相平衡与相图
合集下载
材料学基础--相平衡与相图
共晶成分 eutectic composition (低共熔组成) 低共熔组成) 低共熔温度) 共晶温度 eutectic temperature (低共熔温度) 共晶点 eutectic point 在相图中由共晶成分和共晶温度 确定的点.(低共熔点) .(低共熔点 确定的点.(低共熔点) 共晶反应 eutectic reaction 当共晶成分的液相缓慢冷 却到共晶温度时, 却到共晶温度时,将发生一个液相同时析出两种固相的反 称为CED线为共晶反应线. CED线为共晶反应线 应,称为CED线为共晶反应线.
0.0 Mg(A)
(2)形成不稳定化合物的相图
(3)固相中有化合物分解和生成的二元系统相图
3)具有固态相变的二元相图 (1)具有固溶体多晶型 转变的相图
(2)具有共析转变的相图
8.3.4 二元相图的分析方法 方法: 方法: 若有稳定的中间相,可依此把相图分为几个部分. 1 若有稳定的中间相,可依此把相图分为几个部分. 2 根据相区接触法则填写各相区. 根据相区接触法则填写各相区. Cn = C-ΔP 分析典型成分合金的结晶过程及组织转变, 3 分析典型成分合金的结晶过程及组织转变,并利用 杠杆定律计算各相相对含量. 杠杆定律计算各相相对含量.
�
(1)形成稳定化合物的相图
t/℃ 1500 l(A+B) s(C)+l(A+B) 1000 650
* tB
1430
t
* A
l(A+B)+s(B) s(C) + l(A+B) E2 638 0.2 0.4 Mg2Si(C) E1 s(C)+s(B)
l(A+B)+s(A) 500
s(A)+s(C) 0.6 xB 0.8 1.0 Si(B)
材料物理化学-第六章 相平衡与相图
材料物理化学
湖南工学院
料。⑤碳纤维、石墨、金刚石与C6 。⑥计算机模拟与材料设计。⑦用新材料科 学技术武装改造传统材料产业。 GRM—巨磁电阻(Giant Magnetoresistance),通常作传感器使用,主要应 用于探测磁场、电流、位移、角速度等领域。探测微弱磁场的GM R 传感器最早 被商业化应用在磁记录领域, 作为硬盘的读出磁头。 薄膜集成的GMR磁头体积变 小, 磁记录介质的存储单元也随之变小, 这样存储密度就大大提高了。 至2000年, 存储密度为56. 3Gb/in2 的GMR 的磁头已经在日本的富士通制作所研制出来。 在21世纪初,我国的水泥产量就已跃居世界第一,但是,水泥工业的结构优 化和产品升级是当前要务。大量利用废弃的粉煤灰、矿渣、钢渣、硫酸铁渣、废 石膏、污泥等作为水泥的原料和掺合料是我国的特色,几乎占水泥产量的1/3, 这是“资源循环利用”的重大举措。研制的抗氯盐腐蚀、水化热低、抗微收缩和 后期强度高的水泥,已成功应用于我国几个超大型的海工工程中。在混凝土中, 除水泥、黄沙、石子、水和添加剂(如减水剂)的5组分外,为获得更为优异的 性能,第六组分的研究也是一个研究热点。 黄伯云:粉末冶金专家,中南大学校长,中国工程院院士。1945年11月生于 湖南益阳南县, 1969年毕业于中南矿冶学院特种冶金系,1980年至1986年在美国 依阿华州立大学获硕士、 博士学位,随后进入美国田纳西大学和橡树岭国家实验 室从事博士后研究工作。1988年回国,1997年任中南工业大学校长,2001年任中 南大学校长, 1999年当选为中国工程院院士。黄伯云是我国材料科学领域的战略 科学家,他率领团队历时20年研制出的“高性能碳/碳航空制动材料的制备技 术”,打破了国外的技术垄断,使我国成为世界上有能力生产碳/碳复合材料飞 机刹车片的四个国家之一。也正是这项技术,在2005年荣获了已连续空缺6年的 国家技术发明一等奖。 C/C复合材料的密度仅为钢的1/4在波音747——400飞机上使用了C/C复合材 料刹车盘后, 使飞机机身大约减重816.5Kg。
湖南工学院
料。⑤碳纤维、石墨、金刚石与C6 。⑥计算机模拟与材料设计。⑦用新材料科 学技术武装改造传统材料产业。 GRM—巨磁电阻(Giant Magnetoresistance),通常作传感器使用,主要应 用于探测磁场、电流、位移、角速度等领域。探测微弱磁场的GM R 传感器最早 被商业化应用在磁记录领域, 作为硬盘的读出磁头。 薄膜集成的GMR磁头体积变 小, 磁记录介质的存储单元也随之变小, 这样存储密度就大大提高了。 至2000年, 存储密度为56. 3Gb/in2 的GMR 的磁头已经在日本的富士通制作所研制出来。 在21世纪初,我国的水泥产量就已跃居世界第一,但是,水泥工业的结构优 化和产品升级是当前要务。大量利用废弃的粉煤灰、矿渣、钢渣、硫酸铁渣、废 石膏、污泥等作为水泥的原料和掺合料是我国的特色,几乎占水泥产量的1/3, 这是“资源循环利用”的重大举措。研制的抗氯盐腐蚀、水化热低、抗微收缩和 后期强度高的水泥,已成功应用于我国几个超大型的海工工程中。在混凝土中, 除水泥、黄沙、石子、水和添加剂(如减水剂)的5组分外,为获得更为优异的 性能,第六组分的研究也是一个研究热点。 黄伯云:粉末冶金专家,中南大学校长,中国工程院院士。1945年11月生于 湖南益阳南县, 1969年毕业于中南矿冶学院特种冶金系,1980年至1986年在美国 依阿华州立大学获硕士、 博士学位,随后进入美国田纳西大学和橡树岭国家实验 室从事博士后研究工作。1988年回国,1997年任中南工业大学校长,2001年任中 南大学校长, 1999年当选为中国工程院院士。黄伯云是我国材料科学领域的战略 科学家,他率领团队历时20年研制出的“高性能碳/碳航空制动材料的制备技 术”,打破了国外的技术垄断,使我国成为世界上有能力生产碳/碳复合材料飞 机刹车片的四个国家之一。也正是这项技术,在2005年荣获了已连续空缺6年的 国家技术发明一等奖。 C/C复合材料的密度仅为钢的1/4在波音747——400飞机上使用了C/C复合材 料刹车盘后, 使飞机机身大约减重816.5Kg。
相平衡与相图
液相线 B的熔点
A的熔点
A和B的二元低共熔点
4个相区: 固相线 L、L+A、 L+B、A+B
特点: 两个组分在液态时能以任何比例互溶,形成单相溶液;但在 固态时则完全不互溶,二个组分各自从液相中分别结晶。 组分间无化学作用,不生成新的化合物
杠杆规则
如果一个相分解为2个相,则生成的2个相的数量与原始
65
35
35
1450
725
铁碳平衡图
铁碳平衡图 (iron-carbon equilibrium diagram ), 又称铁碳相图或铁碳状态图。它以温度为纵坐标,碳含量 为横坐标,表示在接近平衡条件(铁-石墨)和亚稳条件
(铁-碳化铁)下(或极缓慢的冷却条件下)以铁、碳为
组元的二元合金在不同温度下所呈现的相和这些相之间的 平衡关系。
4
二元系统
C=2,一般情况下,凝聚系统中的相律:
一、二元相图表示方法
F=C+P+1=3-P
当P=1时,F=2
当P=2时,F=1
当γ =3时,F=0 相数最大为3,自由度最大为2,对于浓度:A+B=A'%+B'%=100% 任意确定一个,则另一个确定相图为T组成图
二 具有一个低共熔点的简单二元相图
相平衡与相图
主要内容
发展历史 相图基础知识 单元系相图 二元系相图 三元系相图
1 相图发展历史
一 理论基础
平衡图的理论基础是吉布斯(J W Gibbs)的相律 ,他于1876年创建相律。
二 发展历程 1990年:罗泽朋(Bakhuis Roozeboom)发表了《用相律的观点来
看复相平衡》巨著的第一部分。
A的熔点
A和B的二元低共熔点
4个相区: 固相线 L、L+A、 L+B、A+B
特点: 两个组分在液态时能以任何比例互溶,形成单相溶液;但在 固态时则完全不互溶,二个组分各自从液相中分别结晶。 组分间无化学作用,不生成新的化合物
杠杆规则
如果一个相分解为2个相,则生成的2个相的数量与原始
65
35
35
1450
725
铁碳平衡图
铁碳平衡图 (iron-carbon equilibrium diagram ), 又称铁碳相图或铁碳状态图。它以温度为纵坐标,碳含量 为横坐标,表示在接近平衡条件(铁-石墨)和亚稳条件
(铁-碳化铁)下(或极缓慢的冷却条件下)以铁、碳为
组元的二元合金在不同温度下所呈现的相和这些相之间的 平衡关系。
4
二元系统
C=2,一般情况下,凝聚系统中的相律:
一、二元相图表示方法
F=C+P+1=3-P
当P=1时,F=2
当P=2时,F=1
当γ =3时,F=0 相数最大为3,自由度最大为2,对于浓度:A+B=A'%+B'%=100% 任意确定一个,则另一个确定相图为T组成图
二 具有一个低共熔点的简单二元相图
相平衡与相图
主要内容
发展历史 相图基础知识 单元系相图 二元系相图 三元系相图
1 相图发展历史
一 理论基础
平衡图的理论基础是吉布斯(J W Gibbs)的相律 ,他于1876年创建相律。
二 发展历程 1990年:罗泽朋(Bakhuis Roozeboom)发表了《用相律的观点来
看复相平衡》巨著的第一部分。
第八章-相平衡与相图原理
f 1 单变量体系
F 3 三相共存
f 0 无变量体系
单组分体系的自由度最多为2,双变量体系 的相图可用平面图表示。
2024/7/17
单组分体系的相图
相点 表示某个相状态(如相态、组成、温度 等)的点称为相点。 物系点 相图中表示体系总状态的点称为物系点。 在T-x图上,物系点可以沿着与温度坐标平行的垂线 上、下移动;在水盐体系图上,随着含水量的变化, 物系点可沿着与组成坐标平行的直线左右移动。
2024/7/17
照片为亚共晶Pb-Sn合金的显微组织照片, 图中块状深色组织为先共晶相,其余黑白相间的基体为共晶组织。
2024/7/17
气体,不论有多少种气体混合,只有一个气相。 液体,按其互溶程度可以组成一相、两相或三 相共存。 固体,一般有一种固体便有一个相。两种固体粉 末无论混合得多么均匀,仍是两个相(固体溶液 除外,它是单相)。
2024/7/17
三相点与冰点的区别
三相点是物质自身的特性,不能加以改变,如H2O 的三相点。 T 273.16 K , p 610.62 Pa . 冰点是在大气压力下,水、冰、气三相共存。当大 气压力为105 Pa时,冰点温度为 273.15 K ,改变外 压,冰点也随之改变。
2024/7/17
2024/7/17
• 二组元在液态和固态都能够完全相互溶解,所 有成分(Ni: 0~100%)的合金在固态只有一种晶 体结构,相图中只有一个固相区。
• 因此,能够形成匀晶合金系的两种组元必须具 有相同的晶体结构,相同的原子价,原子半径 接近(相差不超过15%),相互不形成化合物。
2024/7/17
设合金的平均成分为x,合金的总量为Q,在温度T1时液、 固 质两量相为平QS衡。,则液有相:的成分为xL、质量为QL,固相的成分为xS、
相平衡与相图原理
室温组织:
F + P,500×
(4)过共析钢 ( C % = 1.2 % )结晶过程
各组织组成物的相对量:
Fe3CII % = ( 1.2 – 0.77 ) / ( 6.69 – 0.77 )
≈7% P % ≈ 1 – 7 % = 93 % 各相的相对量:
Fe3CII % ≈ 1.2 / 6.69 = 18 % F % ≈ 1 – 18 % = 82 %
室温组织:
P + Fe3CII 400×
(5)共晶白口铁 ( C % = 4.3 % )结晶过程
室温组织: (低温)莱氏体 Le′ (P + Fe3CII + 共晶 Fe3C ), 500×
莱氏体 Le′的性能:硬而脆
(6)亚共晶白口铁 ( C % = 3 % )结晶过程
室温组织:
Le′+ P + Fe3CII
亚共晶白口铁 < 4.3 % 共晶白口铁 = 4.3 % 过共晶白口铁 > 4.3 %
几种 常见 碳钢
类型 钢号 碳质量分数/%
亚共析钢 20 45 60 0.20 0.45 0.60
共析钢 T8 0.80
过共析钢
T10
T12
1.00 1.20
(1)工业纯铁 ( C % ≤ 0.0218 % )结晶过程
20
液固两相区
40 60 Ni%
Ni 80 100
匀晶合金的结晶过程
L
T,C
T,C
L
1500
1455
L
1400 1300
c
a
L+
匀晶转变 L
1200d
1100 1000 1083
相平衡与相图
17
5.5 -6 80 327 271 451 657 1412
-26 -71 60 246 144 306 578 1090
50 24 64 88 55 69 89 32
合金体系"热分析"原理
热分析法研究固液平衡体系相图主要是依据体系发生相变时伴随着相变潜热的吸 收或放出,导致体系冷却速度的变化,来研究相变过程的规律。由实验数据所绘 制的温度(T)与时间(t)的曲线,称为“步冷曲线”,由步冷曲线斜率的变化可提 供相的产生、消失、和达成相平衡的信息。
4
610.62
273.16
水的相图
2.2 单组分体系的两相平衡- 克拉贝龙(Clapeyron)方程式
可适用于任何纯物质体系的各类两相平衡,如气~液、气~固、液~固或固~固 晶型转变等。
如气~液、气~固、液~固或固~固晶型转变等。如果 α、β 两相中有一相是气相(设 β 为气相),则因气体体积远大于液体和固体的体积,即 Vm(g)》Vm(l) 或 Vm(s) 。对比之 下可略去液相或固相的体积,而
可得 Φ = 1 ,f = 3 Φ = 2 ,f = 2 Φ = 3 ,f = 1 Φ = 4 ,f = 0
即"三变量体系" 即"二变量体系" 即"单变量体系" 即"无变量体系"
通常情况下,描述体系状态时以温度(T)、压力(p)和组成 (浓度 x1 或 x2 )三个变量为坐标构成的立体模型图。
固定 T 就得 p~x 图,固定 p 就得 T~x 图对工业上的提纯、分离、精馏、分馏 分面很有实用价值
6
三、二级相变
一类相变称之为一级相变(first order phase transition),特点是,如果改变体系的独 立强度变量(例如 pVT 系统的 t,p,x1,x2,……,xr ),一旦这些变量或其中之一 达到相变能发生的值时,从宏观上看相变将突然发生。它是一种不连续的突变现象,表 现出在确定的强度变量值时发生,同时体积、熵、焓等热力学量发生不连续的但有限的 突变。我们通常所见的气、液、固态的相变都属于这类相变。
5.5 -6 80 327 271 451 657 1412
-26 -71 60 246 144 306 578 1090
50 24 64 88 55 69 89 32
合金体系"热分析"原理
热分析法研究固液平衡体系相图主要是依据体系发生相变时伴随着相变潜热的吸 收或放出,导致体系冷却速度的变化,来研究相变过程的规律。由实验数据所绘 制的温度(T)与时间(t)的曲线,称为“步冷曲线”,由步冷曲线斜率的变化可提 供相的产生、消失、和达成相平衡的信息。
4
610.62
273.16
水的相图
2.2 单组分体系的两相平衡- 克拉贝龙(Clapeyron)方程式
可适用于任何纯物质体系的各类两相平衡,如气~液、气~固、液~固或固~固 晶型转变等。
如气~液、气~固、液~固或固~固晶型转变等。如果 α、β 两相中有一相是气相(设 β 为气相),则因气体体积远大于液体和固体的体积,即 Vm(g)》Vm(l) 或 Vm(s) 。对比之 下可略去液相或固相的体积,而
可得 Φ = 1 ,f = 3 Φ = 2 ,f = 2 Φ = 3 ,f = 1 Φ = 4 ,f = 0
即"三变量体系" 即"二变量体系" 即"单变量体系" 即"无变量体系"
通常情况下,描述体系状态时以温度(T)、压力(p)和组成 (浓度 x1 或 x2 )三个变量为坐标构成的立体模型图。
固定 T 就得 p~x 图,固定 p 就得 T~x 图对工业上的提纯、分离、精馏、分馏 分面很有实用价值
6
三、二级相变
一类相变称之为一级相变(first order phase transition),特点是,如果改变体系的独 立强度变量(例如 pVT 系统的 t,p,x1,x2,……,xr ),一旦这些变量或其中之一 达到相变能发生的值时,从宏观上看相变将突然发生。它是一种不连续的突变现象,表 现出在确定的强度变量值时发生,同时体积、熵、焓等热力学量发生不连续的但有限的 突变。我们通常所见的气、液、固态的相变都属于这类相变。
相图与相平衡基础知识
推导过程
假设一个平衡系统中有C个组分,P个相, 如果C个组分在每个相中都存在,那么对每 一个相来讲,只要任意指定(C-1)个组分 的浓度就可以表示出该相中所有组分的浓度, 因为余下的一个组分的浓度可以从100中减去 (C-1)个组分的浓度之和求得。由于系统 有P个相,所以需要指定的浓度数总共有P (C-1)个,只要才能确定体系中各相浓度。
相律 吉布斯根据前人的实验素材,用严谨的热力学作 为工具,于1876年导出了多相平衡系统中,系统的 自由度数(F),独立组元数(C),相数(P)和 对系统的平衡状态能够发生影响的外界影响因素 (n)之间的关系,相律的数学表达式为: F=C-P+n 一般情况下,只考虑温度和压力对系统的平衡状态的 影响,即n=2,则相律表达式为 F=C-P+2
总之,气相只能一个相,无论多少种气体混在一起 都一样,形成一个气相,液体可以是一个相,也可 以是两个相(互溶程度有限时)。固体如果是连续 固溶体为一相;其他情况下,一种固体物质是一个 相。
一个系统中所含有相的数目,叫做相数,以符号P 表示,按照相数的不同,系统可分为单相系统 (P=1),二相系统(P=2),三相系统(P=3)等。 含有两个相以上的系统,统称为多相系统。
第六章 相平衡和相图
什么是相图
相图的研究方法有哪些 相图的应用
相图的定义
在一个多相体系中,随温度、压力和浓度的
变化,相的种类、数量及含量都要相应地发 生变化,对于变化情况可用几何图形来描绘, 这个图形就可以反映出该系统在一定组成、 温度和压力下,达到平衡时所处的状态,这 个几何图形就是相图,也叫相平衡图、状态 图。
相平衡研究方法
动态法 热分析法 差热分析法(DTA) 溶解度法 静态法(淬冷法)
相平衡和相图
材料科学基础
30
第六章 相平衡和相图
C 例:根据下列相图 (1) 用连线规则划分副三角形。 (2) 用箭头标出界线上温度变化方向及界线性质。 C (3) 判断S、S1、S2化合物的性质。 (4) 写出各无变量点的性质及反应式。 (5)在相图下侧画出A-B二元系统相图。 u v (6) 分析熔体M1、M2的析晶路程。 S (M1在SO连线上)
第六章 相平衡和相图
13
3、背向线规则
在浓度三角形中,一个三元系统的组成点愈靠近某个顶点,
该顶点所代表的组分的含量就愈高;反之,愈少。
C 若熔体在冷却时析出某一
顶点所代表的组元,则液
相中组成点必定沿着该顶 点与熔体组成点的连线向 背离该顶点的方向 A
材料科学基础
D
B
第六章 相平衡和相图
14
4、杠杆规则
C C
b L .2 N
a
e2
K
1
.
B
x B
z y
熔体1
L LB 1[B,(B)] a[B,B+(A)] f=3 f=2
L B+N f=1
L B+A K[x,B+A+(N)] f=1
e1
L+AB+N f=0
K[y(A消失),N+B]
LN+B+C L[z,N+B+(C)] f=0
L(液相消失)[1,N+B+C]
所谓一致熔融化合物是一种稳定 的化合物。它与正常的纯物质一 样具有固定的熔点,融化时,所
产生的液相与固相的化合物组成 相同,故称一致熔融
材料科学基础
2
第六章 相平衡和相图
2、不一致熔融化合物: 一种不稳定的化合物,加热这种 化合物到某一温度便发生分解, 分解产物是一种液相和一种晶相, 二者组成与原来化合物组成完全 不同。 点:纯物质熔点;低共熔点; 转熔点等 线:液相线(3条)固相线等;
30
第六章 相平衡和相图
C 例:根据下列相图 (1) 用连线规则划分副三角形。 (2) 用箭头标出界线上温度变化方向及界线性质。 C (3) 判断S、S1、S2化合物的性质。 (4) 写出各无变量点的性质及反应式。 (5)在相图下侧画出A-B二元系统相图。 u v (6) 分析熔体M1、M2的析晶路程。 S (M1在SO连线上)
第六章 相平衡和相图
13
3、背向线规则
在浓度三角形中,一个三元系统的组成点愈靠近某个顶点,
该顶点所代表的组分的含量就愈高;反之,愈少。
C 若熔体在冷却时析出某一
顶点所代表的组元,则液
相中组成点必定沿着该顶 点与熔体组成点的连线向 背离该顶点的方向 A
材料科学基础
D
B
第六章 相平衡和相图
14
4、杠杆规则
C C
b L .2 N
a
e2
K
1
.
B
x B
z y
熔体1
L LB 1[B,(B)] a[B,B+(A)] f=3 f=2
L B+N f=1
L B+A K[x,B+A+(N)] f=1
e1
L+AB+N f=0
K[y(A消失),N+B]
LN+B+C L[z,N+B+(C)] f=0
L(液相消失)[1,N+B+C]
所谓一致熔融化合物是一种稳定 的化合物。它与正常的纯物质一 样具有固定的熔点,融化时,所
产生的液相与固相的化合物组成 相同,故称一致熔融
材料科学基础
2
第六章 相平衡和相图
2、不一致熔融化合物: 一种不稳定的化合物,加热这种 化合物到某一温度便发生分解, 分解产物是一种液相和一种晶相, 二者组成与原来化合物组成完全 不同。 点:纯物质熔点;低共熔点; 转熔点等 线:液相线(3条)固相线等;
第六章 相平衡和相图
•如果加热速度很慢,则在870℃转变为-鳞石英。
如果加热速度过快,则-石英过热而在1600℃时熔融。
鳞石英
117 163 230
573
870
1200~1350
1470 1600 1670 1713 ℃
•-鳞石英缓慢加热,在1470℃时转变为-方石英,继续加热 到1713℃熔融。 •-鳞石英在加热较快时,过热到1670℃时熔融。 •当缓慢冷却时,在870℃仍可逆地转变为-石英;当迅速冷却 时,沿虚线变化
p=3 , f=0 ,无变量系统
冰的饱和蒸汽压曲线(升华曲线)
三相点与冰点是一 回事吗
二、具有多晶转变的单元系统相图
E F
β型
α型
实线部分: 四个单相区:1相 五条界线:2相共存
两个三相点:B,C
晶体的升华曲线(或延长线)与液体的蒸发曲线(或延长线) 的交点是该晶体的熔点。如C点,实际是三相点。 两种晶型的升华曲线(或延长线)的交点是两种晶型的晶型转 变点。如B点,实际是三相点。
化合物
固溶体 同质多晶
二、相律 根据Gibbs相律 F= C-P+2
平衡时最多 有几个相
F- 自由度数
C- 独立组元数
P- 相数
2 - 温度和压力外界因素
盐水系统
建立多相系统中自由度数、独立组元数、相数之间的关系
二、相律
假设一系统中有S种化学物质,在平衡条件下形成P种物相, 每种相中都有S种化学物质。 则总变量数:P(S-1)+2
120 163 230
573
870
1200~1350
1470 1600 1670 1713 ℃
采 取 的 措 施
① 在870℃适当保温,促使鳞石英生成; ② 在1200~1350℃加快升温速度避免生成α- 方石英; ③ 在配方中加入Fe2O3或CaO等矿化剂。在1000℃左右产生一定 量的液相,石英、方石英在此液相中的溶解度大,而鳞石英的溶 解度小,因而石英、方石英不断溶入液相,而鳞石英则不断从液 相中析出。
材料科学基础课件第六章--相平衡与相图
F = C-P+n
自由 度数
独立组 元数
F = C-P+2
对凝聚态体系, 压力恒定或影响 较小,其相律为:
F = C-P+1
组元数C多,自 由度F大;相数P 多,自由度小
6.1.3 相平 衡研究方法
动态法
静态法 (淬冷法)
热分 析法
差热分 析法
T/℃
(1ቤተ መጻሕፍቲ ባይዱ 热分析法
1
2
3
原理:根据系统在冷却
ab c
100 80Bi 60Bi 20Bi 100 Bi 20Cd 40Cd 80Cd Cd
T/℃
ab c d e
t/s
Bi-Cd合金冷却曲线
546.15K
596.15K
L
L+Bi(s) ●
L+Cd(s)
20 40 Bi(s)+Cd(s) 80
0 Bi
WCd/%
100 Cd
Bi-Cd系统相图
液相线:由凝固开始温度连接起来的相界线 固相线:由凝固终结温度连接起来的相界线
元系统相图
P ●:熔点
■:转变点
2
L
●
Ⅱ
3
■
1
●
Ⅰ
O T0 T2 T1 T3
T
图 6-7 具有不可逆多晶转变的
单元系统相图
晶体I T3 晶体II
晶体Ⅰ 晶体Ⅱ 液相
(1) 晶体I、Ⅱ有稳定区 (2) 转变温度T3<T1 、T2(熔点)
T1 液 相 T2
(1)晶体Ⅱ无稳定区 (2)T3>T1、T2
6.2.2 单元系统专业相图
G
E
H
A+B
A
相平衡和相图(共294张PPT)
C=1,称为单元系统; C=2,称为二元系统; C=3,称为三元系统学反响,那么: 独立组元数=物种数〔即组元数〕
〔2〕如果系统中存在化学反响并建立了平衡,
那么: 独立组元数=物种数一独立化学反响数
〔指独立化学平衡关系式数〕
例如,由CaCO3、CaO、CO2组成 的系统,在高温下存在下述反响:
〔1〕稳定相平衡局部〔即实线局部〕 相区: FCD是液相区; ABE是β-晶型的相区; EBCF是α-晶型的相区, 在ABCD以下是气相区。
相界线:
CD线:是液相和气相两相平衡共存线,即液相
的蒸发曲线; BC线:是α-晶型和气相两相平衡共存线,即α-
晶型的升华曲线;
AB线:是β-晶型和气相两相平衡共存线,即β晶型的升华曲线;
〔或延长线〕的交点是该晶体的熔点。
②两种晶型的升华曲线的交点是两种晶型的多晶转 变点。
③在同一温度下,蒸气压低的相更加稳定。所以, 介稳平衡的虚线,总是在稳定平衡的实线上方 。
④交汇于三相点的三条平衡曲线互相之间 的位置遵循下面两条准那么:
a、每条曲线越过三相点的延长线必定在另 外两条曲线之间。
b、同一温度时,在三相点附近比容差最大 的两相之间的单变量曲线或其介稳延长 线居中间位置。
假设该反响能够到达平衡,那么有 一个独立的化学反响平衡常数。
此时,虽然组元数=3,但独立组元 数C=3-1=2。
4、自由度 在一定范围内,可以任意改变而不
引起旧相消失或新相产生的独立变量称 为自由度,平衡系统的自由度数用F表示。
这些变量主要指组成〔即组分的浓 度〕、温度和压力等。
5、外界影响因素 影响系统平衡状态的外界因素包括:温度、压力、电
主要区别在于固-液平衡的熔融曲线OC线倾斜
〔2〕如果系统中存在化学反响并建立了平衡,
那么: 独立组元数=物种数一独立化学反响数
〔指独立化学平衡关系式数〕
例如,由CaCO3、CaO、CO2组成 的系统,在高温下存在下述反响:
〔1〕稳定相平衡局部〔即实线局部〕 相区: FCD是液相区; ABE是β-晶型的相区; EBCF是α-晶型的相区, 在ABCD以下是气相区。
相界线:
CD线:是液相和气相两相平衡共存线,即液相
的蒸发曲线; BC线:是α-晶型和气相两相平衡共存线,即α-
晶型的升华曲线;
AB线:是β-晶型和气相两相平衡共存线,即β晶型的升华曲线;
〔或延长线〕的交点是该晶体的熔点。
②两种晶型的升华曲线的交点是两种晶型的多晶转 变点。
③在同一温度下,蒸气压低的相更加稳定。所以, 介稳平衡的虚线,总是在稳定平衡的实线上方 。
④交汇于三相点的三条平衡曲线互相之间 的位置遵循下面两条准那么:
a、每条曲线越过三相点的延长线必定在另 外两条曲线之间。
b、同一温度时,在三相点附近比容差最大 的两相之间的单变量曲线或其介稳延长 线居中间位置。
假设该反响能够到达平衡,那么有 一个独立的化学反响平衡常数。
此时,虽然组元数=3,但独立组元 数C=3-1=2。
4、自由度 在一定范围内,可以任意改变而不
引起旧相消失或新相产生的独立变量称 为自由度,平衡系统的自由度数用F表示。
这些变量主要指组成〔即组分的浓 度〕、温度和压力等。
5、外界影响因素 影响系统平衡状态的外界因素包括:温度、压力、电
主要区别在于固-液平衡的熔融曲线OC线倾斜
第七章相平衡与相图A
研制开发新材料确定材料成分制订材料生产加工和热处理工艺分析平衡态的组织和可能的非平衡态组织变化预测材料的性能进行材料失效分析一相平衡概念和相律一个结构的相转变为另一种结构相的过程称为相变相变
第7章 相平衡与相图
教学内容
1.相、相平衡、相图等基本概念 2.单元系相图 3.二元系中的相平衡 4.共晶相图 5.包晶相图 6.偏晶相图 7.复杂相图 8.包含固-固反应的相平衡 9.三元系中的相平衡
体系为单相 相点落在线上: f = 1 自由度为1
两相平衡 相点落在交点: f = 0 自由度为0
三相共存
举例:
举例:
7.3 二元系中的相平衡
一、成分的描述 质量分数和摩尔分数。 如A组元的质量分数为wA、摩尔分数为xA, 其相对原子量为MA;B组元的质量分数为wB、 摩尔分数为xB,其相对原子量为MB,则: xA=(wA/MA)/(wA/MA + wB/MB) xB=(wB/MB)/(wA/MA + wB/MB)
相组成物是指组成合金 显微组织的基本相。
组织组成物是指合金在 结晶过程中,形成的具
有特定形态特征的独立 组成部分。
α
β
19
61.9
97.5
M
%
97.5 61.9 97.5 19
100%
45.4%
亚共晶合金 19%<Sn% <61.9 % 过共晶合金 61.9 %<Sn% <97.5%
L 匀 晶 转变 L多 共晶转变 脱溶转变 ( ) II ( )
相界线
在相图上将各相区分隔开的线叫相界线, 由于相界线的特性不同,可区分为: ①液相线:其上全为液相,线下有固相出现, 可以表示为L/L+。 ②固相线:其下全为固相,可表示为L+/L。
第7章 相平衡与相图
教学内容
1.相、相平衡、相图等基本概念 2.单元系相图 3.二元系中的相平衡 4.共晶相图 5.包晶相图 6.偏晶相图 7.复杂相图 8.包含固-固反应的相平衡 9.三元系中的相平衡
体系为单相 相点落在线上: f = 1 自由度为1
两相平衡 相点落在交点: f = 0 自由度为0
三相共存
举例:
举例:
7.3 二元系中的相平衡
一、成分的描述 质量分数和摩尔分数。 如A组元的质量分数为wA、摩尔分数为xA, 其相对原子量为MA;B组元的质量分数为wB、 摩尔分数为xB,其相对原子量为MB,则: xA=(wA/MA)/(wA/MA + wB/MB) xB=(wB/MB)/(wA/MA + wB/MB)
相组成物是指组成合金 显微组织的基本相。
组织组成物是指合金在 结晶过程中,形成的具
有特定形态特征的独立 组成部分。
α
β
19
61.9
97.5
M
%
97.5 61.9 97.5 19
100%
45.4%
亚共晶合金 19%<Sn% <61.9 % 过共晶合金 61.9 %<Sn% <97.5%
L 匀 晶 转变 L多 共晶转变 脱溶转变 ( ) II ( )
相界线
在相图上将各相区分隔开的线叫相界线, 由于相界线的特性不同,可区分为: ①液相线:其上全为液相,线下有固相出现, 可以表示为L/L+。 ②固相线:其下全为固相,可表示为L+/L。
.相平衡与相图原理
湖
北
汽
车
工
业
学
院
40
三、相图规律-相区接触法则;
1. 平衡相的成分必定沿相界线随温度而变化
2.单相区与单相区只能有一个点接触,而不应有一 条边界线。 3.相邻相区的相数相差为1,单相区与双相区相 邻;邻近的两个单相区被一个两相区隔开,两相 区与三相区相邻。 4.一个三相反应的水平线和三个两相区相遇
学
院
15
二、二元相图的基本类型 1.匀晶相图 两组元在液态和固态 时都能以任何比例完全 互溶的相系,所形成的 相图为匀晶相图
湖
北
汽
车
工
业
学
院
16
具有极值的匀晶相图
湖
北
汽
车
工
业
学
院
17
2.共晶相图(binary eutectic systems)
两组元在液态中无限互溶,在固态时有限互溶且发生共晶反 应(eutectic reaction)的一种相图,如Pb-Sn、Ag-Cu、Al-Si 等
湖 北 汽 车 工 业 学 院 42
湖
北
汽
车
工
业
学
院
43
湖
北
汽
车
工
业
学
院
44
湖
北
汽
车
工
业
学
院
45
湖
北
汽
车
工
业
学
院
46
湖
北
汽
车
工
业
学
院
47
湖
北
汽
车
工
业
学
院
相平衡与相图一元系
ΔG
C2S多晶转变图
β
γ
α
T/K
998K L 1433K H 1693K
1693K H 1433K L 943K 798K
五 ZrO2系统相图
是最耐高温的氧化物之一。熔点达到 2680℃ ,具有良好的热化学稳定性,可做 超高温耐火材料制作熔炼某些金属(如钾、 钠、铝、铁等)的坩埚;
833K以后可以加快; 使用温度1143-1743K; 若1743K以上使用,降温时必开裂。
Si02多晶转变时的体积变化可知,在各 SiO2 变体的高低温型的转变中,方石英之因此,为了获得稳定的致密硅砖制品,就 希望硅砖中含有尽可能多的鳞石英,而方石英 晶体越少越好。这也就是硅砖烧成过程的实质 所在。
C2S有五种晶型
加热时为: 998K L 1433K H 1693K
冷却时为:
1693K H 1433K L 943K 798K
水泥生产要求:在水泥熟料中希望C2S 是以 β晶型存在的,而且要防止介稳的β-C2S 向稳定的γ-C2S 转化。
原因:
β-C2S具有胶凝性质,而γ-C2S 没有胶 凝性。
•应用:点火装置、压电变压器、微音扩 大器、振动计、超声波器件和各种频率滤 波器等
•从结构上看:当原子排列为相中心对称时可 出现压电性,而且晶格内构造质点要带正电 荷和负电荷 ,这种结构的晶体,在应力作 用下,正负电荷作相对移动,形成偶极矩
有对称中心:无压电性,如α-方石英 无对称中心:有压电性,如β-石英、β-方 石英
fus H 0, fusV 0
斜率为负。
vap Hm 0
fus Hm 0
斜率为正。 斜率为正。
1、一般分析
2、亚稳态分析 单组分体系相图的共同特征点:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、水的相图
状态点
相图分析
3个单相区: AOB是固相区 AOC是液相区 BOC是气相区
c=1,p=1,f=2
3条线: OA是水与冰两相平衡线 OB是冰与蒸汽两相平衡线 OC是水与蒸汽两相平衡线
c=1,p=2,f=1
1个三相点: O点是气、液、固三相的平衡共存点
f=0
如果外界保持一个大气压,根 据相律,c=1,p=1则f=1。系统 中只有一个独立可变的变数。 因此单元系相图可以只用一个 温度轴来表示。 Tm熔点和沸点Tb均为两相共存点,f=0。 故此处温度不可变动,转变是一恒温过 程。在外界影响因素的数目n=1的情况 下,单元系统中平衡相的数目p不能多 于2个。
4、影响系统平衡的外界因素
用字母n表示。 • 通常指温度和压力两个参数。
5、自由度
概念:相平衡体系中可以独立改变的变量(温度、压 力、组分浓度等)成为自由度。
自由度数:自由度的数目称为自由度数,用字母f 表 示。 6、凝聚系统的相律
由于凝聚态不含气相或者气相可以忽略,所以,压力 对系统没有影响,外界因素中只有温度一个参数,这 时n=1 因此,凝聚系统的相律为:f=c-p+1
举例说明: CaCO3、CaO、CO2系统,高温反应时和平衡时情况。
3、相(系统内部因素之一)
概念:系统内部物理和化学性质相同,并且完全均匀的部分 称为相。 相数:一个系统中所含相的数目称为~。用字母p表示。 相组成:一个相在物理和化学性质上必须是相同、均匀,但 不一定只含有一种物质。 (1)不同气体均匀混合——一个相(空气) (2)真溶液——一个相(如NaCl水溶液) (3)机械混合物——多相 (4)组分间生成化合物——一个新相 (5)固溶体——一个相 (6)同质多晶——多相 (7)高温熔体——(均匀为一个相,若分层则为两相) (8)介稳变体——相图上用虚线表示。
第四章 相平衡与相图
L L+A L+B A+B
&
A
w B%
B
为什么要学习“相平衡”知识?
• 自然界的各种物质存在形式包括气态、液态和固态三种状态; • 各种物质随着温度、压力等热力学条件的变化,其存在状态以 及组成会发生相应变化; • 在一定的热力学条件下达到平衡时,系统存在的相的数目、每 个相的组成和相对含量存在一定的规律; • 确定某个系统相的数目、组成以及相对含量对于多相体系的研 究具有非常重要的意义; • 特别是对于从事材料科学与工程专业的人员来说,掌握相平衡 的基本原理,熟练地分析相图,可以指导我们选择正确的材料 配方方案、制定合理的材料工艺、以及研究新材料具有更加重 要的意义。 所以,~。
章节安排
第一节 相平衡与相律
第二节 第三节
第四节
单元系统相图 二元系统相图
三元系统相图
第一节 什么是相平衡?
相平衡与相律
在某一温度下,系统中各个相经过很长时间也不 互相转变,处于平衡状态,这种平衡称为相平衡。
各组元在各相中的化学势相同。
多相平衡理论的由来
• 1876年,美国学者吉布斯(Gibbs)以热力学为工具, 推导出了多相平衡体系遵循的规律,即相律。
CD是气液线, c=1 p=2 f=1
BF是晶Ⅰ和晶Ⅱ共存线, c=1 p=2 f=1 CE是晶Ⅱ和液相共存线, c=1 p=2 f=1
2个三相点:
B点是晶Ⅰ、晶Ⅱ和气相三相点,f=0
C点是晶Ⅱ液相和气相三相点,f=0
虚线:表示系统中可能出现的各种介稳状态
ZrO2系统相图
熔体
单斜 -273 1000
4、非平衡态的意义
(1)实际生产和研究过程中,综合考虑 (2)非平衡态有积极意义
二、吉布斯相律
Gibbs以热力学定律为基础,提出了相律。 只有满足以下关系式,系统才能出现平衡。 即:自由度数=独立组分数-相数+外界因素 亦即:f=c-p+n • 只考虑温度和压力对系统平衡状态的影响: f=c-p+2
四方 2000
立方 3000
温度(℃)
1、系统 • 系统:就是“选择的研究对象”。 • 环境:与系统相对的,系统以外的其它因素都 称之为环境。 • 平衡状态:当外界条件不变时,系统的各种性
质不随时间而变化,则该系统处于平衡状态。
2、组分(系统内部因素之一)
(1)组分:指系统中每一个可以独立分离出来,并能够独立 存在的化学物质。(两个独立)
第二节 单元系统相图
什么叫单元系统? 所谓单元系统,是指只含有一种独立组分 的系统。 即,独立组分数c=1 根据相律: f=c-p+n =1-p+2=3-p ∵f≥0, ∴p≤3 若,p=1,则f=2(最大自由度数) ∴可以用温度和压力作坐标的平面图 (p-T图) 来表示 系统的相图。 若,f=0,则p=3, 即1≤p≤3,单元系统最多有三相平衡。
2、SiO2高温熔体
冰 结晶
★为什么?
热力学!动力学!(抛开动力学因素,只考虑热力学 条件,如何描述多相体系平衡状态呢?)
1、相图
在一个多相系统中,该系统在一定的热力学条件下达到平衡时, 相的组成、种类、数目以及含量绘制成一定的几何图形叫做相 图。
●表示物质的状态与温度、压力、组成之间的关系的简明图解。 ●表示物质在热力学平衡条件下的情况,又称为平衡状态图。
•在一个给定的系统中,组分就是构成系统的各种化学元素或化合物。 •化学元素:Cu, Ni, Fe等金属 •化合物:Al2O3, MgO, Na2O, SiO2 等无机物
(2)组分数:组分的数目。
(3)独立组分:表示形成平衡系统中各相组成所需要的最小 数目的化学纯物质。
(4)独立组分数:独立组分的数目称为~。用字母c表示。
二、具有同质多晶转变的单元系统相图
P H F 晶Ⅱ 晶Ⅰ G C D 液体 E
4个相区
5条线
2个点
Ⅱ Ⅰ O
K B A
蒸气
T
4个相区:
2个固相区:ABF和FBCE,c=1 p=1 f=2 1个液相区:ECD,c=1 p=1 f=2
1个气相区:ABCD, c=1 p=1 f=2
5条线: AB和BC是固液线, c=1 p=2 f=1
2、相图的特点
(1)热力学属性。相图表示的是一个体系所处的热 力学平衡态。
(2)不反映动力学因素。不管达到平衡所需时间,
时间长短由系统性质决定。 (3)相图所指示的平衡状态表示了在一定条件下所
进行的物理化学变化的本质、方向和限度。
3、平衡态与非平ቤተ መጻሕፍቲ ባይዱ态
(1)平衡态:即一定热力学条件下,系统中各 相所处的最低自由能状态。 (2)非平衡态:较高自由能状态,又叫介稳态。 举例说明: 例如:方石英
• 相律被认为自然界中最普遍的规律之一。
• 无机非金属材料系统的相平衡也理所当然地符合这样
一个普遍规律;
• 同时,由于无机非金属材料是一种多相固体材料,存
在着自己的特殊性,与一般的气相、液相不同,无机
非金属材料的多相平衡理论也有其特殊性。
一、相图
看如下两个例子: 结晶 (快) 方石英 (慢)
1、0℃水