量子力学课件完整版(适合初学者)
合集下载
量子力学入门PPT资料(正式版)
• 不久之后的一些实验现象如光电效应,只能把光看作“一 份一份”的或是将其量子化才能得到合理的解释。当光照 射在金属表面,电子会离开初始位置逸出。这种现象的一 些特点只能在光的能量不连续的假设下才能被合理解释。 在一个光电设备(照相机的曝光表等),光照射在金属感 应器表面使得电子逸出。增加光的强度(同一频率的光) 能够让更多的电子逸出。而如果想要使电子的速度更快也 就是动能更大,必须增加光的频率。因此,光强只决定了 光电流的大小,也可以说是电路中电压的大小。这个现象 和传统的波动模型相悖,因为传统模型是源自对声波和海 洋波的研究,这个模型的结论是,振动源的初相位也就是 强度大小决定了所产生波的能量大小。同时,如何让表现 出光的粒子性和波动性的实验现象和谐共处的问题,也摆 在了物理学家的面前。
• 此处普朗克定律是物理学中第一个量子理论,也使普朗克荣获1918 年的诺贝尔奖“为表扬普朗克对于能量量子的发现和促使物理学进步 的贡献”。但当时普朗克认为量子化纯粹只是一种数学把戏,而非 (我们今日所知的)改变了我们对世界的理解的基本原理。
• 1690年,惠更斯提出了光的波动学说用以解释干涉和折射 现象,[7]而艾萨克·牛顿坚信光是由极其微小的粒子构成 的,他把这种粒子叫作“光子(corpuscles)”。
量子力学入门
第一个量子理论︰普朗克和黑体辐射
• • 铁匠房里的高温金属加工品。橘黄色的光芒是物体因高温
而发射出的热辐射之中看得见的那一部分。图片中每一样 物品同样以热辐射形式散发著光芒,但亮度不足,且肉眼 看不见较长的波长。远红外线摄影机可捕捉到这些辐射。 热辐射即物体因其自身温度而从物体表面发射出来的电磁 辐射。如果有一个物体经过充分加热以后,会开始发射出 光谱中红色端的光线而变得火红。再进一步加热物体时会 使颜色发生变化,发射出波长较短(频率较高)的光线。 而且这个物体既可以是完美的发射体,同时也可以是完美 的吸收体。当物体处于冰冷状态时,看起来是纯粹的黑色, 此时物体几乎不会发射出可见光,而且还会吸纳落在物体 上的光线。这个理想的热发射体就被视为黑体,而黑体发 出的辐射就称为黑体辐射。
《量子力学》课件
贝尔不等式实验
总结词
验证量子纠缠的非局域性
详细描述
贝尔不等式实验是用来验证量子纠缠特性的重要实验。通过测量纠缠光子的偏 振状态,实验结果违背了贝尔不等式,证明了量子纠缠的非局域性,即两个纠 缠的粒子之间存在着超光速的相互作用。
原子干涉仪实验
总结词
验证原子波函数的存在
详细描述
原子干涉仪实验通过让原子通过双缝,观察到干涉现象,证明了原子的波函数存在。这个实验进一步 证实了量子力学的预言,也加深了我们对微观世界的理解。
量子力学的意义与价值
推动物理学的发展
量子力学是现代物理学的基础之一,对物理学的发展产生了深远 的影响。
促进科技的创新
量子力学的发展催生了一系列高科技产品,如电子显微镜、晶体 管、激光器等。
拓展人类的认知边界
量子力学揭示了微观世界的奥秘,拓展了人类的认知边界。
量子力学对人类世界观的影响
01 颠覆了经典物理学的观念
量子力学在固体物理中的应用
量子力学解释了固体材料的电子 结构和热学性质,为半导体技术 和超导理论的发现和应用提供了
基础。
量子力学揭示了固体材料的磁性 和光学性质,为磁存储器和光电 子器件的发展提供了理论支持。
量子力学还解释了固体材料的相 变和晶体结构,为材料科学和晶
体学的发展提供了理论基础。
量子力学在光学中的应用
复数与复变函数基础
01
复数
复数是实数的扩展,包含实部和虚部,是量子力 学中描述波函数的必备工具。
02
复变函数
复变函数是定义在复数域上的函数,其性质与实 数域上的函数类似,但更为丰富。
泛函分析基础
函数空间
泛函分析是研究函数空间的数学分支,函数空间中的元素称为函数或算子。
量子力学课件完整版(适合初学者)
2
利用
得到
E h , p k , h / 2 , 2 , k 2 / ,
d 2 2 0, 所以,t x(t ) dk m
物质波包的观点夸大了波动性的一面,抹杀 了粒子性的一面,与实际不符。
45
(2)第二种解释:认为粒子的衍射行为是大 量粒子相互作用或疏密分布而产生的行为。 然而,电子衍射实验表明,就衍射效果 而言, 弱电子密度+长时间=强电子密度+短时间 由此表明,对实物粒子而言,波动性体 现在粒子在空间的位置是不确定的,它是以 一定的概率存在于空间的某个位置。
37
参考书目
曾谨言《量子力学》,科学出版社 周世勋《量子力学教程》,高等教育出版 社
38
量子力学 第二章 波函数及薛定谔方程
39
2.1 波函数及其统计解释
40
一、自由粒子的波函数
自由粒子指的是不受外力作用,静止或匀速运动 的质点。因此,其能量E 和动量 p pe 都是常量。 根据德布罗意波粒二象性的假设,自由粒子的频 率和波长分别为
4
1.1 经典物理学的困难
5
19世纪末,物理学界建立了牛顿力 学、电动力学、热力学与统计物理, 统称为经典物理学。其中的两个结论 为 1、能量永远是连续的。 2、电磁波(包括光)是这样产生的: 带电体做加速运动时,会向外辐射电 磁波。
6
经典物理学的成就
牛顿力学-支配天体和力学对象的运动; 杨氏衍射实验-确定了光的波动性; Maxwell方程组的建立-把光和电磁现象建立在 牢固的基础上; 统计力学的建立。
46
3、概率波
粒子的波动性可以用波函数来表示, 其中,振幅 ( x, y, z) | ( x, y, z) | ei ( x, y,z ) 表示波动在空间一点(x,y,z)上的强弱。 | ( x, y, z) |2 应该表示粒子出现在点 所以, (x,y,z)附近的概率大小的一个量。 因此,粒子的波函数又称为概率波。
利用
得到
E h , p k , h / 2 , 2 , k 2 / ,
d 2 2 0, 所以,t x(t ) dk m
物质波包的观点夸大了波动性的一面,抹杀 了粒子性的一面,与实际不符。
45
(2)第二种解释:认为粒子的衍射行为是大 量粒子相互作用或疏密分布而产生的行为。 然而,电子衍射实验表明,就衍射效果 而言, 弱电子密度+长时间=强电子密度+短时间 由此表明,对实物粒子而言,波动性体 现在粒子在空间的位置是不确定的,它是以 一定的概率存在于空间的某个位置。
37
参考书目
曾谨言《量子力学》,科学出版社 周世勋《量子力学教程》,高等教育出版 社
38
量子力学 第二章 波函数及薛定谔方程
39
2.1 波函数及其统计解释
40
一、自由粒子的波函数
自由粒子指的是不受外力作用,静止或匀速运动 的质点。因此,其能量E 和动量 p pe 都是常量。 根据德布罗意波粒二象性的假设,自由粒子的频 率和波长分别为
4
1.1 经典物理学的困难
5
19世纪末,物理学界建立了牛顿力 学、电动力学、热力学与统计物理, 统称为经典物理学。其中的两个结论 为 1、能量永远是连续的。 2、电磁波(包括光)是这样产生的: 带电体做加速运动时,会向外辐射电 磁波。
6
经典物理学的成就
牛顿力学-支配天体和力学对象的运动; 杨氏衍射实验-确定了光的波动性; Maxwell方程组的建立-把光和电磁现象建立在 牢固的基础上; 统计力学的建立。
46
3、概率波
粒子的波动性可以用波函数来表示, 其中,振幅 ( x, y, z) | ( x, y, z) | ei ( x, y,z ) 表示波动在空间一点(x,y,z)上的强弱。 | ( x, y, z) |2 应该表示粒子出现在点 所以, (x,y,z)附近的概率大小的一个量。 因此,粒子的波函数又称为概率波。
量子力学基础通用课件
历史发展
量子力学的起源可以追溯到20世纪初,由普朗克、爱因斯坦、玻尔等科学家的 开创性工作奠定基石。随后,薛定谔、海森堡、狄拉克等科学家进一步完善了 量子力学理论体系。
量子力学的基本概念和原理
基本概念
波函数、量子态、测量、算符等 是量子力学的基本概念,用于描 述微观粒子的状态和性质。
基本原理
叠加原理、测不准原理、量子纠 缠等是量子力学的基本原理,反 映了微观世界的奇特性质和规律 。
应用领域
量子计算和量子信息在密码学、 化学模拟、优化问题、机器学习 等领域具有广泛的应用前景。
05
现代量子力学研究的前沿问题
量子纠缠和量子通信
量子纠缠的研究现状和意义
详细介绍量子纠缠的概念、性质,以及其在量子信息传输、量子 密码学等领域的应用。
基于纠缠态的量子通信协议
如BB84协议、E91协议等,并分析它们的优缺点。
应用总结
量子力学在多个领域有着广泛应用,如原子能级与光谱、半导体器件、超导与磁性材料、量子计算与 量子信息等。通过本课件的学习,学生应能了解这些应用背后的量子力学原理,以及量子力学在解决 实际问题时的优势与局限。
对未来量子力学研究和发展的展望
理论研究展望
随着实验技术的进步,未来量子力学研 究将更加注重高精度、高效率的数值模 拟与解析计算,以解决复杂多体问题、 拓扑物态、量子引力等前沿课题。此外 ,与相对论、宇宙学等其他理论的交叉 研究也将成为热点。
THANKS
感谢观看
对于包含多个电子的原子,需要考虑电子之间的相互作用和自旋等效应。多电子原子的量子力学处理更为复杂, 需要采用近似方法和数值计算等手段进行求解。
04
量子力学的应用和实验验证
量子隧穿效应
量子力学的起源可以追溯到20世纪初,由普朗克、爱因斯坦、玻尔等科学家的 开创性工作奠定基石。随后,薛定谔、海森堡、狄拉克等科学家进一步完善了 量子力学理论体系。
量子力学的基本概念和原理
基本概念
波函数、量子态、测量、算符等 是量子力学的基本概念,用于描 述微观粒子的状态和性质。
基本原理
叠加原理、测不准原理、量子纠 缠等是量子力学的基本原理,反 映了微观世界的奇特性质和规律 。
应用领域
量子计算和量子信息在密码学、 化学模拟、优化问题、机器学习 等领域具有广泛的应用前景。
05
现代量子力学研究的前沿问题
量子纠缠和量子通信
量子纠缠的研究现状和意义
详细介绍量子纠缠的概念、性质,以及其在量子信息传输、量子 密码学等领域的应用。
基于纠缠态的量子通信协议
如BB84协议、E91协议等,并分析它们的优缺点。
应用总结
量子力学在多个领域有着广泛应用,如原子能级与光谱、半导体器件、超导与磁性材料、量子计算与 量子信息等。通过本课件的学习,学生应能了解这些应用背后的量子力学原理,以及量子力学在解决 实际问题时的优势与局限。
对未来量子力学研究和发展的展望
理论研究展望
随着实验技术的进步,未来量子力学研 究将更加注重高精度、高效率的数值模 拟与解析计算,以解决复杂多体问题、 拓扑物态、量子引力等前沿课题。此外 ,与相对论、宇宙学等其他理论的交叉 研究也将成为热点。
THANKS
感谢观看
对于包含多个电子的原子,需要考虑电子之间的相互作用和自旋等效应。多电子原子的量子力学处理更为复杂, 需要采用近似方法和数值计算等手段进行求解。
04
量子力学的应用和实验验证
量子隧穿效应
量子力学初步课件
第8页/共56页
即 上式舍去了n=0和n为负值的情况
(4.2.5) 这个结果表明,粒子在无限高势垒中的能量是量子化的。又由归一化条件
第9页/共56页
(4.2.6) 由上面的计算,可以看到量子力学解题的一些特点。在解定态薛定谔方程的 过程中,根据边界条件自然地得出了能量量子化的特性(4.2.5),En是体系的 能量本征值,相应的波函数ψn是能量本征函数。在一维无限高势垒间粒子运
氢原子中的电子就是在三维库仑势阱中运动, 不过“阱壁”不是直立的,而是按-1/r分布。近来, 人们设计制作了一种具有“量子阱”的半导体器 件,它具有介观(介于宏观与微观)尺寸的势阱, 阱宽约在10nm上下。这种材料具有若干特性,已 用于制造半导体激光器、光电检测器、双稳态器 件等。
第12页/共56页
2, 1
,n 1 , l
Yl,m l,mml,m BPl m (cos )
第40页/共56页
总之,对微观角动量,
L可ˆ2以同L时ˆ z测得确定值。
Lˆ2
Lˆ 的本征值是
,
的本征值是
。 这个结论,不但
与经典力学不同,与玻尔理论也有根本性的z差异,玻尔理论曾给出氢原子
。在量子力学中存在l=0。即L=0的状态,与玻尔概念是相矛盾的。L=0意 味 着 轨 道 将 通 过 原 子 核 。 量 子 力 学 中 l 的 上 限 是 n-1 , 而 玻 尔 理 论 中 , 可等于n。实验结果表明,量子力学结果是正确
E i , p i t
并使经典能量关系式两边作用于波函数,就得到薛定谔方程量子力学 中的力学量,大部分以算符的形式出现
第33页/共56页
动能算符可由动量算符得到。因动能 故有
在势场中,一个粒子的动能与势能函数之和叫哈密顿量,记为H,H=T+V由此
即 上式舍去了n=0和n为负值的情况
(4.2.5) 这个结果表明,粒子在无限高势垒中的能量是量子化的。又由归一化条件
第9页/共56页
(4.2.6) 由上面的计算,可以看到量子力学解题的一些特点。在解定态薛定谔方程的 过程中,根据边界条件自然地得出了能量量子化的特性(4.2.5),En是体系的 能量本征值,相应的波函数ψn是能量本征函数。在一维无限高势垒间粒子运
氢原子中的电子就是在三维库仑势阱中运动, 不过“阱壁”不是直立的,而是按-1/r分布。近来, 人们设计制作了一种具有“量子阱”的半导体器 件,它具有介观(介于宏观与微观)尺寸的势阱, 阱宽约在10nm上下。这种材料具有若干特性,已 用于制造半导体激光器、光电检测器、双稳态器 件等。
第12页/共56页
2, 1
,n 1 , l
Yl,m l,mml,m BPl m (cos )
第40页/共56页
总之,对微观角动量,
L可ˆ2以同L时ˆ z测得确定值。
Lˆ2
Lˆ 的本征值是
,
的本征值是
。 这个结论,不但
与经典力学不同,与玻尔理论也有根本性的z差异,玻尔理论曾给出氢原子
。在量子力学中存在l=0。即L=0的状态,与玻尔概念是相矛盾的。L=0意 味 着 轨 道 将 通 过 原 子 核 。 量 子 力 学 中 l 的 上 限 是 n-1 , 而 玻 尔 理 论 中 , 可等于n。实验结果表明,量子力学结果是正确
E i , p i t
并使经典能量关系式两边作用于波函数,就得到薛定谔方程量子力学 中的力学量,大部分以算符的形式出现
第33页/共56页
动能算符可由动量算符得到。因动能 故有
在势场中,一个粒子的动能与势能函数之和叫哈密顿量,记为H,H=T+V由此
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 7
于是,用电动力学和统计力学导出的公式
E(,
T)
2 c2
2kT(Rayleigh–Jeans)
应改为
E(,
T)
2h3 c2
(eh kT 1)
这就是Planck假设下的辐射本领,它与 实验完全符合。
Page 17
1 8
kT hc
当
(高频区)
E(, T)
2hc2 5
e hc
kT
Wein公式
当kT h(c低频区)
3
这面临着两个问题:
1、信号电磁波所覆盖的区域包括大量的 元件,每个元件的工作状态有随机性,但 器件的响应具有统计性;
2、构成元件的材料的体积属于原子团物 理的范畴,即每个粒子含有有限个原子 (102-109个原子)。这时的统计平均具 有显著的涨落,必须考虑量子效应。
Page 3
4
1.1 经典物理学的困难
5
19世纪末,物理学界建立了牛顿力 学、电动力学、热力学与统计物理, 统称为经典物理学。其中的两个结论 为
1、能量永远是连续的。 2、电磁波(包括光)是这样产生的: 带电体做加速运动时,会向外辐射电 磁波。
Page 5
6
经典物理学的成就
牛顿力学-支配天体和力学对象的运动; 杨氏衍射实验-确定了光的波动性; Maxwell方程组的建立-把光和电磁现象建立在牢固的基础上; 统计力学的建立。
kT(E
eE
kT
0
0
eE
kTdE)
0 eE kTdE
kT
Page 15
1 6
而对于Planck假设的能量分布几率,则为
enh kT
enh
kT
E
nh e
nh
n0
kT
enh
kT
从而 n0
n0
h d
enx
enx
dx n0
n0
h
d
(1 ex )1
(1
ex
1
)
dx
h (eh kT 1)
Page 16
Light beam
metal
electric current
Page 10
1
1 能量量子化的假设
造成以上难题的原因是经典物理学认为能量永远是连续的。
如果能量是量子化的,即原子吸收或发射电磁波,只能以“量子”的方式进 行,那末上述问题都能得到很好的解释。
Page 11
1
2 能量量子化概念对难题的解释
E(, T)
2c 4
kT
Rayleigh–Jeans公式
Page 18
1
9 能量量子化概念对难题的解释
对光电效应的解释 如果电子处于分立能级且入射光的能量也是量子化的,那么只有当光子的 能量(E =hυ)大于电子的能级差,即E =hυ > En-Em时,光电子才会产生。
如果入射光的强度足够强,但频率υ足够小,光电子是无法产生的。
Page 19
2 0
1.2 光的波粒二象性
对光电效应的解释是爱因斯坦于1905年 做出的,他也因此获得诺贝尔奖。其中, 他对光子的能量E是如此假定的
E h
爱因斯坦方程 h 1 mv2 W
2
Page 21
21
2
2 光子的能量与动量
并用υ= c / λ和狭义相对论中的公式 p =E/c推出光子的动量p为 p=h/λ,E=hν.
Page 23
2
4 光的波粒二象性
杨氏干涉实验和惠更斯衍射实验都表明了光的波动性。 光电效应又证实了光子的粒子性。
Page 24
2 5
1.3 微粒的波粒二象性
2
6 1 物质波的概念
法国人De Broglie从光的量子论中得到启发,假设任何物体,无论是静止质量 为零的光子,还是静止质量不为零的实物粒子,都具有粒子波动两重性。其
中的波动,通称为物质波。认为物质波的频率和波长分别为 υ=E/h,λ= h /p
分立的能量 nh显示,即能量模式是不连续
的。
nh n n 0,1,2,
所以,辐射的平均能量可如此计算得:
Page 14
1
5 在E E dE能量范围内,
经典的能量分布几率
eE kTdE 0 eE kTdE (玻尔兹曼几率分布)
所以对于连续分布的辐射平均能量为
E 0 EeE kTdE 0eE kTdE
Page 12
1
3 能量量子化概念对难题的解释
黑体辐射 从能量量子化假设出发,可以推导出同实验观测极为吻
合的黑体辐射公式,即Planck公式
E(
)
c1
ec2 /T
3
1
E( ) c1 e3 c2 /T
E( ) 8kT 2 / c3
Page 13
1 4
普朗克(Planck)大胆假设:无论是黑体辐射 也好,还是固体中原子振动也好,它们都是以
原子寿命 ①原子中的电子只能处于一系列分立的能级之中。即E1, E2, ……. En。 ②当电子从能级En变化到Em时,将伴随着能量的吸收或发射,能量的形式是电磁
波。能量的大小为E =hυ = En-Em ③由此,提出了产生电磁波的量子论观点,即电磁波源于原子中电子能态的跃迁。
从而,电子就不会掉到原子核里,原子的寿命就会很长。
υ-频率, λ-波长, h-普朗克常数
Page 22
2
3 光的波粒二象性
波粒二象性,又称为波动粒子两重性,是指物体,小到光子、电子、原子, 大到子弹、足球、地球,都既有波动性,又有粒子性。
频率为υ的单色光波是由能量为E =hυ 的一个个粒子组成的,这样的粒子被称 为光子,或光量子。
光子的粒子性-光电效应; 光子的波动性-光的衍射和干涉。
1
量子力学
2
为什么要学习量子力学和统计物理学?
1960年代,著名微波电子学家Pirls曾说,量 子力学、统计物理学是高度抽象的科学,不需 要所有的人都懂得这种理论物理科学。
然而,在1990年代,随着高技术科学的发展, 要求我们必须掌握理论物理学,包括量子力学 和统计物理学。例如:微电子器件的集成度越 来越高,组成器件的每一个元件的体积越来越 小。目前,元件的尺寸可以达到nm级。
9
2 原子的稳定性问题-原子塌缩
按照经典理论,电子将掉到原子核里,原子的寿命约为1 纳秒。
3 黑体辐射问题-紫外灾难
按照经典理论,黑体向外辐射电磁波的能量E与频率 的
关系为
E
E(
)
8kT
c3
2υPageFra bibliotek91 0
4.光电效应的解释 光照射到金属材料上,会产生光电子。但产生条件与光的 频率有关,与光的强度无关。
Page 6
7 一些实验事实就与经典理论发生矛盾或 者无法理解。
Page 7
8
20世纪初物理学界遇到的几个难题
1 两朵乌云(W.Thomson)
①电动力学中的“以太”:人们无法通过实 验测出以太本身的运动速度 ②物体的比热:观察到的物体比热总是低 于经典物理学中能量均分定理给出的值。
Page 8