由。
变式4:在y轴右侧的抛物线上是否存在点M,使S△MAC=3?若存在求出点M的坐标,若不存在,请说明理由
变式5:在二次函数的图像上是否存在点P,使得∠PAC为锐角?若存在,请你求出P点的横坐标的取值范围;若不存在,请说明理由。
变式6:在二次函数图像上是否存在点P ,使锐角∠PCO 大于∠ACO ?若存在,请求出P 点的横坐标的取值范围,若不存在,请你说明理由。
变式7:抛物线213
y=x 122x -+过点A (1,0),B(x 2,0),交y 轴正半轴于点C ,在抛物线上(在B 点的右
侧)是否存在一点P ,使得∠PCB 小于∠CBA-∠ACB ?若存在,求出点P 的坐标;若不存在,请说明理由。
练习1:(09朝阳一模)
抛物线与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,-3),抛物线顶点为M ,连接AC 并延长AC 交抛物线对称轴于点Q ,且点Q 到x 轴的距离为6. (1)求此抛物线的解析式;
(2)在抛物线上找一点D ,使得DC 与AC 垂直,求出点D 的坐标;
(3)抛物线对称轴上是否存在一点P ,使得S △PAM =3S △ACM ,若存在,求出P 点坐标;若不存在,请说明理
由.
x
练习2:(09怀柔一模)
把直线y=--2x+2沿x 轴翻折恰好与抛物线2
y 2ax bx =++交于点C(1,0)和点A (8,m )。
(1)求该抛物线的解析式
(2)设该抛物线与y 轴相交于点B ,设点P 是x 轴上的任意一点(点P 与点C 不重合),若S △ABC =3S △ACP ,求满足条件的点P 的坐标;
(3)设点P 是x 轴上的任意一点,是判断PA+PB 与AC+BC 的大小关系,并说明理由。
练习3:(09门头沟一模)
在平面直角坐标系xOy 中,抛物线 y =-x 2
+bx +c 与x 轴交于A 、B 两点(点A 在
点B 的左侧),与y 轴交于点C ,顶点为D ,且点B 的坐标为(1,0), 点C 的坐标 为(0,3).
(1)求抛物线及直线AC 的解析式;
(2)E 、F 是线段AC 上的两点,且∠AEO =∠ABC ,过点F 作与y 轴平行的直线交抛物线于点M ,交x
轴于点N .当MF =DE 时,在x 轴上是否存在点P ,使得以点P 、A 、F 、M 为顶点的四边形是梯形? 若存在,请求出点P 的坐标;若不存在,请说明理由;
(3)若点Q 是位于抛物线对称轴左侧图象上的一点,试比较锐角∠QCO 与∠BCO 的大小(直接写出结果,不要求写出求解过程,但要写出此时点 Q 的横坐标x 的取值范围).。