f分布t分布和卡方分布

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1、4 常用得分布及其分位数

1、 卡平方分布

卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、…、

Xn 相互独立且都服从N(0,1)时,Z=∑i

i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布密度

p(z )=⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛Γ--,,00,2212122其他z e x n z n n 式中得⎪⎭⎫ ⎝⎛Γ2n =u d e u u n ⎰∞+--012,称为Gamma 函数,且()1Γ=1,

⎪⎭

⎫ ⎝⎛Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、

X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令

Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +,

Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +,

即可得到Y+Z ~2χ(n +m )。

2、 t 分布 若X 与Y 相互独立,且

X ~N(0,1),Y ~2χ(n ),则Z =n Y X

得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n

n ΓΓ+2121+-⎪⎪⎭⎫ ⎝⎛+n n z 。

请注意:t 分布得分布密度也就是偶函数,且当n>30时,t 分布与标准正态分布N(0,1)得密度曲线几乎重叠为一。这时, t 分布得分布函数值查N(0,1)得分布函数值表便可以得到。

3、 F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~2χ(m ), 则Z=m Y n X

得分布称为第一自由度等于n 、第二自由度等于m 得F 分布,记作Z ~F (n , m ),它得分布密度 p(z)=⎪⎪⎪⎩

⎪⎪⎪⎨⎧>++-⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛+Γ•。其他,00,2)(1222222z m n z n m n z m n m n m m n n 请注意:F 分布也就是非对称分布,它得分布密度与自由度得次序有关,当Z ~F (n , m )时,

Z 1~F (m ,n )。 4、 t 分布与F 分布得关系

若X ~t(n ),则Y=X 2~F(1,n )。

证:X ~t(n ),X 得分布密度p(x )=⎪⎭⎫ ⎝⎛Γ⎪⎭

⎫ ⎝⎛+Γ221n n n π2121+-⎪⎪⎭⎫ ⎝⎛+n n x 。

Y=X 2得分布函数F Y (y ) =P{Y

当y ≤0时,F Y (y)=0,p Y (y )=0;

当y >0时,F Y (y ) =P{-y

y )(⎰-=2x d x p y

)(0⎰,

Y=X 2得分布密度p Y (y )=21)(121221212n y n y n n n n ++-⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛+Γ•,

与第一自由度等于1、第二自由度等于n 得F 分布得分布密度相同,因此Y=X 2

~F(1,n )。

为应用方便起见,以上三个分布得分布函数值都可以从各自得函数值表中查出。但就是,解应用问题时,通常就是查分位数表。有关分位数得概念如下:

4、 常用分布得分位数

1)分位数得定义

分位数或临界值与随机变量得分布函数有关,根据应用得需要,有三种不同得称呼,即α分位数、上侧α分位数与双侧α分位数,它们得定义如下:

当随机变量X 得分布函数为 F(x ),实数α满足0 <α<1 时,α分位数就是使P{X< x α}=F(x α)=α得数x α, 上侧α分位数就是使P{X >λ}=1-F(λ)=α得数λ, 双侧α分位数就是使P{X<λ1}=F(λ1)=0、5α得数λ1、使

P{X>λ2}=1-F(λ2)=0、5α得数λ2。

因为1-F(λ)=α,F(λ)=1-α,所以上侧α分位数λ就就是1-α分位数x 1-α;

F(λ1)=0、5α,1-F(λ2)=0、5α,所以双侧α分位数λ1就就是0、5α分位数x 0、5α,

双侧α分位数λ2就就是1-0、5α分位数x 1-0、5α。

2)标准正态分布得α分位数记作u α,0、5α分位数记作

u0、5α,1-0、5α分位数记作u1-0、5α。

当X~N(0,1)时,P{X< uα}=F

0,1

(uα)=α,

P{X

0,1

(u0、5α)=0、5α,

P{X

0,1

(u1-0、5α)=1-0、5α。

根据标准正态分布密度曲线得对称性,

当α=0、5时,uα=0;

当α<0、5时,uα<0。

uα=-u1-α。

如果在标准正态分布得分布函数值表中没有负得分位数,则先查出 u 1-α,然后得到uα=-u1-α。

论述如下:当X~N(0,1)时,P{X< uα}= F

0,1

(uα)=α,

P{X< u1-α}= F

0,1

(u1-α)=1-α,

P{X> u1-α}=1- F

0,1

(u1-α)=α,

故根据标准正态分布密度曲线得对称性,uα=-u1-α。

例如,u

0、10=-u

0、90

=-1、282,

u

0、05=-u

0、95

=-1、645,

相关文档
最新文档