高中数学诱导公式全集
高中诱导公式大集合
高考数学必备—高中诱导公式大集合常用的诱导公式有以下几组公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
高中数学诱导公式
最全高中数学诱导公式常用的诱导公式有以下几组:1公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα,cos(-α)=cosαtan(-α)=-tanα,cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα,cos(π-α)=-cosαtan(π-α)=-tanα,cot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα,cos(2π-α)=cosαtan(2π-α)=-tanα,cot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π/2-α)=cosα,cos(π/2-α)=sinαtan(π/2-α)=cotα,cot(π/2-α)=tanα,sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,tan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高考你不容错过的高中数学诱导公式大集合据说史上最全!
高考你不容错过的高中数学诱导公式大集合据说史上最全!常用的诱导公式有以下几组公式一:设为恣意角,终边相反的角的同一三角函数的值相等:sin〔2k+〕=sin〔kZ〕cos〔2k+〕=cos〔kZ〕tan〔2k+〕=tan〔kZ〕cot〔2k+〕=cot〔kZ〕公式二:设为恣意角,的三角函数值与的三角函数值之间的关系:sin〔+〕=-sincos〔+〕=-costan〔+〕=tancot〔+〕=cot公式三:恣意角与-的三角函数值之间的关系:sin〔-〕=-sincos〔-〕=costan〔-〕=-tancot〔-〕=-cot公式四:应用公式二和公式三可以失掉与的三角函数值之间的关系:sin〔-〕=sincos〔-〕=-costan〔-〕=-tancot〔-〕=-cot公式五:应用公式一和公式三可以失掉2与的三角函数值之间的关系:sin〔2-〕=-sincos〔2-〕=costan〔2-〕=-tancot〔2-〕=-cot公式六:/2及3/2与的三角函数值之间的关系:sin〔/2+〕=coscos〔/2+〕=-sintan〔/2+〕=-cotcot〔/2+〕=-tansin〔/2-〕=coscos〔/2-〕=sintan〔/2-〕=cotcot〔/2-〕=tansin〔3/2+〕=-coscos〔3/2+〕=sintan〔3/2+〕=-cotcot〔3/2+〕=-tansin〔3/2-〕=-coscos〔3/2-〕=-sintan〔3/2-〕=cotcot〔3/2-〕=tan(以上kZ)留意:在做题时,将a看成锐角来做会比拟好做。
诱导公式记忆口诀※规律总结※下面这些诱导公式可以概括为:关于/2*k(kZ)的三角函数值,①当k是偶数时,失掉的同名函数值,即函数名不改动;②当k是奇数时,失掉相应的余函数值,即sincostancot,cottan.〔奇变偶不变〕然后在前面加上把看成锐角时原函数值的符号。
三角函数高中数学诱导公式大全
三角函数高中数学诱导公式大全
一、诱导之和差公式
1.正弦函数的和差公式:
sin(A±B) = sinAcosB ± cosAsinB
2.余弦函数的和差公式:
cos(A±B) = cosAcosB ∓ sinAsinB
3.正切函数的和差公式:
tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)
二、诱导乘积公式
1.正弦函数的乘积公式:
sinAsinB = (1/2)[cos(A-B)-cos(A+B)]
2.余弦函数的乘积公式:
cosAcosB = (1/2)[cos(A-B)+cos(A+B)]
3.正切函数的乘积公式:
tanAtanB = (1-cosAcosB) / (cosAsinB)
三、诱导倒角公式
1.正弦函数的倒角公式:
sin(A/2) = ±√[(1-cosA)/2]
2.余弦函数的倒角公式:
cos(A/2) = ±√[(1+cosA)/2]
3.正切函数的倒角公式:
tan(A/2) = ±√[(1-cosA)/(1+cosA)]
四、三角函数的其他重要关系
1.正弦函数与余弦函数的关系:
sin^2A + cos^2A = 1
2.正切函数与余切函数的关系:
tanA × cotA = 1
3.正切函数与余弦函数的关系:
tanA = sinA / cosA
总结:三角函数诱导公式是高中数学中的重要内容,通过应用这些公式,可以化简复杂的三角函数表达式,简化计算过程。
掌握这些诱导公式,并熟练应用于解题,有助于提高数学运算能力。
数学诱导公式
cos(a-b)=cosa*cosb+sina*sinb ②
∴ ① + ② 得:
cos(a+b)+cos(a-b)=2cosa*cosb
∴ cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,若 ① - ② 得:
sina*sinb=-(cos(a+b)-cos(a-b))/2
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα*tanβ)
二倍角的正弦、余弦和正切公式(升幂缩角公式):
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
(以上k∈Z)
同角三角函数的基本关系式:
倒数关系:
tanα *cotα=1 sinα *cscα=1 cosα *secα=1
商的关系:
sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
sin(3π/2+α)=-cosα sin(3π/2-α)=-cosα
高中诱导公式大全
高中数学诱导公式大全概述诱导公式是数学三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数。
诱导公式★诱导公式★常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-ta nαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高中高一到高三数学诱导公式全集,有了它,三角函数公式一网打尽!
今天为大家准备的是:高中数学中【诱导公式合集】,这也是考试中的一个高频考点和难点啦!常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan (3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高考备考:高中数学诱导公式全集
2021年高考备考:高中数学诱导公式全集常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαco t(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高中数学诱导公式大全
高中数学诱导公式大全设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαπ/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导两角和差公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/[1-tan^2(α)]半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα) sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]。
【数学】高中数学诱导公式全集
高中數學誘導公式全集常用的誘導公式有以下幾組:公式一:設α為任意角,終邊相同的角的同一三角函數的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:設α為任意角,π+α的三角函數值與α的三角函數值之間的關係:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α與-α的三角函數值之間的關係:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α與α的三角函數值之間的關係:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α與α的三角函數值之間的關係:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α與α的三角函數值之間的關係:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做題時,將a看成銳角來做會比較好做。
誘導公式記憶口訣※規律總結※上面這些誘導公式可以概括為:對於π/2*k ±α(k∈Z)的三角函數值,①當k是偶數時,得到α的同名函數值,即函數名不改變;②當k是奇數時,得到α相應的餘函數值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇變偶不變)然後在前面加上把α看成銳角時原函數值的符號。
08-08高中数学诱导公式全集
一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
高中数学诱导公式大全
【解答】解:(Ⅰ)
sin(2
− ) cos(3
+ ) cos(3 2
+)
=
(−sin )(− cos )sin
=1;
sin(− + )sin(3 − ) cos(− − ) (−sin )sin (− cos )
(Ⅱ) tan 315 + tan 570 = tan(360 − 45) + tan(3180 + 30) = − tan 45 + tan 30 = 3 .
sin(− + ) tan(3 − )
−sin (− tan )
sin
(4 分) )
(2) f ( ) = 1 ,可得 sin cos 8
=1, 8
(sin + cos )2 = 1 + 1 = 5 ,且 3 ,
44
2
sin 0 , cos 0 ,
所以 sin + cos 0 ,
5
2
5
【解答】解:因为 sin = 3 , 5
则 cos(
−
3
)
=
cos(3
−)
=
−
cos(
− ) = −sin
=−3.
2
2
2
5
故答案为: − 3 . 5
变式 1.已知 sin( + ) = 1 ,则 sin(5 − ) 的值为 1 .
63
6
3
【解答】解:因为 sin( + ) = 1 , 63
= sin + cos sin cos
=5 −2
=−
5 2.Biblioteka 5变式 1.已知 f ( ) = sin2 ( − ) cos(2 − ) tan(− + ) sin(− + ) tan(3 − )
高中数学诱导公式大全
高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
高中诱导公式大全
高中诱导公式大全
诱导公式一直是高中数学老师和学生们关系不可或缺的一部分,它的重要性不言而喻。
今天,我们将分享一份完整的高中诱导公式大全,以帮助高中数学老师和学生实现自己的学习目标。
首先,我们将介绍一些基本的诱导公式,其中包括:
一、加法定理:任何正整数的和可以表示为:$n(n + 1) / 2$
二、乘法定理:任何正整数的乘积可以表示为:$n^2(n + 1)^2 / 4$
三、阶乘定理:任何正整数的阶乘被定义为:$n! = n * (n-1) * (n-2) * ... * 1$
接下来,我们将介绍一些具有更高级应用的诱导公式,其中包括:
一、勾股定理:若矩形的两条直角边之间的关系为$a^2 + b^2 = c^2$,则它们能够组成一个直角三角形。
二、沃尔夫定理:若矩形的对角线之间的关系为$a^2 = b^2 + c^2$,则它们能够组成一个锐角三角形。
三、欧拉定理:若一个多边形的边数为$n$,其顶点的度数之和
为$S$,则有$S = n-2$。
此外,我们还可以用高中诱导公式来解决一些复杂的数学问题。
比如,如果要求出多边形的内角和,可以使用欧拉定理:若多边形的边数为$n$,那么内角和为$S = n * 180$。
同样地,当要解决某个三角形角度或边长等问题时,可以使用勾股定理或沃尔夫定理。
以上就是高中诱导公式大全,希望能够帮助高中数学老师和学生
们做出正确的选择,应用这些公式解决数学问题。
通过学习和掌握这些公式,高中数学老师和学生们将能够更好地完成自己的学习任务。
诱导公式大全
诱导公式大全在数学学科中,诱导公式是一种非常重要的工具,它能够帮助我们简化复杂的数学问题,使得计算更加高效和便捷。
本文将为大家介绍一些常见的诱导公式,希望能够对大家的学习和工作有所帮助。
一、三角函数的诱导公式。
1. 余弦函数的诱导公式。
余弦函数的诱导公式是,$\sin'(x) = \cos(x)$。
这个公式可以帮助我们在求解余弦函数的导数时更加方便快捷。
2. 正弦函数的诱导公式。
正弦函数的诱导公式是,$\cos'(x) = -\sin(x)$。
利用这个公式,我们可以更加轻松地求解正弦函数的导数。
3. 切线函数的诱导公式。
切线函数的诱导公式是,$\tan'(x) = \sec^2(x)$。
这个公式在求解切线函数的导数时非常有用。
二、指数函数的诱导公式。
1. 指数函数的诱导公式。
指数函数的诱导公式是,$(a^x)' = a^x \ln(a)$。
通过这个公式,我们可以更加简单地求解指数函数的导数。
2. 对数函数的诱导公式。
对数函数的诱导公式是,$(\log_a(x))' = \frac{1}{x \ln(a)}$。
这个公式可以帮助我们求解对数函数的导数,提高计算效率。
三、常见函数的诱导公式。
1. 幂函数的诱导公式。
幂函数的诱导公式是,$(x^n)' = nx^{n-1}$。
这个公式可以帮助我们求解幂函数的导数,简化计算过程。
2. 三角函数复合函数的诱导公式。
三角函数复合函数的诱导公式是,$(f(g(x)))' = f'(g(x)) \cdot g'(x)$。
通过这个公式,我们可以更加方便地求解三角函数复合函数的导数。
四、其他常用诱导公式。
1. 反常函数的诱导公式。
反常函数的诱导公式是,$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$。
这个公式在求解反常函数的导数时非常有用。
2. 参数方程的诱导公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学诱导公式全集同学们是不是有过这样的经历,就是在做数学题的时候,做着做着就忘记需要用到的某道公式呢?哈哈想当年小编就是这样过来的,然后又急急忙忙去翻书,而这么多公式要一页页找多浪费时间啊!所以小编就为大家整理了一部分关于高中数学诱导公式全集,希望同学们可以拿个小本本抄下来哇!公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)=sin (kZ)cos(2k+)=cos (kZ)tan(2k+)=tan (kZ)cot(2k+)=cot (kZ)公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin(+)=-sincos(+)=-costan(+)=tancot(+)=cot公式三:任意角与-的三角函数值之间的关系:sin(-)=-sintan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin(-)=sincos(-)=-costan(-)=-tancot(-)=-cot公式五:利用公式一和公式三可以得到2-与的三角函数值之间的关系:sin(2-)=-sincos(2-)=costan(2-)=-tancot(2-)=-cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin(/2-)=costan(/2-)=cotcot(/2-)=tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tan(以上kZ)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于/2*k (kZ)的三角函数值,①当k是偶数时,得到的同名函数值,即函数名不改变;②当k是奇数时,得到相应的余函数值,即sincos;cossin;tancot,cottan.(奇变偶不变)然后在前面加上把看成锐角时原函数值的符号。
(符号看象限)例如:sin(2-)=sin(4/2-),k=4为偶数,所以取sin。
当是锐角时,2-(270,360),sin(2-)0,符号为-。
所以sin(2-)=-sin上述的记忆口诀是:奇变偶不变,符号看象限。
公式右边的符号为把视为锐角时,角k360+(kZ),-、180,360- 所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。
#各种三角函数在四个象限的符号如何判断,也可以记住口诀一全正;二正弦(余割);三两切;四余弦(正割).这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是+;第二象限内只有正弦是+,其余全部是-;第三象限内切函数是+,弦函数是-;第四象限内只有余弦是+,其余全部是-.上述记忆口诀,一全正,二正弦,三内切,四余弦#还有一种按照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦 ...........+............+................................余弦 ...........+....................................+........正切 ...........+........................+....................余切 ...........+........................+....................同角三角函数基本关系同角三角函数的基本关系式倒数关系:tancot=1sincsc=1cossec=1商的关系:sin/cos=tan=sec/csccos/sin=cot=csc/sec平方关系:sin^2()+cos^2()=11+tan^2()=sec^2()1+cot^2()=csc^2()同角三角函数关系六角形记忆法六角形记忆法:构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。
由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式两角和与差的三角函数公式sin(+)=sincos+cossinsin(-)=sincos-cossincos(+)=coscos-sinsincos(-)=coscos+sinsintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2=2sincoscos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()tan2=2tan/[1-tan^2()]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(/2)=(1-cos)/2cos^2(/2)=(1+cos)/2tan^2(/2)=(1-cos)/(1+cos)另也有tan(/2)=(1-cos)/sin=sin/(1+cos)万能公式sin=2tan(/2)/[1+tan^2(/2)]cos=[1-tan^2(/2)]/[1+tan^2(/2)]tan=2tan(/2)/[1-tan^2(/2)]万能公式推导附推导:sin2=2sincos=2sincos/(cos^2()+sin^2())......*,(因为cos^2()+sin^2()=1)再把*分式上下同除cos^2(),可得sin2=2tan/(1+tan^2())然后用/2代替即可。
同理可推导余弦的万能公式。
正切的万能公式可通过正弦比余弦得到。
三倍角公式三倍角的正弦、余弦和正切公式sin3=3sin-4sin^3()cos3=4cos^3()-3costan3=[3tan-tan^3()]/[1-3tan^2()]三倍角公式推导附推导:tan3=sin3/cos3=(sin2cos+cos2sin)/(cos2cos-sin2sin)=(2sincos^2()+cos^2()sin-sin^3())/(cos^3()-cossin^2()-2sin^ 2()cos)上下同除以cos^3(),得:tan3=(3tan-tan^3())/(1-3tan^2())sin3=sin(2+)=sin2cos+cos2sin=2sincos^2()+(1-2sin^2())sin=2sin-2sin^3()+sin-2sin^3()=3sin-4sin^3()cos3=cos(2+)=cos2cos-sin2sin=(2cos^2()-1)cos-2cossin^2()=2cos^3()-cos+(2cos-2cos^3())=4cos^3()-3cos即sin3=3sin-4sin^3()cos3=4cos^3()-3cos三倍角公式联想记忆★记忆方法:谐音、联想正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要挣钱(音似正弦))余弦三倍角:4元3角减3元(减完之后还有余)☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
★另外的记忆方法:正弦三倍角:山无司令(谐音为三无四立) 三指的是3倍sin,无指的是减号,四指的是4倍,立指的是sin立方余弦三倍角:司令无山与上同理和差化积公式三角函数的和差化积公式sin+sin=2sin[(+)/2]cos[(-)/2]sin-sin=2cos[(+)/2]sin[(-)/2]cos+cos=2cos[(+)/2]cos[(-)/2]cos-cos=-2sin[(+)/2]sin[(-)/2]积化和差公式三角函数的积化和差公式sincos=0.5[sin(+)+sin(-)]cossin=0.5[sin(+)-sin(-)]coscos=0.5[cos(+)+cos(-)]sinsin=-0.5[cos(+)-cos(-)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)第11页共11页。