第3章 土的渗透性及渗流
土力学课件(3土的渗透性与渗流)详解
管内减少水量=流经试样水量
-adh=kAh/Ldt 分离变量
积分
k=2.3
aL
At2
t1 lg
h1 h2
k=
aL
A t2
t1 ln
h1 h2
3、影响渗透系数的主要因素 (1)土的粒度成分
v 土粒愈粗、大小愈均匀、形状愈圆滑,渗透系数愈大
v 细粒含量愈多,土的渗透性愈小,
(2)土的密实度 土的密实度增大,孔隙比降低,土的渗透性也减小 土愈密实渗透系数愈小
(3)土的饱和度 土的饱和度愈低,渗透系数愈小
(4)土的结构 扰动土样与击实土样,土的渗透性比同一密度 原状土样的小
(5)水的温度(水的动力粘滞系数) 水温愈高,水的动力粘滞系数愈小 土的渗透系数则愈大
k20 kT T 20
(6)土的构造
T、20分别为T℃和20℃时水的动 力粘滞系数,可查表
水平方向的h>垂直方向v
n
qx q1x q2x qnx qix i1
达西定律
qx kxiH
平均渗透系数
q1x k1 qx q2x k2
q3x k3
H1 H2 H H3
n
qix k1iH 1 k 2iH 2 k n iH n
i 1
整个土层与层面平行的渗透系数
k x
1 H
n
kiH i
i1
(2)垂直渗透系数
H
隧道开挖时,地下 水向隧道内流动
在水位差作用下,水透过土体孔隙的现象称为渗透
渗透
在水位(头)差作用下,水透过土体孔隙的现象
渗透性
土体具有被液体透过的性质
土的渗流 土的变形 土的强度
相互关联 相互影响
第3章 土的渗透性和渗流
基坑
渗流问题 1.渗流量(降水办法) 2.渗透破坏(流砂)
透水层 不透水层
§3.1 概 述
土坝蓄水后水透
土石坝坝基坝身渗流 过坝身流向下游
防渗体
坝体 浸润线
渗流问题: 1.渗流量? 2.渗透破坏?
透水层
3.渗透力?
不透水层
§3.1 概 述 水井渗流
Q 天然水面
透水层
不透水层
渗流问题: 1.渗流量Q? 2.降水深度?
土愈密实,k值得愈小。试
• 土的密实度
验表明,对于砂土,k值对数与孔
• 土的饱和度
隙比及相对密度呈线性关系;对
• 土的结构和构造 粘性土,孔隙比对k值影响更大。
(2)水的性质
§3.2 土的渗透性
4.影响土的渗透系数主要因素
(1)土的性质
• 粒径大小及级配 • 土的密实度
• 土的饱和度 • 土的结构和构造
第3章 土的渗透性和渗流
§3.1 概
述
§3.2 土的渗透性
§3.3 土中二维渗流及流网
§3.4 渗透破坏与控制
§3.1 概 述
土是一种三相组成的多孔介质,其孔隙在空 间互相连通。如果存在水位差的作用,水就会在 土的孔隙中从能量高的点向能量低的点流动。
水等液体在土体孔隙中
流动的现象称为渗流。
土具有被水等液体透过
k1
h1 L1
k2
h2 L2
已知:L1=L2=40cm, k1= 2k2,故2△h1= △h2 ,
代入△h1+△h2 = △h=30cm得:
△h1=10cm,△h2 = 20cm
由此可知,测压管中的水面将升至右端水面以上10cm处。
3 土力学(permeability)土的渗透性及渗流
各类土的渗透系数
k反映了土渗透性的强弱
砾砂、粗砂 中砂 细砂、粉砂 粉土 粉质黏土 黏土
10-3~10-4 m/s
10-4~10-5 m/s
10-5~10-6 m/s
10-6~10-8 m/s
10-8~10-9 m/s
10-9~10-12 m/s
砂、砾的透水性强,可以起到排水作用; 粘性土的透水性弱,可以起到截水的作用。 砾砂、粗砂、中砂属强透水材料,粉、细砂属中透水性材料, 粉土属弱透水材料,粉质粘土属于基本不透水材料, 粘土属于不透水材料。
不透水层
成层地基竖向等效渗透系数
Equivalent permeability determination- ertical flow in stratified soil
kV eq H H1 H 2 H 3 Hn kV kV kV kV 1 2 3 n
土石坝坝基坝身渗流
防渗斜墙及铺盖
土石坝
浸润线
渗流量
透水层
不透水层
渗透变形
板桩围护下的基坑渗流
板桩墙
渗水压力
渗流量
基坑
透水层 不透水层
渗透变形
扬压力
水井渗流
Q
天然水面
透水层
渗流量
不透水层
渠道渗流
渗流量
渗流时地下水位
原地下水位
土的渗透性及渗透规律
渗流量
渗透力与渗透变形
渗透变形 渗流滑坡
挡水建筑物 集水建筑物 引水结构物 基坑等地下施工 多雨地区边坡
依据(b) 达西定律 v = ki Kozen-Carman公式表达式
土的渗透性及水的渗流
m
kjH j
j 1
三、渗透系数的室内测定
渗透系数不能用理论方法求得,只能通过试验确定。
测定k值室内方法:定水头法、变水头法。
(1)定水头法
保持总水头差Δh不变,在t时间内,量得透过土样的
水量为Q,求k:
注水
根据达西定律
v Q ki k h
t.A
L
k QL A t h
L
h
适用于粗颗粒土,如中砂、粗砂
uA
i h L
△h代表单位重量液体从A点向B点流动时, 为克服阻力而损失的能量。
水力梯度:
水力坡降i 的物理意义为单位渗流长度上的 水力损失。
L为A、B两点间的渗流途径。
2024/11/15
例2-1 如图,求
一.a-a、b-b、c-c静水头 和总水头。
二.a-a至c-c,a-a至b-b,bb至c-c的水头损失;
例题:某基坑在细砂层中开挖,经施工抽水,待水位稳定后, 实测水位情况如图所示。据场地勘察报告提供;细砂层有关 物理力学性质指标如下:
sat 18.7kn / m3
k 4.5102 m m/ s
试求渗透水流的平均速度和 动水力(渗透力),并判断是 否会产生流砂现象?
5.5m
细砂层
分析:1 v ki
v—断面平均渗透速度, 单位m/s或m/d; k—土的渗透系数 单位同v.
流速与水力梯度的 关系-砂土 砂土的水力梯度与 渗透速度呈线性关 系,符合达西渗透 定律。
适用范围:适用于层流范围,如砂土和一般的粘性土, 很粗的土或粘性很强的致密粘土不适合。
单位时间流过土截面A的水量q
流速与水力梯度的关系-粘土
则渗透系数k:
2.3 q lg( r2 )
第三章 土的渗透性及渗流讲解
• (5).土的温度: 温度高, 粘滞阻力小。
• (6).土的构造: 层理的方向性, 夹层的影响。
• §3 . 3 土中二维渗流及流网
• 3 . 3 . 1 二维渗流方向
• 稳定渗流:渗流场中水头及流速等要素 随时间改变的渗流。
• 3 . 3 . 2 流网的特征与绘制
• 1. 流网的特征
• 流网:由流线和等势线所组成的曲线正交网格。
形甚至渗透破坏; • 渗流控制问题:采用工程措施,使渗流量或渗透变形满足设计
要求。
•
§3 . 2 土的渗透性
3 . 2 . 1 渗流基本概念
(1).水头:
2
h
p z
(伯努利定理),土中水渗透速度太小,可
忽略,故有 2g vw
h p z
(2). 水头差:
h h h ( p A) ( p )
(3).水力坡度: i h l
3 . 2 . 2 土的层流渗透定律
1.基本概念
(1)流线:水质点的运动切线的连线称为流线;
(2)层流:如果流线互不相交,则水的运动称为层流;
(3)紊流:如果流线相交,水中发生局部旋涡,则称为紊 流。
一般土(粘性土及砂土等)的孔隙较小,水在土体流动过程 中流速十分缓慢,因此多数情况下其流动状态属于层流。
h Nd
i (b 1) h b L Nd L
若
b L 1则高渗透量,为
Nf ( h )i Nf
2 Nf
Nd
其中:Nf 为流槽数。Nd为等势线数减1。
• §3 . 4 渗透破坏与控制
(1). 渗透力的作用,土颗粒流失或局部土体位移而产生破坏.如,流 砂和管涌。
第3章:土的渗透性及渗流
• 基本概念
渗透---土中水从土中孔隙中透过的现象称为渗透 渗透---土中水从土中孔隙中透过的现象称为渗透。 土中水从土中孔隙中透过的现象称为渗透。 渗透性---土体具有被水透过的性质称为渗透性 土体具有被水透过的性质称为渗透性; 渗透性---土体具有被水透过的性质称为渗透性; 渗流---水在土孔隙中的流动问题称为渗流 水在土孔隙中的流动问题称为渗流。 渗流---水在土孔隙中的流动问题称为渗流。 渗透与渗流的基本问题: 渗透与渗流的基本问题: (1)渗流量问题 (2)渗透破坏问题 (3)渗流控制问题
适用:中砂、细砂、粉砂等,粗砂、砾石、卵石等粗颗粒不适用
• 公式应用的假定
• 按照达西定律求出的渗透速度是一种假想的平均流速 , 它假定水在土中的渗透是通过土体截面来进行的。 它假定水在土中的渗透是通过土体截面来进行的。实际 上 ,水在土体中的实际流速要比用达西定律求出的流速 要大得多, 要大得多,如均质砂土的孔隙率为 n,则他们之间的关系 为
3.3 渗透破坏与控制 水在土中渗透时,由于水具有一定的流速, 水在土中渗透时,由于水具有一定的流速, 必然受到土颗粒的阻力作用。 必然受到土颗粒的阻力作用。根据作用力 与反作用力的原理, 与反作用力的原理,水流必然也对土颗粒 有一个大小相等,方向相反的作用力。 有一个大小相等,方向相反的作用力。 • 渗透力---渗流作用在单位体积土体中土颗 渗透力---渗流作用在单位体积土体中土颗 粒上的作用 作用力 粒上的作用力(kN/m3),作用方向与水流 方向一致。 方向一致。
• 层状地基的等效渗透系数 大多数天然沉积土层是由渗透系数不同的层土所组 宏观上具有非均质性。 成,宏观上具有非均质性。
厚度等效
层状土层
渗透系数等效
单一土层
土的渗透性(最新)
3.2 土的渗透性
土的性质 • 粒径大小及级配 • 孔隙比 • 土的饱和度 • 结构和构造
水的温度
水的动力粘滞系数: 温度,水粘滞性,k
(JTJ051-93)采用标准 温度200下的渗透系数:
k20
T 20
kT
影响渗透系数的因数
1.土粒大小与级配
细粒含量愈多,土的渗透性愈小,例如砂土中粉粒及粘粒 含量愈多时,砂土的渗透系数就会大大减小。
ib
i
密实粘土
3.2 土的渗透性 三、渗透系数的测定及影响因素 1. 测定方法
室内试验测定方法 野外试验测定方法
常水头试验法 变水头试验法
井孔抽水试验 井孔注水试验
3.2 土的渗透性
室内试验方法1—常水头试验法
试验装置:如图
试验条件: Δh,A,L=const
h 土样
L
量测变量:渗水量Q,t
能量方程
二.渗透试验与达西定律
渗流速度的规律
三.渗透系数的测定及影响因素
渗透特性
四.层状地基的等效渗透系数 地基的渗透系数
3.2 土的渗透性 一、渗流中的水头与水力坡降
板桩墙 基坑
A
B L
透水层 不透水层
渗流为水体的流动,应满 足液体流动的三大基本方 程:连续性方程、能量方 程、动量方程
3.2 土的渗透性
3.3 二维渗流及流网
3.渗流量计算
A
总水头差: △ H 相邻等势线之间的水头 H
△H
l
b
D
B
损失为:h H / N d
b
l
C
每个流槽的渗流量:
0
0
q Aki (b 1) k h k H b
土力学-第三章土的渗透性及渗流
aL
At2
t1 lg
h1 h2
-adh=kAh/Ldt
分离变量 积分
k=
aL
At2
t1 ln
h1 h2
天津城市建设学院土木系岩土教研系数
常用的有现场井孔抽水试验或井孔注水试验。 对于均质粗粒土层,现场测出的k值比室内试验得出的值要准确
第3章 土的渗透性及渗流
3.1 概述 3.2 土的渗透性 3.3 土中二维渗流及流网(了解) 3.4 渗透破坏与控制
土力学
天津城市建设学院土木系岩土教研室
第3章 土的渗透性及渗流
3.1 概述 3.2 土的渗透性 3.3 土中二维渗流及流网(了解) 3.4 渗透破坏与控制
土力学
天津城市建设学院土木系岩土教研室
渗流作用于单位土体的力
j
J AL
whA
AL
i
w
说明:渗透力j是渗流对单位土体的作用力,是一种体积力,其大 小与水力坡降成正比,作用方向与渗流方向一致,单位为kN/m3
天津城市建设学院土木系岩土教研室
3.4.2 流砂或流土现象
土力学
渗透力的存在,将使土体内部受力发生变化,这种变化对 土体稳定性有显著的影响
(3)土的饱和度
土中封闭气体阻塞渗流通道,使土的渗透系数降低。封闭气体含量愈多, 土的渗透性愈小。
(4)土的结构
细粒土在天然状态下具有复杂的结构,一旦扰动,原有的过水通道的形态、 大小及其分布都改变,k值就不同。扰动与击实土样的k值比原始的要小
(5)水的温度
粘滞系数随水温发生明显的变化。水温愈高,水的粘滞系数愈小,土的渗 透系数则愈大。
h v2 p z
第三章土的渗透性及渗流ppt课件
2024年8月1日星期四2时44分59秒
34
3.渗透破坏与控制
J = rwi
(1)流砂 当向上的渗流力与土的浮重
度相等时,粒间有效应力σ'为零, 颗粒群同时发生悬浮、移动的现象 称为流砂现象(流土现象)。
J= r' rwicr= r'
r' icr= rw
i ≥ icr 流砂
2024年8月1日星期四2时44分59秒
水在土中渗透有规律可以遵循吗?
如何定性和定量化评价水在土中的渗透性的大小?如何来描述?
2024年8月1日星期四2时44分58秒
12
一、渗流模型
实际土体中的渗流仅是流 经土粒间的孔隙,由于土体 孔隙的形状、大小及分布极 为复杂,导致渗流水质点的 运动轨迹很不规则。
简化
(1)不考虑渗流路径的迂
回曲折,只分析它的主—“截弯取直” 要流向 ;
9;
由这些特征可进一步知道,流网中等势
线越密的部位,水力梯度越大,流线越
密的部位流速越大。
板桩墙围堰的流网图
2024年8月1日星期四2时44分59秒
28
流网的绘制
(1) 按一定比例绘出结构物和土层的剖面图;
(2) 判定边界条件:透水面(aa' ,bb' )等势线 ; abc 和不透水面 为流线;
27
3.流网的特征与绘制
流网的特征
对于各向同性渗流介质,流网具有下列特征:
(1) 流线与等势线互相正交;
(2) 流线与等势线构成的各个网格的长宽比为常数,当长宽比为
1 时,网格为曲线正方形,这也是最常见的一种流网;
(3) 相邻等势线之间的水头损失相等;Δh= ΔH
(4) 各个流槽的渗流量相等。 q=Nf Δq
第三章 土的渗透性及渗流
h i L
vi
第2节 达西定律
2. 达西定律 渗透定律
k: 反映土的透水性能的比例系数,称为渗透系数
物理意义:水力坡降i=1时的渗流速度 单位:mm/s, cm/s, m/s, m/day
vi
在层流状态的渗流中,渗透速度v与水力坡降i 的一次方成正比,并与土的性质有关。 注意: V:假想渗流速度,土体试样全断面的平均渗流速度
V h Q kiA k A t l
V /t Vl k Ai Aht
第2节 达西定律
例题2.1 在图2.2所示的常水头渗透试验(h=45cm,l=25cm) 中,若土试样的断面积是120cm2,渗透系数是 2.5×10-2cm/sec,求10s内土的透水量。 解: 已知 A=120cm2,k =2.5×10-2cm/sec,t =10sec, h=45cm,l=25cm 根据常水头渗透试验透水量公式,得10sec内土的透 水量为:
②致密的粘土
v
i>i0, v=k(i - i0 )
o i0 i
第2节 达西定律
三. 渗透系数的测定 测定土的渗透系数的方法有:
常水头试验法
室内试验测定方法
变水头试验法
井孔抽水试验 井孔注水试验
野外试验测定方法
第2节 达西定律
1.常水头渗透试验
该试验适用于渗透性大的粗颗粒土。试验装置如图所示,圆 柱体试料断面积为A,长度为l,保持水头差h不变,测定经过 一定时间t的透水量是V,渗透系数k可根据式导出如下:
第三章 土的渗透性及渗流
§3.1 地下水引发的工程问题 §3.2 达西定律 §3.3 流网理论简介 §3.4 流土、管涌及其防治
1. 水是土的一个组成成分,在地下工程中举足轻重。
土的渗透性及渗流
第3章土的渗透性及渗流一、简答题1.试解释起始水力梯度产生的原因。
2.简述影响土的渗透性的因素主要有哪些。
3.为什么室内渗透试验与现场测试得出的渗透系数有较大差别?4.拉普拉斯方程适应于什么条件的渗流场?5.为什么流线与等势线总是正交的?6.流砂与管涌现象有什么区别和联系?7.渗透力都会引起哪些破坏?二、填空题1.土体具有被液体透过的性质称为土的。
2.影响渗透系数的主要因素有:、、、、、。
3.一般来讲,室内渗透试验有两种,即和。
4.渗流破坏主要有和两种基本形式。
5.达西定律只适用于的情况,而反映土的透水性的比例系数,称之为土的。
三、选择题1.反应土透水性质的指标是()。
A.不均匀系数B.相对密实度C.压缩系数D.渗透系数2.下列有关流土与管涌的概念,正确的说法是()。
A.发生流土时,水流向上渗流;发生管涌时,水流向下渗流B.流土多发生在黏性土中,而管涌多发生在无黏性土中C.流土属突发性破坏,管涌属渐进式破坏D.流土属渗流破坏,管涌不属渗流破坏3.土透水性的强弱可用土的哪一项指标来反映?()A.压缩系数B.固结系数C.压缩模量D.渗透系数4.发生在地基中的下列现象,哪一种不属于渗透变形?()A.坑底隆起B.流土C.砂沸D.流砂5.下属关于渗流力的描述不正确的是()。
A.其数值与水力梯度成正比,其方向与渗流方向一致B.是一种体积力,其量纲与重度的量纲相同C.流网中等势线越密集的区域,其渗流力也越大D.渗流力的存在对土体稳定总是不利的6.下列哪一种土样更容易发生流砂?()A.砂砾或粗砂B.细砂或粉砂C.粉质黏土D.黏土7.成层土水平方向的等效渗透系数与垂直方向的等效渗透系数的关系是()。
A.>B.=C.<8. 在渗流场中某点的渗流力()。
A.随水力梯度增加而增加B.随水利力梯度增加而减少C.与水力梯度无关9.评价下列说法的正误。
()①土的渗透系数越大,土的透水性也越大,土的水力梯度也越大;②任何一种土,只要水力梯度足够大,就有可能发生流土和管涌;③土中任一点渗流力的大小取决于该点孔隙水总水头的大小;④渗流力的大小不仅取决于水力梯度,还与其方向有关。
3第三章-土的渗透性及渗流
粗颗粒土一般在完全干燥和洒水饱和状态下最容易密 实。主要因为在潮湿状态下,土中的水为毛细水,毛 细水压增加了粒间阻力。
பைடு நூலகம்
土的击实试验
在试验室内通过击实试验研究土的压实性。击实试验有 轻型和重型两种。
护筒
导筒 击实筒
轻型击实试验适用于粒径小于 击锤 5mm的土,击实筒容积为947cm3, 击锤质量为2.5kg。把制备成一定 含水量的土料分三层装入击实筒, 每层土料用击锤均匀锤击25下, 击锤落高为30.5cm
渗透力
J T wi
负号:渗透力方向与土骨架对水流阻力方向相反
三 土的渗透性——渗透力
根据力的平衡条件
wh1 A w LA cos wh2 A TLA 0
cos ( z1 z2 ) / L h1 H1 z1; h 2 H2 z 2
三 土的渗透性——渗透力 渗流过程
若水自上而下渗流:渗透力方向与土粒所受重力方向相同 ——将增加土粒之间的压力 若水自下而上渗流:渗透力方向与土粒所受重力方向相反 ——将减小土粒之间的压力 此时,若渗透力大小等于土的浮重度时,则土粒之间压力为零,理论上 土粒处于悬浮状态,将随水流一起流动,形成流砂现象
三 土的渗透性
三 土的渗透性——基本概念
1 基本概念
土:具有连续孔隙介质,水在重力作用下可以穿过土中孔隙而流动 渗透或渗流——在水头差作用下,水透过土孔隙流动的现象
渗透性——土体可被水透过的性能
土坝、水闸等挡水后,上游水将通过坝体或地基渗到下游——发生渗透
三 土的渗透性——基本概念
渗透引起两个方面问题:
i>icr:土粒处于流砂状态
i= icr:土粒处于临界状态
土力学第3章.土的渗透性与渗流
3.3.2 不同土渗透系数的范围
不同类的土之间的渗透系数相差极大,一般的范围见表3-2。 应记住:粘土,k ≤ 10-6cm/s;粉土,10-6 < k ≤ 10-4cm/s;砂,
10-3 < k ≤ 10-1cm/s。 卡萨格兰德(CasagrandeБайду номын сангаас1939)建议的渗透系数的三个重要
界限值为 1.0、10-4 和 10-9cm/s,在工程应用中很有意义。一般认为: 1.0cm/s是土中渗流的层流和紊流的界限;10-4cm/s 是排水良好与排 水不良之界限,也是对应于发生管涌的敏感范围;10-9 cm/s大体上 是土的渗透系数的下限。
2. 颗粒的尺寸及级配:渗流通道(即土中孔隙通道)越细,
对水流的阻力就越大,而土中孔隙通道的粗细与颗粒的尺寸和级配
有关,特别是与其中较细的颗粒的尺寸有关。故颗粒越大,则孔隙
通道越大, k 也越大。
对于均匀砂土,当有效粒径 d10 = 0.103mm 时,Hazen (1911)建议了
以下经验公式: 系数。
试验中,量水管水位、水力坡降、流 速和流量都是随时间变化的函数。 根据达西定律,在任意时刻 t 的单 位面积流量:
q v ki k h L
图3-6 变水头渗透试验原理图
计算公式推导
在 dt 时段中从管中流出试样的水量: 在 dt 时段中从管中流入试样的水量:
V1
k
h L
Adt
V2 a dh
图3-4渗流流速与水力坡降的两种非 线性关系
对于硬粘土,为简化,以直线的延长线与横坐标的交点 i0 作为起始梯度
v k2 i i0
(a) 卵石中渗流 (b) 硬粘土中渗流
3.3 土的渗透系数
土力学 第3章 土的渗透性与渗流
(课本第42-43页)
假如: 总应力为σ,截面面积为A
有效应力为σs 土颗粒接触面积之和为As 孔隙水压力为uw 孔隙水截面面积之和为Aw 孔隙气压力为ua 气体截面面积之和为Aa
则:
u ' u ' u 'u u ' u
a
a
A s As uw Aw ua Aa
总 固 液 气
(课本第41页) 基坑降水和预防流砂发生的措施
1、井点降水:在基坑 周边打抽水井,把地 下水位降低到基坑下 0.5~1.0m。
注意:抽水泵不能停 电,否则水位恢复, 基坑浸水、地下室浮 起。
基坑
透水层 不透水层
基坑降水井点计算将在《基础工程》中学习
(课本第41页) 基坑降水和预防流砂发生的措施
h 渗透速度:v k L ki
或
渗流量为: q vA kiA
q——单位渗流量,cm3/s; v——渗透速度,cm/s; k——渗透系数,cm/s; i——水头梯度(△h/L) ; A——过水面积,cm2。 v——渗透速度是假想的平均渗流速度,不是地下水的实际流速,是土体 断面包括了土颗粒所占的面积的平均渗透速度,但水仅仅通过土体中的 孔隙流动。
2、设置地下连续墙或 钢板桩:在基坑周边 施工地下连续墙或打 钢板桩,隔断地下水,
基坑
同时在基坑内设置集 中井,把地下水位降 低到基坑下0.5~1.0m。
不透水层
透水层
流砂导致工程破坏示例 (课本第41-42页)
(a)基坑因流砂破坏;(b)河堤外覆盖层流砂涌出;(c)流 砂涌向基坑引起房屋不均匀沉降
渗流:指土中水在重力作用下穿过土中孔隙流动的现象。
渗透性:指土具有被水透过的性质。 引起工程 问题 渗漏问题——水库大坝、河流堤岸等水量损 失,甚至造成溃坝、决堤。 渗透稳定问题——引起土体应力、强度、变形 等变化,出现流砂、管涌问题, 造成滑坡、基坑或挡土墙失稳。
《岩土力学》课件——第三章-土的渗透性及渗流
t=t1
t t+dt
t=t2
h2
水头 测管
开关
a
§3.2 土的渗透性 §3.2.3 渗透试验及渗透系数
2、 现场测定渗透系数 实验方法:井孔抽水
A=2πrh i=dh/dr
抽水量Q
观察井
r2 r r1
q Aki 2rh k dh
dr
q dr 2khdh r
积 分
井 地下水位≈测压管水面
vs:实际平均渗流速度,孔隙断面的平均渗流速度
n Av A
A > Av
q=vA = v
§3.2 土的渗透性 §3.2.2 土的层流渗透定律
适用条件:
层流(线性流)
岩土工程中的绝大多数渗流问 题,包括砂土或一般粘土,均 属层流范围
在粗粒土孔隙中,水流形态可 能会随流速增大呈紊流状态, 渗流不再服从达西定律。
dr dh
h1 h
h2
q ln r2 r1
k(h22
h12 )
k q ln(r2 / r1 )
h22 h12
不透水层 优点:可获得现场较为可 靠的平均渗透系数
缺点:费用较高,耗时较长
21
§3.2 土的渗透性 §3.2.3 渗透试验及渗透系数
3.影响渗透系数的主要因素
k f (土粒特性、流体特性)
z:位置水头 u/γw:压力水头 V2/(2g):流速水头≈0
uA w
h1 zA
水头: h z u
w
0 测管水头
A
B L
基准面
Δh
uB
w h2
zB 0
A点总水头:
B点总水头:
水头差:
水力坡降:
第3章土体的渗透性及渗流分析
第3章土体的渗透性及渗流分析【教学目标及要求】z概念及基本原理【掌握】渗透系数;水力梯度;达西定律;临界水力梯度;渗透力;流网及流网的性质【理解】渗透破坏类型及防治方法z计算理论及计算方法【掌握】渗透力的计算;成层土渗透系数的等效;流土的计算判别;流网法【理解】渗流数值计算方法z试验【掌握】渗透系数的室内测定方法【理解】渗透系数的室外测定方法【导入案例】江河崩岸的影响因素分析天然江河岸坡或洪漫滩地的崩塌破坏(简称崩岸)是一种危害性较大的自然灾害现象,几乎全世界各大江河均存在这种现象,我国长江中下游崩岸现象尤为严重。
崩岸属水土结合的土坡失稳破坏,也是河床演变的一种表现形式,类型多样,影响因素众多,成因机理十分复杂。
冲积河流岸坡及河漫滩一般由疏松沉积土组成,大多为粘土或粉质壤土和砂土,通常厚度较大、垂向分布不均。
土体物质组成及分布对岸坡的稳定性影响很大,是崩岸形成的主要内在因素。
事实上,因地质构造或沉积年代存在差别,许多冲积河流岸坡具有明显的上覆亚粘土或粉质壤土、下卧中细砂的二元或多元结构特征。
如长江中下游多处崩岸段,岸坡上层为以粉粒居多,属河漫滩相,厚度不大;下层为细砂和中砂,颗粒级配较为均匀,中等密实度,属河床相,厚度较大。
具有这种土体结构的岸坡,由于上层粘土和粉质壤土厚度较小,且粉质壤土透水性强、抗冲性差,下层细砂厚度大,但颗粒较为均匀,抗冲性能很差,因而坡体特别是坡脚极易被水流侵蚀冲刷,很容易形成稳定性差的陡岸高坡。
岸坡土体下层细砂密实度不高、透水性强,易形成入河方向的连续大比降渗流。
大比降渗流会冲刷坡面和淘刷坡脚,地下水连续渗透也会使岸坡土体出现弥漫现象,甚至产生管涌,导致岸坡失稳崩塌。
如岸坡土体中存在薄弱层,渗流会促使土体沿薄弱层产生深层滑动,引起大规模崩塌破坏。
因此,地下水渗流是崩岸形成的外界动力因素。
岸坡土体性质和地下水渗流与河道水位变化关系密切。
洪水期岸坡土体因长期浸泡水中而达到饱和状态,其中孔隙水压力很高,抗剪强度下降。
土力学 第3章 土的渗流
第三章 土的渗透性
a-a平面上的总应力仍保持不变,等于
于是,根据有效应力原理,a-a平面上的有效应力为
地下水按埋藏条件可分上层滞水、潜水、承压水3类。 上层滞水:存在于地面以下 局部隔水层上面的积水。分 布范围有限,是季节性或临 时性的水源。 潜水:埋藏在地面以下第一 个连续稳定的隔水层以上, 具有自由水面的地下水。潜 水的水面标高称为地下水位。 潜水水位往往低于上层滞水。 承压水:充满在两个稳定的 隔水层问的承受一定静水压 力的地下水。承压水上下都有 隔水层存在,它的埋藏区与补 给区不一致。 因此,承压水的动态变化, 受局部气候的影响不明显。
5
3-2
土的渗透性
一、达西渗透定律 由于土体中的孔隙一般非常微小,水在土体中流动时的粘滞阻力很大 、流速缓慢,因此,其流动状态大多属于层流,即相邻2个水分子运 动的轨迹相互平行而不混流。 著名的达西(Darcy)渗透定律:
渗透速度:
h v k ki L
或 渗流量为:
q vA kiA
qx q1x q2 x qnx qix
i 1
n
整个土层与层面平行的平均渗流系数为:
kx
1 H
k H
i 1 i
n
i
第三章 土的渗透性
如图3-6 (b) 所示与层面垂直的渗流情况。通过整个土层的总 渗流量qy应为各土层渗流量之总和,即
qy q1y q2 y qny
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1 概述
板桩维护下的基坑渗流 坝身坝基中的渗流
水井渗流 沟渠渗流
图3.1 渗流示意图
§3.1 概述 土的渗透性研究主要包括以下三个方面
1. 渗流量问题: 基坑开挖或施工围堰的渗水及排水量计算、土 坝渗水量计算、水井供水量或排水量计算等。 2. 渗透破坏问题: 土中渗流会对土颗粒施加渗透力,当渗透力过 大时就会引起土颗粒或土体的移动,产生渗透 变形,甚至渗透破坏。如滑坡、溃坝、地下水 开采引起地面下沉。 3. 渗流控制问题: 当渗流量或渗透变形不满足设计要求时,要研 究如何采取工程措施进行渗流控制。
达西定律中的渗透速度是一种假想的平 均流速 ,它假定水在土中的渗透是通 过土体截面来进行的 。
第三章 土的渗透性
达西渗透定律的适用条件 只有当渗流为层流的时候才能适用达西渗透定律。 达西渗透定律的适用界限可以考虑为: R
e
vd 1.0(3-5)
满足达西渗透定律的土的平均粒径:
d Re/ v 0.52m m
现场试验
经验值:
变水头渗透试验 抽水试验
注水试验
各种土的渗透系数参考值
土的名称 致密粘土 粉质粘土 粉土、裂隙粘土 粉砂、细砂 中砂 粗砂、砾石 渗透系数 (cm/s) <10-7 10-6~10-7 10-4~10-6 10-2~10-4 10-1~10-2 102~10-1
1. 室内渗透试验测定渗透系数
5. 成层土的等效渗透系数
h
H1 Hi
水平成层土
由达西定律 qix kix iix Ai kix iix H i 1 kix iix H i
qx k x i x
H
k1x
q1x
k ix
k nx
q ix
q nx
i 1
n
Ai k x i x
i 1
n
H i k x ix H
流线、等势线正交
得性质2
q q kh
即表示通过各流槽的流量相等
可知,曲正方形流网特性有: •相邻等势线间的水头损失相等; •各流槽的渗流量相等; •等势线越密的部位,水力梯度越大; •流线越密的部位,流速越大。
3、等势线和流线 设复变函数
§ 3.3.1 二维渗流方程
x iz (i 2 1)
f () ( x, z) i( x, z)
根据正则条件得
2 2 2 2 2 0 2 xz xz x z 2 2 2 2 0 xz xz x 2 z 2
( 3-6)
也就是说,对于比粗砂更细的土来说,达西渗透定律一般是适用的, 而对粗粒土来讲,只有在水力坡降很小的情况下才能适用。
§3.2 土的渗透性
§ 3.2.2 土的层流渗透定律 — 达西定律
§3.2 土的渗透性
确定渗透系数 k 的方法
§ 3.2.3 渗透试验及渗透系数
常水头渗透试验
室内渗透试验
微元体中水的流动
§3.3 土中二维渗流及流网
2、拉普拉斯方程
§ 3.3.1 二维渗流方程
h vz k z z
根据达西定律,对于各向异性土:
h vx k x , x
kx 2h x
2
h vy ky , y
2h y
2
ky
kz
2h z
2
0
设土中水的流动各项同性(kx=ky=kz= k)且k为常数,得
2h x
2
2h y
2
2h z
2
0
(拉普拉斯方程)
§3.3 土中二维渗流及流网
§ 3.3.1 渗流方程
对于X—Z平面内的二维渗流,有 各向异性土:
kx
各项同性土:
2h x
2
kz
2h z
2
0
2h x
2
2h z
2
0
(拉普拉斯方程)
§3.3 土中二维渗流及流网
常水头渗透试验 适于渗透性较强的土
试验装臵:基马式渗透仪(70型渗透仪))
1. 室内渗透试验测定渗透系数
dQ a(dh) k h Adt l
土试料的透水量=测压管中水下降的体积
t2
t1
dt
h2
h1
aL dh kA h
(t 2 t1 )
h aL h2 ln a ln 1 kA h1 h2
所以
h1 aL k ln A(t 2 t1 ) h2
h1 2.3aL k lg A(t 2 t1 ) h2
变水头渗透试验 适于渗透性较差的黏性土
试验仪器:南55型渗透仪
2. 现场测定渗透系数
dh A 2rh, i dr Q dh q Aki k (2rh) t dr
§3.1 概述
滑 坡
§3.1 概述
溃 坝
§3.1 概述
管 涌
§3.1 概述
防渗墙
防渗墙 防渗墙射水法施工
§3.1 概述
管涌的治理
蓄水反压
反滤围井
反滤倒渗
§3.2 土的渗透性
§ 3.2.1 渗流基本概念
水在土中渗流是由水头差引起的。
v2 p 总水头 h z 2g w
p: 水压
r2
r
抽水量Q 试验井
观察井
r1
r2 dh h1 dr h h2
q
r1
dr 2k hdh r
h1
h2
地下水位≈测压管水面
不透水层
q ln
r2 k (h2 2 h12 ) r1
所以
k 2.3
2 (h2 h12 )
q lg(r2 / r1 )
现场抽水试验
3. 影响渗透系数的主要因素
h
k
i 1
n
qiy
iy A
Hi
h
i 1
n
ห้องสมุดไป่ตู้所以
ky H
n
i
又整个土层总的单位渗水量qy 与各土层单位渗水量相等 q y qiy
i 1
Hi k iy
特别透水土 层和特别不 透水土层对 整个土层渗 透性的影响 如何?
水平成层土的平均渗透系数将取决于 最透水土层的厚度和渗透性
水温
各种土的渗透系数参考值
土的名称 致密粘土 粉质粘土 粉土、裂隙粘土 粉砂、细砂 中砂 粗砂、砾石 渗透系数 (cm/s) 4. 渗透系数的经验确定方法(自学) <10-7 10-6~10-7 10-4~10-6 10-2~10-4 10-1~10-2 102~10-1
各种土的渗透系数及测定方法
h
总水头
p
w
z
位臵水头
压力水头
水头差 h hA hB
h 水力梯度 i L
§3.2 土的渗透性
§ 3.2.2 土的层流渗透定律 — 达西定律
v=ki
式中: v — 水在土中的渗透速度,cm/s, 是在单位时间内通过单位土截面 (cm2)的水量(cm3)。 i — 水力梯度。 k — 渗透系数,cm/s,表示水通过 的难易程度,可由试验确定。
Hn
因为各层的水力梯度相等
所以 特别透水土 k xix H kixi x H i 层和特别不 i 1 透水土层对 整个土层渗 n kix H i 透性的影响 如何? k x i 1
iix ix
又整个土层总的单位渗水量qn 为各土层单位渗水量之和
qx
n
q
i 1
n
ix
H
5. 成层土的等效渗透系数
Q h q vA kiA k A t L
所以
QL k Aht
式中:q—单位时间的透水量, cm3/s Q—透水量, cm3 t —透水时间,s v —渗流速度, cm/s A—透水断面积, cm2 k—渗透系数, cm/s i —水力梯度 Δh —水位差,cm L —渗流路线长, cm
即 和 满足二维拉普拉斯方程
称为势函数 取 h, 把 h 常数的线叫等势线
h h 1 d dx dz dx dz dx dz (vz dx vx dz) x z z x z x k
在 常数的线上 d 0 所以
即流线与等势线正交。
等势线与流线正交
与等势线类似的山的等高线
§3.3 土中二维渗流及流网
§ 3.3.2 流网特征与绘制 • 渗流场中任一点的水头是其坐标的函数,因此求 解渗流问题的第一步就是先确定渗流场中各点的 水头,亦即求解渗流基本微分方程 • 满足拉普拉斯方程的将是两组彼此正交的曲线, 一组称为等势线(各点总水头相等),另一组称 为流线(表示渗流的方向),等势线和流线交织 在一起形成的网格叫流网 • 只有满足边界条件的那一种流线和等势线的组合 形式才是拉普拉斯方程的正确解答
dz
dx
vx
流出单元体的流量:
v y v x dqo (v x )dydz (v y )dxdz x y v x (v z z )dxdy z
0
vy
dy
vy
v y y
y
dy
vx
v x dx x
vz
dqe dqo
v x v y v z 0 x y z
对于各向同性渗流,流网具有下 列特征: • 流线与等势线彼此正交; • 每个网格的长宽比为常数, 当长宽比为1时(常用), 这时的网格就为曲正方形, 流网为曲正方形流网。 曲正方形流网 曲矩形流网