尺规作图(2)画角

合集下载

华师版九年级数学尺规作图2

华师版九年级数学尺规作图2
24.4尺规作图
(2)
我们已熟悉尺规的两个基本作图:画 线段,画角.那么利用尺规还能解决 什么作图问题呢? 1.画线段的垂直平分线; 2.画直线的垂线.
如图,已知线段AB,画出它的垂直平 分线.
图 24.4.7
如图,已知线段AB,画出它的垂直平 分线.
以点A为圆心,以大于AB一半的长为半 图 24.4.7 径,在AB的一侧画弧;以点B为圆心, 以同样的长为半径,在AB的同一侧画弧, 两弧的交点记为C,则C是线段AB垂直平 分线上的一点.利用类似的方法确定另 一点D.
作法:(3)以点B为圆心,以 CB长为 图 24.4.10 半径在直线另一侧画弧,交前一条弧 于点D.
2.如图,如果线l的垂线?
作法:(4)经过点C、D作直线 CD. 图 24.4.10
直线CD即为所求.
1.画一个直角三角形,使其直角边分 别等于已知的两条线段.
2.如图,如果点C不在直线l上,试和 同学讨论,应采取怎样的步骤,过点 C画出直线l的垂线?
图 24.4.10 作法:(1)以点C为圆心,以适当长为 半径画弧,交直线l于点A、B; (2)以点A为圆心,以CB长为半径在 直线另一侧画弧.
2.如图,如果点C不在直线l上,试和 同学讨论,应采取怎样的步骤,过点 C画出直线l的垂线?
如图,已知线段AB,画出它的垂直平 分线. 作法:(1)以点图 A为圆心,以大于 AB一 24.4.7 半的长为半径画弧; (2)以点B为圆心,以同样的长为半径 画弧,两弧的交点记为C、D; (3)经过点C、D作直线CD. 直线CD即为所求.
1.如图,点C在直线l上,试过点C画 出直线l的垂线.
能否利用画线段垂直平分线的方法解 图 24.4.8 决呢?试试看,完成整个作图.

尺规作图

尺规作图

一、尺规作图1、在平面几何中,作图只允许用两种工具,直尺和圆规,而且直尺是没有刻度的。

称为尺规作图。

2、两种工具的功能(1)直尺:①连结两个已知点。

②延长已知线段。

(2)圆规:①画圆或弧。

②截取已知线段。

二、基本作图1、线段作图:①作一条线段等于已知线段。

②作线段的和、差、倍。

2、作一个角等于已知角已知:∠AOB求作:∠A、O`B`,使它等于∠AOB。

例已知:直线AB。

求作:直线CD,使CD∥AB。

作法:3、作已知角的平分线已知:∠AOB求作:射线OC,使∠AOC=∠BOC。

4、经过一点作已知直线的垂线(1)已知点在已知直线上已知:直线AB和AB上一点C,求作:AB的垂线,使它经过C点. (2)已知:直线AB和AB外一点C。

求作:AB的垂线,使它经过C点.5、作线段的垂直平分线已知:线段AB .求作:线段AB的垂直平分线。

三、利用基本作图法作三角形例1已知两边及夹角,求作三角形。

例2已知底边及底边上的高,求作等腰三角形。

四、练习1、作一个直角三角形,使它的一条直角边等于线段a,斜边等于线段b。

2、已知三边作三角形。

3、任意画一个钝角∠AOB,在OA上任取一点C,过点C作OB所在直线的垂线CD。

4、作一个角,使它等于已知锐角的余角的一半。

5、已知两条直角边作直角三角形。

6、已知一底角和底边长,求作等腰三角形。

五、中考要求1、(1)作一条线段等于已知线段。

(2)作一个角等于已知角。

(3)按指令语言画角及角的和、差。

(4)作已知角的平分线。

(5)作线段的垂直平分线。

(6)用三角尺或量角器过一点画一条直线的垂线。

(7)过直线外一点画这条直线的平行线。

2、了解尺规作图的步骤,对于尺规作图题,会写已知,求作,作法。

3、利用基本作图作三角形。

(1)已知三边作三角形。

(2)已知两边及其夹角作三角形。

(3)已知两角及其夹边作三角形。

(4)已知底边及底边上的高作等腰三角形。

4、与圆有关的作图(1)过不在同一直线上的三个点作圆。

12.8尺规作图2-角平分线 (1)

12.8尺规作图2-角平分线 (1)

二.互助探究
环节1----师友探究
1.画一个角∠AOB,尺规作出它的角平分线。
2.在OC上任取一点C,过C点作CD⊥OA于D, 过C点作CE⊥OB于E. 3.你发现CD与CE有什么数量关系?请说明 理由。 4.请用最精炼的语言总结这一规律 8分钟
环节2----教师点拨 角平分线的性质: 定理:角平分线上的点到角两边的距离相等
A D
P
O
E
B
9分钟
四.总结归纳
环节1----师友总结
1、这节课你学会了哪些知识和学习方法? 1.会用尺规作已知角的角平分线,知道 其依据。 SSS 2.探索并证明角平分线的性质定理和逆定 理; 运用全等 3.会对的学师(友)提一条学习建议? 4分钟
五.巩固反馈
作业:
1. 练习册61-62页
1分钟
定理:到角两边距离相等的点在这个角
的平分线上
3分钟
三.分层提高
环节1----师友探究
例1:如图,AD是∠BAC的平分线, DE⊥AB, 垂足为点E, DF⊥AC,垂足为F,且BD=CD 求证:BE=CF
B D E
A
F
C
9分钟
三.分层提高
环节2----师友探究
例2:如图, PD⊥OA,垂足为点D, PE⊥OB, 垂足为E,且PD=PE 求证:点P在∠AOB的平分线上
12.8尺规作图—角平分线
角平分线
学习目标: 1.会用尺规作已知角的角平分线,知道 其依据。 2.探索并证明角平分线的性质定理和逆定 理; 3.会对角平分线的性质进行简单的应用。
2分钟
一.预习交流
环节1----学生动手操作 按以下步骤画图 1.画一个角∠AOB;
2.以O为圆心,以任意长为半径画弧,交OA与D,

2.4用尺规作角

2.4用尺规作角
课时教学设计首页
授课时间:_2018__年___3___月__21___日星期_____


2.4用尺规作图


新授
第几
课时
1








知识与技能:1、会用尺规作一个角等于已知角、
2、作一个角的和、差、倍、
3、会比较两个角的大小、利用作角画平行线
4、借助于已经学的用尺规作线段和角来设计图案。
过程与方法:经历画图操作过程学会用不同的方法画一个角等于已知角,体会文字语言与图形语言的转换
投影学生的练习
引导学生完成创设情境的问题
课时教学设计尾页




1.已知:∠AOB求作:∠A’O’B’
使∠A’O’B’=∠AOB
如图所示:∠A'O'B'就是所求作的角
补充设计




教材57页
习题2.7
1、2两题




教材只是要求如何用尺规作一个角等于已知角,对于教材进行补充和拓展是很有必要。教师不能完全照搬教材,对于 角的和、差、倍的画法是必须补充的。教学中既要关注本节课的教学目标,同时也应关注意本节课在学生整个学习当中的长远目标。例如知识技能第一题,作一条直线的平行线,是对学生的后续学习的补充,是同位角的运用,还有内错角的运用。学生刚刚开始学习尺规作图,作图必须规范,作图痕迹不能擦掉,虽然不要写画法,但必须知道如何去画,作图的步骤必须清楚,对于学生今后学习作三角形,角的平分线,线段的垂直平分线是至关重要的。充分发挥学习小组的作用,每个学生必须会画角。
∠A'O'B'就是所求作的角。

尺规作图(2)

尺规作图(2)
能否利用画线段图垂24直.4.8平分线的方法解 决呢?试试看,完成整个作图.
试一试
1.如图,点C在直线l上,试过点C画 出直线l的垂线.
以C为圆心,任图 图一2244线..44..段89 的长为半径 画弧,交l于A、B两点,则C是线段 AB的中点.因此,过C画直线l的垂 线转化为画线段AB的垂直平分线.
(第4 题)
练习
2.画一个直角三角形,使其斜边和直 角边分别等于已知的两条线段.
(第4 题)
练习
3.如图,过点P画∠O两边的垂线.
(第 1 题 )
练习
4.如图,画△ABC边BC上的高.
(第 2题)
小结
1.基本作图 2.应用
24.4尺规作图(2)
序言
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语 课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,想了 解不同课件格式和写法,敬请下载!
Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!

尺规作图

尺规作图
基本作图
把限定用直尺和圆规来画图,称为尺规作图 . 最基本,最常用的尺规作图,通常称基本作图 .
其中,直尺是没有刻度的; 一些复杂的尺规作图都是由基本作图组成的.
下面介绍两种基本作图
1.作一条线段等于已知线段
已知:线段MN
M
求作:线段AB,使AB=MN
作法:
⑴ 画射线AC;
A
⑵ 在射线AC上截取 线段AB,使AB=MN.
O′ C′
(5) 过点D’作射线O’B’.
A
A′
例.已知 a和b 且 a >b
求作∠ABC
独立思考、合作交流;口述作法、保留作图痕迹。
已知:∠AOB 利用尺规求作: ∠AOB’
使∠AOB’=2∠AOB.
作法:
B’
B
⑴ 以O为圆心任意长为半径画
弧,分别交OA、OB于点C、D. C’ D ⑵ 以D为圆心以CD长为半径画
试一试
用尺规作优美的图案
右面的“邹菊图案”漂亮吗? 你想自己画出它来吗? 那就让我们从最初的步骤开始吧!
1、以点O为圆心, r 为半径作圆O;
2、以圆O上任意一点为圆心, r 为半径作圆,与圆O交于两点;
3、 分别以两个交点为圆心, r 为半径作圆;
4、继续作下去, 在适当的区域涂上颜色, 你能作出“邹菊图案” 了吗?
你知道
B
求作: ∠A’O’B’ ,
这样画的
使∠A’O’B’ = ∠AOB。根据吗? D
作法:(1) 作射线O’A’;
O
C
(2) 以点O为圆心,任意长为半径画弧
交OA于点C,交OB于点D
B′
⑶ 以点O’为圆心,以同样(OC)长为半
径画弧交O’A’于点C’

八年级数学《尺规作图(2)角平分线、垂线和中垂线》课件

八年级数学《尺规作图(2)角平分线、垂线和中垂线》课件
(第 2 题)
❖什么垂直平分线?
(过线段的中点,垂直这条线段的 直线)
❖线段垂直平分线有哪些特征?
(线段的垂直平分线上的点到线段 两端点的距离相等;反过来,到线 段两端点距离相等的点在线段的垂 直平分线上)
❖已知线段AB,画出它的垂直平分线.
说出你的 作图思路
议一议;能否说出这 种画法的依据,小组 讨论交流一下。
2、试把一个钝角四等分。
3、任意画一个三角形,画出三个内角的角 平分线.(不写画法,保留作图痕迹)
4、已知:角∠α,线段m。 求作:等腰三角形△ABC,使其顶角
∠BAC=∠α, ∠BAC的平分线为m。
2、经过一点作已知直线的垂线
1、如图,点C在直线上,试过点C画出直线的 垂线。
2、如图,如果点C不在直线上,试和同学讨论, 应采取怎样的步骤,过点C画出直线的垂线?
挑战自我
1、已知:角∠α,线段m。 求作:等腰三角形△ABC,使其顶角
∠BAC=∠α, ∠BAC的平分线为m。
2、AB、AC分别是菱形ABCD的一条边和对 角线,请你用尺规把这个菱形补充完整。
C
A
B
3、A、B是两个村庄,要从灌溉总渠引两 条水渠便于灌溉,请你选择最佳方案。
B A
灌溉总渠
4、如图,已知线段a,h, 求作:△ABC,使AB=AC,且BC=a,高为h
第19章 全等三角形 19.3 尺规作图
基本作图
❖在几何里,把限定用直尺和圆规来画 图,称为尺规作图.最基本,最常用的尺 规作图,通常称基本作图.
❖ 其中,直尺是没有刻度的;
❖ 一些复杂的尺规作图都是由基本作图组成的. 以前学过的”作一条线段等于已知线段”,就 是一种基本作图.
❖ 下面介绍几种基本作图:

【中考数学考点复习】第一节 尺规作图 课件(23张PPT)

【中考数学考点复习】第一节  尺规作图 课件(23张PPT)
段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线

第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;

4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.

初中尺规基本作图

初中尺规基本作图

【学习目标】1.了解什么是尺规作图.2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.3.了解五种基本作图的理由.4.学会使用精练、准确的作图语言叙述画图过程.5.学会利用基本作图画三角形等较简单的图形.6.通过画图认识图形的本质,体会图形的内在美.【基础知识精讲】1.尺规作图:限定只用直尺和圆规来完成的画图,称为尺规作图.注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.2.尺规作图中的最基本、最常用的作图称为基本作图.3.基本作图共有五种:(1)画一条线段等于已知线段.如图24-4-1,已知线段DE.求作:一条线段等于已知线段.作法:①先画射线AB.②然后用圆规在射线AB上截取AC=MN.线段AC就是所要作的线段.(2)作一个角等于已知角.如图24-4-2,已知∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线.如图24-4-3,已知线段AB.求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于AB21的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线,如图24-4-4.b.经过已知直线外一点作这条直线的垂线.如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于DE21的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.如图24-4-6,已知∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于DE21的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC.OC就是所求的射线.注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.通过这一节的学习,同学们要掌握下列作图语言:(1)过点×和点×画射线××,或画射线××.(2)在射线××上截取××=××.(3)以点×为圆心,××为半径画弧.(4)以点×为圆心,××为半径画弧,交××于点×.(5)分别以点×,点×为圆心,以××,××为半径作弧,两弧相交于点×.(6)在射线××上依次截取××=××=××.(7)在∠×××的外部或内部画∠×××=∠×××.注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.如:(1)画线段××=××.(2)画∠×××=∠×××.(3)画××平分∠×××,或画∠×××的角平分线.(4)过点×画××⊥××,垂足为点×.(5)作线段××的垂直平分线××,等等.但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.【经典例题精讲】例1已知两边及其夹角,求作三角形.如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.作法:①作∠MAN=∠α.②在射线AM、AN上分别作线段AB=a,AC=b.③连结BC.如图24-4-8,△ABC即为所求作的三角形.注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.例2如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.如图24-4-10,△ABC即为所求的等腰三角形.例3已知三角形的一边及这边上的中线和高,作三角形.如图24-4-11,已知线段a,m,h(m>h).求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED 中AD=m,AE=h,∠AED=90°,因此这个Rt△AED可以作出来(△AED为奠基三角形).当Rt△AED作出后,由a21DCBD==的关系可作出点B和点C,于是△ABC即可得到.作法:(1)作△AED ,使∠AED =90°,AE =h ,AD =m . (2)延长ED 到B ,使a 21DB =. (3)在DE 或BE 的延长线上取a 21DC =.(4)连结AB 、AC .则△ABC 即为所求作的三角形.注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m ,作图题无解;若m =h ,则作出的图形为等腰三角形.例4 如图24-4-13,已知线段a .求作:菱形ABCD ,使其半周长为a ,两邻角之比为1∶2.分析:因为菱形四边相等,“半周长为a ”就是菱形边长为2a,为此首先要将线段a 等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD .作法:(1)作线段a 的垂直平分线,等分线段a .(2)作线段AC ,使2a AC =. (3)分别以A 、C 为圆心,2a为半径,在AC 的两侧画弧,两弧分别交于B ,D .(4)分别连结AB 、BC 、CD 、DA 得到四边形ABCD ,则四边形ABCD 为所求作的菱形(如图24-4-14).注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.例5 如图24-4-15,已知∠AOB 和C 、D 两点.求作一点P ,使PC =PD ,且使点P 到∠AOB 的两边OA 、OB 的距离相等.分析:要使PC =PD ,则点P 在CD 的垂直平分线上,要使点P 到∠AOB 的两边距离相等,则P 应在∠AOB 的角平分线上,那么满足题设的P 点就是垂直平分线与角平分线的交点了.作法:(1)连结CD .(2)作线段CD 的中垂线l .(3)作∠AOB 的角平分线OM ,交l 于点P ,P 点为所求.注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.【中考考点】 例6 (2000·安徽省)如图24-4-16,直线321ll l ,,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处分析:到直线21l l ,距离相等的点在21l l ,相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.解:分别作321ll l ,,相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.答案:D .注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.例7 (2002·陕西省)如图24-4-17,△ABC 是一块直角三角形余料,∠C =90°,工人师傅要把它加工成—个正方形零件,使C 为正方形的—个顶点,其他三个顶点分别在AB 、BC 、AC 边上.(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);(2)工人师傅测得AC =80 cm ,BC =120cm ,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.解:(1)作∠ACB 的平分线与AB 的交点E 即为正方形—顶点,作CE 线段的中垂线HK 与AC 、BC 的交点F 、D 即为所作正方形另两个顶点,如图24-4-17.(2)设这个正方形零件的边长为x cm , ∵DE ∥AC ,∴BC BDAC DE =, ∴120x 12080x -=. ∴x =48.答:这个正方形零件的边长为48cm .注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.例8 (2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.分析:欲确定这个圆形零件的半径,可以借助三角板,T 形尺或尺规作图均可,图②中MN 21是这个零件的半径,图③中OB 是这个零件半径.解:如图24-4-18②③所示.【常见错误分析】例9 如图24-4-19,已知线段a 、b 、h .求作△ABC,使BC=a,AC=b,BC边上的高AD=h.并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢?错解:(1)作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a.如图24-4-20,则△ABC就是所求作的三角形.(2)作出的三角形唯一.(3)得出结论:有两边及一边上的高对应相等的两三角形全等.误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部.正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a(在点C的两侧).则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等.注意:与三角形的高有关的题目应慎之又慎.【学习方法指导】学习本单元基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.【规律总结】画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.【同步达纲练习】1.下列画图语言表述正确的是( )A.延长线段AB至点C,使AC=BCB.以点O为圆心作弧C.以点O为圆心,以AC长为半径画弧D.在射线OA上截取OB=a,BC=b,则有OC=a+b2.过点C画直线l的垂线的思想方法是:把这个问题转化为画_________的方法来解决.3.作线段的垂直平分线的理论根据是_________和两点确定一条直线.4.把一个角四等分的步骤是:第一步:先把这个角__________等分,第二步:把得到的两个角分别再___________等分.5.已知∠α和∠β,求作一个角,使它等于) (21β∠+α∠.6.求作三角形三条角平分线的交点.7.已知一腰和底边上的高,作等腰三角形.8.已知,三个自然村A、B、C的位置如图24-4-22所示.现计划建一所小学,使其到A、B、C三个自然村的距离相等.请你设计出学校所在的位置O(不写作法,保留作图痕迹).9.如图24-4-23,在直线l上求作—点P,使PA=PB(不写作法,保留作图痕迹).10.已知.求作:的中点P.。

第05讲 尺规作图(1个知识点+7大题型+18道强化训练)(学生版) 24-25学年八年级数学上册

第05讲 尺规作图(1个知识点+7大题型+18道强化训练)(学生版) 24-25学年八年级数学上册

第05讲 尺规作图(1个知识点+7大题型+18道强化训练)课程标准学习目标①掌握尺规作图的方法;②学会用尺规作图画角、画边;①掌握尺规作图的方法;②学会用尺规作图画角、画边;知识点01:尺规作图尺规作图:在几何作图中,我们把用没有刻度的直尺和圆规作图,简称尺规作图。

1.基本作图 作等量线段、作等量角、作线段的和差倍、作角的和差倍、2.作线段的中垂线、作角的平分线、中垂线角平分线在一起作、3.作三角形知三边、知两边夹角、知两角夹边、知一边及该边上的高作法:有规定名称时需格外注意字母的标注注意务必考虑三角形的各要素(类比于三角形全等的判定条件)。

【即学即练1】1.(23-24七年级下·四川成都·期末)如图,已知AOB Ð,以点O 为圆心,任意长度为半径画弧,分别交OA 、OB 于点E 、F ,再以点E 为圆心,EF 的长为半径画弧,交前弧于点D ,画射线OD .若27AOB Ð=°,则AOD Ð的度数为( )A .27°B .54°C .63°D .36°【即学即练2】2.(24-25七年级上·山东·随堂练习)如图,点C 在AOB Ð的边OB 上,用尺规作出了NCE AOD Ð=Ð,作图痕迹中,弧FG 是( )A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧C .以点E 为圆心,OD 为半径的弧D .以点E 为圆心,DM 为半径的弧【即学即练3】3.(23-24七年级下·全国·假期作业)下列作图属于尺规作图的是( )A .用量角器画出AOB Ð的平分线OCB .已知a Ð,作AOB Ð,使2AOB a Ð=Ð.C .用刻度尺画线段3cmAB =D .用三角板过点P 作AB 的垂线【即学即练4】4.(23-24七年级下·辽宁锦州·期末)如图,已知ABC V ,按如下步骤作图:①分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 和F ;②作直线EF ,分别交AB BC ,于点M ,N ;③连接AN ,若2,AM ACN =V 的周长为12,则ABC V 的周长为( )A .16B .15C .14D .13题型01 尺规作一个角等于已知角1.(23-24八年级上·山东菏泽·期中)尺规作图:已知线段a 和a Ð.作一个ABC V ,使AB a =,AC 2a =,BAC a Ð=Ð.(要求:不写作法,保留作图痕迹)2.(23-24八年级上·陕西延安·期中)在ABC V 中,点D 是AB 上一点,请用尺规作图法,在BC 边上找一点E ,使得∥D E A C .(保留作图痕迹,不写作法)3.(21-22八年级上·陕西铜川·期末)如图,点B 是射线AC 上一点,请用尺规作图法,求出线段BE ,使得BE AD ∥.(不写作法,保留作图痕迹)4.(22-23七年级下·陕西汉中·期中)如图,已知AOB Ð,利用尺规作NMC Ð,使2NMC AOB Ð=Ð.(保留作图痕迹,不写作法)5.(22-23七年级下·广东佛山·阶段练习)如图,已知锐角a Ð和平角AOB Ð,在AOB Ð内部求作AOC Ð,使AOC Ð与a Ð互补.(不要求尺规作图)题型02 尺规作角的和、差6.(21-22七年级下·甘肃白银·期中)作图题.已知,,a b ÐÐ,且a Ð大于Ðb ,求作AOB a b Ð=Ð-Ð(不写作法,保留作图痕迹,不在原图上作图)7.(23-24七年级下·山东青岛·单元测试)已知:AOB Ð,求作:COD Ð,使2COD AOB Ð=Ð.8.(23-24七年级上·江苏南京·期末)如图为一副三角尺,其中60,45a b °°Ð=Ð=,作120,15ABC DEF °°Ð=Ð=.(要求:尺规作图,保留作图痕迹,不写作法)9.(23-24七年级上·江苏南京·阶段练习)如图,已知a b ÐÐ、,利用直尺和圆规画AOB Ð,使AOB Ð的大小为a b Ð+Ð.(不写作法,保留作图痕迹.)10.(23-24七年级上·江苏南京·阶段练习)如图,已知ABC V 的三边长分别为a b c B C Ða Ðb ==,,,,,利用直尺和圆规完成下列作图(不写作法,保留作图痕迹).(1)作线段EF a c =-;(2)作POQ a b Ð=+.题型03 过直线外一点作这条直线的平行11.(23-24七年级下·福建福州·期末)如图,已知MON Ð,A 、B 分别是射线OM ON ,上的点.(1)尺规作图;在MON Ð的内部确定一点C ,使得BC OA ∥且BC OA =(保留作图痕迹,不写作法);(2)在(1)中,连接OC ,仅用无刻度直尺在线段OC 上确定一点D ,使得OD CD =,并证明.12.(23-24七年级下·辽宁辽阳·期中)已知:如图,在ABC V 中,D 为AB 的中点,E 是BC 上一点,DEB ACB Ð=Ð.(1)过点D 作DF BC ∥交AC 于点F (尺规作图,不写作法,保留作图痕迹);(2)求证:AF DE =.13.(23-24七年级下·辽宁丹东·期中)如图,已知Rt ABC △,90B Ð=°用尺规过点A 作直线MN ,使得MN BC ∥.(保留作图痕迹,不写作法)14.(2024·陕西西安·模拟预测)如图,在四边形ABCD 中,点P 为边AD 上一点,请用尺规作图法,在边BC 上求作一点Q ,使得P 、Q 到AB 的距离相等.15.(23-24七年级下·福建宁德·期中)如图,已知三角形ABC ,点E 是AB 上一点.(1)尺规作图:在BC 上找到一点F ,使得BFE C Ð=Ð;(不写作法,保留作图痕迹)(2)在(1)的条件下,连接CE ,若110EFC Ð=°,且CE 平分ACB Ð,求FEC Ð的度数.题型04 尺规作图——作三角形16.(23-24七年级下·辽宁本溪·期末)尺规作图:如图,线段BC 和一副三角尺,其中60,45a b °°Ð=Ð=.求作:以线段BC 为一条边作ABC V ,使得60,75ABC BAC ÐÐ=°=°.(要求:保留作图痕迹,不写作法)17.(24-25八年级上·全国·假期作业)已知:如图,线段a 、b 、c .求作:ABC V ,使得BC a =,AC b =,AB c =.(保留作图痕迹,不写作法)18.(23-24七年级下·河北保定·阶段练习)如图,已知Ðb 和线段a ,求作ABC V ,使得A b Ð=Ð,2B b Ð=Ð,边AB a =.(用圆规、直尺作图,不写作法,但要保留作图痕迹)19.(23-24七年级下·辽宁沈阳·期中)尺规作图:(不写作法,保留作图痕迹)已知:已知线段a ,b 和aÐ求作:ABC V 使BC a =,AC b =,BAC aÐ=Ð20.(23-24九年级下·湖南长沙·期中)人教版初中数学教科书八年级上册第37—38页告诉我们作一个三角形与已知三角形全等的方法:已知:ABC V .求作:A B C ¢¢¢V ,使得A B C ABC ¢¢¢V V ≌.作法:如图.(1)画DA E A ¢Ð=Ð;(2)在射线A D ¢上截取A B AB ¢¢=,在射线A E ¢上截取A C AC ¢=;(3)连接线段B C ¢¢,则A B C ¢¢¢V 即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的空上):证明:由作图可知,在A B C ¢¢¢V 和ABC V 中,()()A B AB DA E A C ì=ïÐ=¢¢¢¢=¢Ðíïî∴A B C ¢¢¢≌______.△(2)这种作一个三角形与已知三角形全等的方法的依据是______(填序号)①AAS ②ASA ③SAS ④SSS题型05 结合尺规作图的全等问题21.(22-23七年级下·辽宁沈阳·期末)如图,在所给正方形网格图中完成下列各题:(1)画出所有与格点ABC V (顶点均在格点上)全等的格点三角形,使它与ABC V 有且只有一条公共边,你画出了______ 个符合要求的格点三角形,分别记作______ ;(2)在DE 上画出点P ,使得PAC △的周长最小;(3)若网格上的最小正方形的边长为1,直接写出ABC V 的面积为______ .22.(20-21七年级下·广东佛山·期中)作一个角等于已知角的方法:已知:AOBÐ求作:A O B ¢¢¢Ð,使A O B AOB ¢¢¢Ð=Ð,作法:(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C 、D ;(2)画一条射线O A ¢¢,以点O ¢为圆心,OC 长为半径画弧,交O A ¢¢于点C ¢;(3)以点C ¢为圆心,CD 长为半径画弧,与第2步中所画的弧相交于点D ¢;(4)过点D ¢画射线O B ¢¢,则A O B AOB ¢¢¢Ð=Ð.请你根据提供的材料完成下列问题.(1)请你证明A O B AOB ¢¢¢Ð=Ð.(2)这种作一个角等于已知角的方法的依据是________________________.23.(22-23八年级上·吉林长春·期末)图①、图②均为44´的正方形网格,每个小正方形的顶点称为格点,边长均为1.在图①、图②中按下列要求各画一个三角形.要求:(1)三角形的三个顶点都在格点上.(2)与ABC V 全等,且位置不同.24.(22-23八年级上·江苏连云港·期中)如图,在58´的正方形网格中,每个小正方形的边长均为1,ABC V 的三个顶点都在小正方形的顶点上.(1)在图1中画ABD △(点D 在小正方形的顶点上),使得ABD △与ABC V 全等,且点D 在直线AB 的下方(点D 与点C 不重合);(2)在图2中画ABE V (点E 在小正方形的顶点上),使得ABE V 与ABC V 全等,且AC BE P ;25.(22-23八年级上·湖北荆门·期中)如图,ABC V 的顶点A 、B 、C 都在小正方形的顶点上,试在方格纸上按下列要求画格点三角形(三角形的顶点在格点上),只需画出一个即可:(1)在图(1)中画出与ABC V 全等的三角形,且有条公共边:(2)在图(2)中画出与ABC V 全等的三角形,且有一个公共顶点:(3)在图(3)中画出与ABC V 全等的三角形,且有一个公共角.题型06 作角平分线26.(23-24七年级下·陕西榆林·期末)如图,在ABC V 中,请用尺规作图法作出BAC Ð的平分线.(保留作图痕迹,不写作法)27.(23-24六年级下·上海宝山·期末)如图,已知点A 、O 、B 在一条直线上,2AOC COD Ð=Ð.(1)利用直尺和圆规作BOD Ð的平分线OE ;(2)如果77COE Ð=o ,求COD Ð的大小.28.(2024·陕西西安·模拟预测)如图,已知ABC V ,请用尺规作图法,在线段BC 上方求作一点D ,使得点D 到点B 和点C 的距离相等,且到边AC ,BC 的距离也相等.29.(2024·陕西西安·一模)已知ABC V ,请在AB 边上确定一点P ,使得点P 到AC BC 、的距离相等.(尺规作图,不写做法,保留作图痕迹)30.(23-24八年级下·江西吉安·期末)如图,在ABC V 中,902ACB BC AC Ð=°=,,将ABC V 向右平移一定距离后,得到DEF V ,且E 为BC 的中点,请你用无刻度的直尺按下列要求作图.(1)在图1中,作出ACB Ð的平分线CP ;(2)在图2中,作一个以C 为顶点的直角(已知直角除外)题型07 作垂线31.(23-24七年级下·山东枣庄·期末)如图,在ABC V 中,10cm AB =,6cm AC =.(1)利用尺规作BC 边的垂直平分线,交AB 于点D ,交BC 于点E ;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD ,求ACD V 的周长.32.(24-25八年级上·全国·假期作业)如图,已知点A 、点B 以及直线l .(1)用尺规作图的方法在直线l 上求作一点P ,使PA PB =.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM PN =,BN PM =,求证:MAP NPB Ð=Ð.33.(23-24七年级下·陕西榆林·期末)如图,在Rt ABC △中,请用尺规作图法作AB 边上的高CD 交AB 于点D .(不写作法,保留作图痕迹)34.(23-24七年级下·北京怀柔·期末)如图,点O 在直线l 外,点A 在直线l 上,连接OA .选择适当的工具作图.(1)在直线l 上作点B ,使得OB l ^于点B ;(2)连接OB ;(3)在直线l 上取一点C (不与A ,B 重合),连接OC ;(4)在OA ,OB ,OC 中,线段 最短,依据是 .35.(23-24七年级下·辽宁沈阳·阶段练习)如图,ABC V 中,AB AC =.(1)尺规作图(保留作图痕迹,不写作法):Ð的角平分线,交BC于点H;①作A②作AB边的垂直平分线,垂足为点D,交AH于点O;=.(2)连接BO,OC,求证:OA OCA夯实基础V的()1.(2024·河北·中考真题)观察图中尺规作图的痕迹,可得线段BD一定是ABCA.角平分线B.高线C.中位线D.中线2.(23-24七年级下·广东佛山·期末)如图,作一个角等于已知角(尺规作图)的正确顺序是()A.①⑤②④③B.①②④⑤③C.①④③⑤②D.②①③④⑤3.(22-23八年级上·湖北武汉·期中)已知村政府现要在如图所示区域内,修建到AB,CD,EF三条公路距离相等的加油站P,则加油站的选址共有种选择.4.(23-24八年级上·江苏常州·阶段练习)如图,已知AOB Ð,以点O 为圆心,任意长度为半径画弧①,分别交OA ,OB 于点E ,F ,再以点E 为圆心,EF 的长为半径画弧,交弧①于点D ,画射线OD .若26AOB Ð=°,则AOD Ð的度数为 .5.(23-24七年级下·陕西榆林·期末)如图,已知四边形ABCD ,利用尺规作图法作ABC Ð的平分线交CD 于点E .(不写作法,保留作图痕迹)6.(23-24八年级下·甘肃兰州·期中)如图,作出ABC V 的BC 边上的高.(用尺规完成作图,只保留作图痕迹,不要求写出作法)B 能力提升1.(23-24七年级下·辽宁锦州·期末)如图,已知ABC V ,按如下步骤作图:①分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 和F ;②作直线EF ,分别交AB BC ,于点M ,N ;③连接AN ,若2,AM ACN =V 的周长为12,则ABC V 的周长为( )A .16B .15C .14D .132.(2024·湖北黄石·三模)如图所示,在ABC V 中,90C Ð=°,以顶点A 为圆心,取适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若3CD =,则点D 到AB 的距离是( )A .1B .2C .3D .43.(23-24七年级下·广东茂名·期末)如图,在ABC V 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于点M 、N 两点,作直线MN ,直线MN 分别与BC 、AB 相交于D 、E 两点,连接AD ,则图中长度一定与AD 相等的线段是 .4.(23-24七年级下·黑龙江哈尔滨·阶段练习)如图,在Rt ABC △中,90C Ð=°,以顶点A 为圆心,适当长为半径画弧,分别交边AC AB 、于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画两条弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,20AB =,则ABD △的面积是 .5.(24-25八年级上·全国·假期作业)如图,已知点A 、点B 以及直线l .(1)用尺规作图的方法在直线l 上求作一点P ,使PA PB =.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM PN =,BN PM =,求证:MAP NPB Ð=Ð.6.(23-24七年级下·辽宁锦州·期末)如图,已知ABC V ,点D 在BC 边上.(1)求作DEF V ,使DEF ABC V V ≌,并满足点E 在BC 的延长线上,DF AB P .(请用尺规作图,不写作法,保留作图痕迹)(2)根据你的作图方法,说明DEF ABC V V ≌的理由.C 综合素养1.(2024·广东深圳·中考真题)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC Ð的是( )A .①②B .①③C .②③D .只有①2.(23-24七年级下·广东深圳·期末)如图,在长方形ABCD 中,在AD AC 、上分别截取AE AF 、,使AE AF =,分别以E 、F 为圆心、以大于12EF 长为半径作弧,两弧在DAC Ð内交于点G ,作射线AG ;又分别以A 、C 为圆心,以大于12AC 长为半径作弧,两弧相交于点M 和N ,作直线MN ;射线AG 和直线MN 交于点P ,则a Ð的度数为( )A .68°B .56°C .54°D .45°3.(23-24七年级下·安徽宿州·期末)如图,在ABC V 中,AB AC =,3cm BC =,分别以点A ,C 为圆心,以大于12AC 为半径作弧,两弧分别交于点M ,N ,过点M ,N 作直线MN 交AB 于点P ,连接CP .若ABC V 的周长比BCP V 的周长大5cm ,则BCP V 的周长为 cm .4.(2024·湖南·中考真题)如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC Ð内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ^于点N .若2MN =,4AD MD =,则AM = .5.(2024·广西南宁·二模)如图,在ABC V 中,AB AC =,90BAC Ð=°,过点C 作CE AB ∥,连接AE .(1)基本尺规作图:作ABF EAC Ð=Ð,交线段AC 于点F (保留作图痕迹,不要求写作法);(2)求证:BF AE =.6.(23-24八年级下·广东河源·期末)数学活动:探究利用角的对称性构造全等三角形解决问题,利用角平分线构造“全等模型”解决问题,事半功倍.【问题提出】(1)尺规作图:如图1,用直尺和圆规作已知角的平分线的示意图,说明CAD DAB Ð=Ð的依据是AFD AED △≌△,这两个三角形全等的判定条件是_________;【问题探究】(2)①构距离,造全等如图2,在四边形ABCD 中,AB CD ∥,90,B BAD Ð=°Ð和CDA Ð的平分线,AE DE 交于边BC 上一点E .过点E 作EF AD ^于点F .若12cm BC =,则EF =_________cm ;②巧翻折,造全等如图3,在ABC V 中,,AB AC AD <是ABC V 的角平分线,请说明B C Ð>Ð;小明在AC 上截取AE AB =.连接DE ,则()SAS ABD AED V V ≌.请继续完成小明的解答.【问题解决】(3)如图4,在ABC V 中,60,,A BE CF Ð=°是ABC V 的两条角平分线,且,BE CF 交于点P .请判断PE 与PF 之间的数量关系,并说明理由.。

用尺规作图画角优秀教案

用尺规作图画角优秀教案
本课时的设计旨在利用课堂45分钟的双边活动过程,为学生能动地掌握知识、发展
能力、提高素养营造良好的氛围,铺设合理的途径,以求最大限度地发挥数学教学的功
能.教学设计以知识的探索为载体,让学生积极主动而又生动活泼地发展,成为数学学习中的主体.教学过程要借助画角展开,激发学生探索画角新方法的欲望.并能凭借直觉确立初步的自信.初一学生刚涉足几何,要让他们独立探索尺规作图,必有一定的难度.因为这不仅涉及作图过程,更涉及若干概念以及几何语言的表述.因此,教师要充分利用学生已有的知识(用量角器画角)和经验,依靠学生的群体智慧,将难点突破.同时利用量角器的度量、图形的剪辑和练习的变式等,从不同层面为学生提供思考的空间.学生口、眼、手、脑的协同活动,加之以激励性的语言评价,不断激发学生的兴趣、追求与自信.最后,用多媒体动态模拟、过程分解、色彩对比和闪烁显示,把用量角器画角与尺规作图进行了生动而有深刻的比较,使得学生的认知结构有了进一步的完善.
3、请学生用量角器量一量,∠ 与∠AOB相等吗?
4、请学生将所画的∠ 与∠AOB分别剪下,看
一看这两个角是否完全重合?
说明:
(1)在数学中,把只用直尺(没有刻度的)和圆规画图称为尺规作图.
(2)在画图中间过程中画出的图形(点、直线、弧线
等),也叫做画图痕迹.这些痕迹可画轻一些、淡一些.在初学画图时,通常要求保留画图痕迹.
巩固已学的画图方法,
比较用量角器画已知角与用尺规画已知角的原理。
总结归纳
本节课的中心是研究尺规作图,要求作一个角等于已知角.它的关键是确定求作角的终边位置.实践证明,用量角器画一个角等于已知角的原理与用尺规作图作一个角等于已知角的原理完全相同.许多知识都有其内在的联系,善于发现并重视这种内在联系,有助于我们找到解决问题的途径.

初中数学【尺规作图(第二课时)】课件

初中数学【尺规作图(第二课时)】课件
答:这三条线段应满足三角形的三边关系, 即:三角形的任意两边之和大于第三边, 任意两边之差小于第三边。
这节课我们学习了: (1)已知三边作三角形; (2)已知两边及其夹角作三角形。
数学活动1 已知三角形的三边求作三角形
已知:线段a,b,c
a b c
A
求作:△ABC,使BC=a,A2)以C为圆心, b为半径画弧
(3)以B为圆心, c为半径画弧
B
C
M 两弧相交于点A
SSS:三边对应相等的
(4)连接AB,AC
两个三角形全等. 则△ABC为所求作的三角形
M
在射线B N上截取BA= c, (3)连接AC
△ABC为所求作的三角形
2.如图,线段a, ∠α. 求作:△ABC,使AB=AC = a, ∠A=∠α。
a
a
1、以下列线段为边能作三角形的是 ( D )
A、2厘米、3厘米、5厘米 B、4厘米、4厘米、9厘米
C、1厘米、2厘米、 3厘米 D、2厘米、3厘米、4厘米
探究并掌握尺规作三角形: (1)已知三边作三角形; (2)已知两边及其夹角作三角形.
学过的基本作图有哪些? (1)作一条线段等于已知线段; (2)作一个角等于已知角.
实验与探究:
我们知道一个三角形中有六个元素,那么已知其中 的哪些元素就可作出这个三角形呢?
①已知三边; ②已知两边及其夹角; ③已知两角及其夹边; ④已知两角和其中一角的对边。
1.已知线段a,求作等边三角形ABC,使其边 长为a.
a
数学活动2 已知三角形的两边及其夹角,求作三角形
已知:线段a, c, S∠AαS:,两求边作及:其△夹A角B对C,应使相BC= a, AB= c, ∠ABC =∠等α的两个三角形全等.

13.4尺规作图:作角

13.4尺规作图:作角
2、以圆O上任意一点为圆心, r 为半径作圆,与圆O交于两点;
3、 分别以两个交点为圆心, r 为半径作圆;
4、继续作下去, 在适当的区域涂上颜色, 你作出美丽的“邹菊图案” 吗
作作业业
教材p.64 习题2.5 第 1、2 题。
做做一一做做
如图2-13,已知 线段a 和两 条互相垂直的直线AB,CD。
B
D
A
C
E
(2) 如果你只有一个圆规和一把没有刻度的直 尺,你能解决这个问题吗?
问题的本质
B
D
A
C
E
上述问题: 用尺规(无刻度的直尺和圆规)”
“过直线外一点作已知直线的平行线”
相当于 “过点C作∠ECD 等于已知角∠CAB.”
做一做 2、“作一个角等于已知角”
已知: ∠AOB。 求作: ∠A’O’B’ 使∠A’O’B’=∠AOB。
学习了用无刻度的直尺和圆规作一个角等于已知角, 数学中历史称之为几何基本作图法(二);
课外还要加强基本作图工具的使用, 特别是圆规的使 用要领与技巧要勤加操练.
试一试 用尺规作优美的图案
右面的“邹菊图案”漂亮吗? 你想自己画出它来吗? 那就让我们从最初的步骤开始吧!
1、以点O为圆心, r 为半径作圆O;
作法一:
B’ CB
独立思考、合作交流; 口述作法、保留作图痕迹。
法二: D B
C
O
A
B’
E
O
A’ A
∠A’O’B’为所求.
C’
O’
A
∠A’O’B’为所求.
试一试
已知: ∠ 1、∠2, ∠ 1>∠2, 求作: ∠AOB,使得∠AOB =∠ 1+∠2
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:24.4.2尺规作图(2)画角【教学目标】:
1、使学生掌握一个角等于已知角的基本作图;;
2、初步训练学生用规范的语言叙述尺规作图的动作,达到作图准确,叙述正确;
3、灵活运用画一个角的尺规作图,画一些其他图形。

【重点难点】:
1、重点:掌握用尺规画一个角及灵活运用画一个角在画其他图形中的使用;
2、难点:画图的几何语言叙述。

【教学过程】:
一、创设问题情境,激发学生兴趣
问题:如图,要在长方形木板截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中
1、请过C点画出与AB平行的另一条边;
2、如果你只有一个圆规和一把没有刻度的直尺能解决这个问题吗?
你想如何处理此问题?
分析:要在长方形木板上截一个平行四边形,按图的方式(平行四边形的一组对边在长方形的边缘上),只要保证过点C作出与AB平行的另一条线段即可。

而要过点C作AB的平行线,可以通过作一个角等于
BAC
即可。

本节我们就来一起学习用尺规作一个角等于已知角。

二、试一试
图24.4.3,∠AOB为已知角,按下列步骤用圆规和直尺准确地画一个角等于∠AOB.
1、画射线O′A′;
2、以点O为圆心,以适当长为半径画弧,交OA于C,交OB于D;
3、以点O′为圆心,以OC长为半径画弧,交O′A′于C′.;
4、以点C ′为圆心,以CD 长为半径画弧,交前一条弧于D ′;
5、经过点D ′画射线O ′B ′;
所以,∠A ′O ′B ′就是所要画的角。

用量角器验证你作的角与已知角是否相等。

(相等)
你能用所学的知识说明其中的理由吗?
(因为在作图过程知道:''OD O D =,''OC O C =,''CD C D =,所以△COD ≌△C'O'D',根据全等三角形对应角相等,可知'''AOB A O B ∠=∠。


三、练一练
1、利用尺规完成本节课开始提出的问题。

2、已知AOB ∠,利用尺规作'''A O B ∠,使'''2A O B AOB ∠=∠
3、课本P100 练习2
四、做一做
请你利用直尺和圆规分别画出满足图24.4.4和图24.4.5中条件的三角形ABC.
1、已知两边及夹角;
(不写画法,保留作图痕迹)
学生讨论后,教师示范。

边叙述画法边画,学生跟着画。

(1)作MBN α∠=∠;
(2)在射线BM 上截取AB a =;
(3)在射线BN 上截取BC b =;
(4)连结AC 。

所以,△ABC 就是所画的三角形。

还有其他的画法吗?动手试一试。

(如,先线段BC a =,画MBC α∠=∠,在射线BM 上截取AB a =,连结AC ,即得△ABC )。


24.4.4
你从画图得到了什么?
同学们各抒己见。

(观察一个图形是由几个点确定了,能否画出这些点,若能,就可画出这个图形,若不能,就无法画出这个图形,为了便于分析,可画出草图)。

(2)已知两角及夹边.
画完后,同学相互交流,指出对方的不足,或向对方提出问题,并请同学上板演示。

五、说一说
1、你本节学到了什么?
2、在你所学的知识中重点是什么?
3、在你所学的知识中注意什么?
4、你在本节的学习过程有何想法?
六、作业
P103 习题24.4 2、3。

相关文档
最新文档