(完整版)2018浙江高职考数学卷

合集下载

2018—2019浙江高职考试数学试题分章复习精品

2018—2019浙江高职考试数学试题分章复习精品


x1
(04 浙江高职考) 22、(本题满分 6 分)若集合 A = { a,b,c } ,试写出集合 A 的所 有子集。
试卷年份 试卷结构
第二章 函数
2002 高职考
题量:选择

填空
,解答
占分:

2003 高职考
题量:选择

填空,解答占分: Nhomakorabea分
2004 高职考
题量:选择

填空
,解答
占分:

知识分布
(02 浙江高职考) 6、函数 y x 2 2x 3( 5 x 0) 的值域是(
A、2
B、 1 2
sin a,则 tan a 等于(

2
C、1
D、 1 3
( 02 浙江高职考) 16、 (1 1 1 23
11 ) cos
3 sin(
9
)

99 100
22
4
( 02 浙江高职考) 24、(6 分)已知 sin a
1 , 求 cosa和 tan a的值 。 3
(02 浙江高职考) 27、(8 分)如右图所示,为了测得建筑物 AB 的高度,在附近 另一建筑物 MN 的顶部与底部分别测得 A 点的仰角为 45°、 60°,又测得 MN=20 米,试求建筑物 AB 的高度。
( 02 浙江高职考) 20、已知 x
0,则 2 x
B、必要非充分条件 D、既非充分又非必要条件
x 3 的最小值是
合 P 1,2,3 、 S 2,4,6 ,则下列命题不正确的是(

。若集
A 、 2 P B、 P S 1,2,3,4,6
C、 P S 2

2018年浙江省高职考试研究联合体第二次联合考试 数学-试卷

2018年浙江省高职考试研究联合体第二次联合考试 数学-试卷
a b
无分 ㊂
D. 4个
A. m >0
B. m =0
C. m <0
D. m 是任意实数
( (
) )
对任意 xɪR, 下列式子恒成立的是 4. A. x2 -2 x+1>0
充分不必要条件 A. 充分必要条件 C.
必要不充分条件 B. 既不充分也不必要条件 D.
x
1ö æ 1(2 ç ÷ +1>0 ) C. D. l o x +1 >0 g 2 è2 ø 已知某企业的产值连续三年增长 , 这 三 年 的 增 长 率 分 别 为 x, 则这三年的年平均增长 5. z, y, ( ) 率为 B. | x-1 |>0 ( y) 1+x) +( 1+ +( 1+ z) D. 3 已知 a, 则下列命题中正确的是 6. b, c 表示三条不同的直线 , γ 表示一个平面 , , , 若 aʊ 若 aʅ 则 aʅ A. b bʊ c 则 aʊ c B. b, bʅ c, c ) ( ) ( ) C. ( x+1 z+1 -1 y+1
1 2 æ aö ( 本题满分 8 分 ) 已知 f( 3 1. x) =ç 0. x- 2 ÷ 的常数项为 6 è x ø
( ) 求常数 a 的值 ; 1
( ) 如果第 3 求k 的值 . 2 k 项和第k+2 项的二项式系数相等 ,
数学试卷
第 3 页( 共 4 页)
( 本题满分 8 分 ) 已知等差数列 { 的前三项分别为 a-1, 其前 n 项和为Sn . 3 2. a 4, 2 a, n} ( ) 设 Sk =2 求 a 和k 的值 ; 1 5 5 0,

2018年普通高等学校招生全国统一考试数学(浙江卷)

2018年普通高等学校招生全国统一考试数学(浙江卷)

绝密★启用前2018年普通高等学校招生全国统一考试数学(浙江卷)本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式:若事件A ,B 互斥,则 柱体的体积公式V =Sh若事件A ,B 相互独立,则 其中S 表示棱柱的底面面积,h 表示棱柱的高锥体的体积公式若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面面积,h 表示棱锥的高球的表面积公式台体的体积公式球的体积公式其中S a ,S b 分别表示台体的上、下底面积13V Sh =24S R =π1()3a b V h S S =343V R =πh 表示台体的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知全集U ={1,2,3,4,5},A ={1,3},则【C 】A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5} 2. 双曲线的焦点坐标是【B 】A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是【C 】A. 2B. 4C. 6D. 84. 复数(i 为虚数单位)的共轭复数是【B 】A. 1+iB. 1−iC. −1+iD. −1−i 5. 函数y =sin2x 的图象可能是【D 】A. B.俯视图正视图C. D.6 .已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的【A 】A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 设0<p <1,随机变量ξ的分布列是则当p 在(0,A.D(ξ)减小B. D(ξ)增大C . D(ξ)先减小后增大D . D(ξ)先增大后减小8. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则【D 】A. θ1≤θ2≤θ3 B . θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ19. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为3π,向量b 满足b 2−4e •b +3=0,则|a −b |的最小值是【A 】A. 13-B.13+C. 2D. 32-10. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则【B 】A. a 1<a 3,a 2<a 4B. a 1>a 3,a 2<a 4C. a 1<a 3,a 2>a 4D. a 1>a 3,a 2>a 4非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年浙江省高职考期末试卷B卷

2018年浙江省高职考期末试卷B卷

浙江省中等职业学校高三第一学期期末数学试卷、单项选择题:(本大题共 20小题,1-12小题每小题2分,13-20小题每小题3分,c , X小x小C. x 34 D.— 3 — 32 3D.43x 2y 5 0同一侧的点是A.( 3,4)B.( 3, 2)C.( 3, 4)D. (0, 3)A.充分不必要条件B.必要不充分条件4.下列不等式(组) 的解集为 (,0)的是2x 2 0A. x 2x 3B. 2 3x 11.已知全集U 1,2,3,4,5,6,集合 A1,3,5,B1,4,则 A C u B命题:岑佳威A. 3,5B. 2,4,6C. 1,2,4,6D. 1,2,3,5,61 12.在—,2 , log 3 22这三个数中,最小的数是1A.— 21 B.22C. log 3 2 1D. 2至和 log 3 23条件p :,条件 q : sinsin,则条件p 是条件q 的共48分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的。

) C.冲要条件D.既不充分也不必要条件xA.1B.2C.3 旋转一弧度到点2B ,则点B 的坐标为A.( -3,1)B.( 3, 1)C.(1, 3)D.( 1, ■ 3)10.已知直线ax y 20与直线(a 2)x y1 0互相垂直,则a A. 2B. 1C.0D. 12A. y x 1B. y sinx(0,—)C.ylog 1 x2D. y 2x8.下列关于向量的说法中正确的是2—r—fc- —h- —fc-A.若a 与b 互为相反向量,则 a bB. AB AC BCC.若四边形ABCD 是平行四边形,则 AB CDD. MNPM --- h —h7•下列函数在其定义域内函数值 y 随自变量x 的值增大而减小的是A 的坐标为C 、3,1),现将点A 绕原点0逆时针15•已知函数f (X 2)22 x,则f (3)6•在平面直角坐标系 xOy 中,与原点位于直线 9.在直角坐标系中, 0是坐标原点,已知点11. 函数f(x) x24x 3 log3(10 x)的定义域是A. ( ,10)B. ,1 3,10C. ,3 10,D. (1,10)512. 已知抛物线C : y2 x的焦点为F,点A(X0,y°)是C上一点,|AF -x°,则沧4A.1B.2C.4D.813.已知等差数列a n 满足a3 7, a5 a7 26,则S8A.60B.70C.80D.9014.已知COS() 虫,且| |,则tan2 2A. ■. 3B. . 3 2 D.-3 32x3,x 015.已知函数f (x) ,则f(f( J)tan x,0 x — 42A. 2B. 1C.1D. 216•已知圆C: x2 y2 4x 0,则圆C与过点P(3,0)的直线l位置关系为A.相交B.相切C.相离D.以上都不正确17•已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为A.0.4B.0.6C.0.818•如图,四棱锥S ABCD的底面为正方形,SD丄底面ABCD ,则下列结论中不正确的是A. AC 丄SBB. AB // 平面SCDC. AB与SC所成的角等于DC与SA所成的角D. SA与平面SBD所成的角等于SC与平面SBD所成的角19. 已知函数f (x) . 3 sin( 2x) 2cos2 1,x R,则f()2A. 1B. 2C.3D. 420. 如图所示,已知点A( 3,0), B(3,0),设动点P的坐标为(x, y),已知PA 1,则P在平面直角坐标系内的运动轨迹为PB 2A.圆的一部分B.椭圆的一部分C.双曲线的一部分二、填空题(本大题共7小题,每小题4分,共28分)21. 已知平行四边形ABCD , O是对角线的交点,点A(3, 4) , C( 5,2),则点0的坐标为22. 已知a (1,2),b (x,4),若b 2a,则x ________________ .23•设0 x 3,则函数f(x) 4x(3 2x)的最大值为 _________________________.24.在数列a n中,a1 2, a n1 2a n, S n 126,则n __________________ .25.若函数f(x) 4sinx acosx的最大值为5,则常数a ____________________ .26•七人并排站成一行,如果江辰与陈小希两人必须不相邻,那么不同的排法种数是______________ 27. 已知圆锥的底面积为,体积为2 ,若球的直径和圆锥的高相等,则球的体积为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)19厅0 228. (本题满分6 分)(?2 ( 2018) C3 lg 25 lg 4 sin?1 329. (本题满分7分)在△ ABC中,tan A , tanB .4 5(1)求角C的大小;(2)若AB的边长为17,求BC边的长.30. (本题满分8分)在数列a n中,31 3,317 67,其通项公式可看做一次函数,求:(1) a n ;(2)2018是否为数列a n中的项,如果是,请求出是第几项.31.(本题满分8分)如图,在平行四边形ABCD中,AB 3, AD 2, AC 4 .求:(1) cos ABC ;(2) 平行四边形ABCD的面积.32.(本题满分9分)已知(3・.x)2的二项展开式中各项系数之和为64,求:(1)n的值;(2)展开式中的常数项33. (本题满分9分)已知双曲线x2 y2 a2与抛物线y2 16的准线交于代B两点,且AB 4J3 求:(1)双曲线的标准方程;(2)双曲线的实轴长与离心率34. (本题满分9分)如图,一边靠墙,另外三边用长为30米的篱笆围成一个苗圃园•已知墙长为18米,设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边的长为y米,求y与x之间的函数关系式.(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大?最大面积是多少?35(本题满分9分)如图所示:四棱锥P ABCD中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD是面积为2 . 3的菱形,ADC为菱形的锐角,M为PM的中点,CD ;AB D的度数;PDM的体积。

2018年度6月浙江数学专业考试卷及其内容规范标准答案

2018年度6月浙江数学专业考试卷及其内容规范标准答案

2018年6月浙江省数学学考试卷及答案一 选择题1. 已知集合{1,2}A =,{2,3}B =,则A B =I ( ) A. {1} B.{2} C.{1,2} D.{1,2,3}答案:B 由集合{1,2}A =,集合{2,3}B =,得{2}A B =I . 2. 函数2log (1)y x =+的定义域是( )A. (1,)-+∞B.[1,)-+∞C.(0,)+∞D.[0,)+∞ 答案:A∵2log (1)y x =+,∴10x +>,1x >-,∴函数2log (1)y x =+的定义域是(1,)-+∞. 3. 设R α∈,则sin()2πα-=( )A. sin αB.sin α-C.cos αD.cos α- 答案:C 根据诱导公式可以得出sin()cos 2παα-=.4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( ) A. 2倍 B.4倍 C.6倍 D.8倍 答案:D设球原来的半径为r ,则扩大后的半径为2r ,球原来的体积为343r π,球后来的体积为334(2)3233r r ππ=,球后来的体积与球原来的体积之比为33323843r r ππ=.5. 双曲线221169x y -=的焦点坐标是( ) A. (5,0)-,(5,0) B.(0,5)-,(0,5)C.(0),D.(0,, 答案:A因为4a =,3b =,所以5c =,所以焦点坐标为(5,0)-,(5,0).6. 已知向量(,1)a x =r ,(2,3)b =-r,若//a b r r ,则实数x 的值是( )A. 23-B.23C.32-D.32答案:AQ (,1)a x =r ,(2,3)b =-r ,利用//a b r r 的坐标运算公式得到320x --=,所以解得23x =-.7. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( )A. 1B.2C.3D.4 答案:B作出可行域,如图:当z x y =+经过点(1,1)A 时,有ax 2m z x y =+=.8. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =o ,30C =o ,1c =,则b =( ) A.2B.答案:C由正弦定理sin sin b cB C=可得sin 1sin 4521sin sin 302c B b C ⋅︒====︒9. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( )A. 充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 答案:B因为“直线和平面垂直,垂直与平面上所有直线”,但是“直线垂直于平面上一条直线不能判断垂直于整个平面”所以是必要不充分条件。

高职高考2018数学真题

高职高考2018数学真题

高职高考2018数学真题
2018年高职高考数学真题共分为选择题和填空题两部分,分别涵盖基础知识和解题技巧。

首先是选择题部分:
1. 选择题(共25小题,每小题4分,共100分)
1) 设集合A={x|x^2-3x-4=0},B={x|x≠2},则A∩B=()
A. {-1, 4}
B. {-4, 1}
C. {1, 4}
D. {-1, 2}
2) 函数y=2^x的图像关于x轴的对称中心为()
A. (-1, 0)
B. (0, 0)
C. (0, -1)
D. (1, 0)
3) 若3sinα=4cosα,α为第二象限角,则sinα=()
A. -4/5
B. 3/5
C. -3/5
D. 4/5
依次类推,共25道选择题的题干与选项。

接下来是填空题部分:
2. 填空题(共5小题,每小题6分,共30分)
1) 若log2(x-3)+log2(x+1)=1,则x=().
2) 已知函数y=2cos2x的一个最小正周期为().
3) 若函数y=2sin(3x+30°)在区间[0, 180°]上的最大值为y0,则y0=().
填空题要求准确计算出答案,并写在横线上。

通过此次高职高考数学真题的练习,不仅可以巩固基础知识,还可以熟悉题型,提高解题效率。

希望考生们认真对待每一道题目,发挥自己的所长,取得优异的成绩。

祝愿各位考生在考试中取得好成绩,实现自己的高考梦想。

2018年普通高等学校招生全国统一考试(浙江卷) 数学试题及详解

2018年普通高等学校招生全国统一考试(浙江卷) 数学试题及详解

2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式: 若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=台体的体积公式121()3V S S h =+ 其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð( ) A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5}1.答案:C解答:由题意知U C A ={2,4,5}.2.双曲线221 3=x y -的焦点坐标是( )A .(,0),0) B .(−2,0),(2,0) C .(0,),(0D .(0,−2),(0,2)2.答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 3.答案:C解答:该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=. 4.复数21i- (i 为虚数单位)的共轭复数是( ) A .1+i B .1−i C .−1+i D .−1−i 4.答案:B 解答:22(1)11(1)(1)i z i i i i +===+--+,∴1z i =-.5.函数y =||2x sin2x 的图象可能是( )A .B .C .D .5.答案:D解答:令||()2sin 2x y f x x ==,||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,所以()f x 为奇函数①;当(0,)x p Î时,||20x >,sin 2x 可正可负,所以()f x 可正可负②.由①②可知,选D.6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.答案:A解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件.7.设0<p <1,随机变量ξ的分布列是( )俯视图正视图222则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小7.答案:D 解答:111()0122222p p E p x -=???+, 22211113()()()()222222p p D p p p x -=?+?+?22111()422p p p =-++=--+,所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D.8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1 8.答案:D 解答:作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角, 根据最小角定理,OM 与直线SE 所成的线线角13θθ≥, 所以231θθθ≤≤.9.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是( ) A1 B C .2 D .29.答案:A解答:设(1,0)e =,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+=22(2)1x y ⇒-+=如图所示,a OA =,b OB =,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min11a bCD -=-=.(其中CD OA ⊥.)10.已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则( ) A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <> D .1324,a a a a >>10.答案:B解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

2018年普通高等学校招生全国统一考试 数学 (浙江卷)及详解详析

2018年普通高等学校招生全国统一考试 数学 (浙江卷)及详解详析

1 / 7一、选择题(本大题共10小题,每小题4分,共40分) 1. 已知全集U ={1,2,3,4,5},A ={1,3},则C U A =( )A . ∅B . {1,3}C . {2,4,5}D . {1,2,3,4,5}2. 双曲线−y 2=1的焦点坐标是( ) A . (−,0),(,0)B . (−2,0),(2,0)C . (0,−),(0,) D . (0,−2),(0,2)3. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A . 2B . 4C . 6D. 8俯视图正视图4. 复数(i 为虚数单位)的共轭复数是( )A . 1+iB . 1−iC . −1+iD . −1−i5. 函数y =sin 2x 的图象可能是( ) DCBA6. 已知平面α,直线m ,n满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件7. 设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时( ) A . D (ξ)减小 B . D (ξ)增大C .D (ξ)先减小后增大D . D (ξ)先增大后减小8. 已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A . θ1≤θ2≤θ3B . θ3≤θ2≤θ1C . θ1≤θ3≤θ2D . θ2≤θ3≤θ19. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为,向量b 满足b 2−4e •b +3=0,则|a −b |的最小值是( ) A .−1B .+1C . 2D. 2−10. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A . a 1<a 3,a 2<a 4B . a 1>a 3,a 2<a 4C . a 1<a 3,a 2>a 4D . a 1>a 3,a 2>a 4二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11. 我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为x ,y ,z ,则,当z =81时,x =______________________,y =_________________12. 若x ,y 满足约束条件,则z =x +3y 的最小值是____________,最大值是__________13. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =,b =2,A =60°,则sinB =___________,c =___________________14. 二项式(+)8的展开式的常数项是_________________________15. 已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是____________________,若函数f (x )恰有2个零点,则λ的取值范围是________________________16. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________个没有重复数字的四位数(用数字作答)17. 已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m =____________________时,点B 横坐标的绝对值最大三、解答题(本大题共5小题,共74分)此卷只装订不密封班级 姓名 准考证号 考场号 座位号18. (14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (−,−)(1)求sin (α+π)的值(2) 若角β满足sin (α+β)=,求c osβ的值19. (15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2 (1) 证明:AB 1⊥平面A 1B 1C 1 (2) 求直线AC 1与平面ABB 1所成的角的正弦值C 1B 1A 1CA20. (15分)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n (1) 求q 的值 (2) 求数列{b n }的通项公式21. (15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B满足PA ,PB 的中点均在C 上 (1) 设AB 中点为M ,证明:PM 垂直于y 轴(2)若P 是半椭圆x 2+=1(x <0)上的动点,求△PAB 面积的取值范围22. (15分)已知函数f (x )=−lnx(1) 若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln 2(2)若a ≤3−4ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点1 / 72018年普通高等学校招生全国统一考试 (浙江卷)数 学 答 案1.答案: C 解答:由题意知U C A ={2,4,5}. 2.答案: B 解答:∵2314c =+=,∴双曲线2213xy -=的焦点坐标是(2,0)-,(2,0). 3.答案:C 解答:该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=. 4.答案:B 解答:22(1)11(1)(1)i z i i i i +===+--+,∴1z i =-.5.答案:D 解答:令||()2sin 2x y f x x ==,||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,所以()f x 为奇函数①;当(0,)x p Î时,||20x >,sin 2x 可正可负,所以()f x 可正可负②.由①②可知,选D.6.答案:A 解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件.7.答案:D 解答:111()0122222p p E p x -=???+, 22211113()()()()222222p pD p p px -=?+?+? 22111()422p p p =-++=--+, 所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D. 8.答案:D 解答:作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角, 根据最小角定理,OM 与直线SE 所成的线线角13θθ≥, 所以231θθθ≤≤.9.答案:A 解答:设(1,0)e =,(,)b x y =,则222430430b e b x y x -⋅+=⇒+-+=22(2)1x y ⇒-+=如图所示,a OA =,b OB =,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min11a bCD -=-=.(其中CD OA ⊥.)10.答案:B 解答:∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤,212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<.∴13a a >,24a a <. 11.答案:8 11 解答:当81z =时,有811005327100x y x y ì++=ïïíï++=ïî,解得811x y ì=ïïíï=ïî.12.答案:2- 8 解答:不等式组所表示的平面区域如图所示,当42x y ì=ïïíï=-ïî时,3z x y =+取最小值,最小值为2-;当22x y ì=ïïíï=ïî时,3z x y =+取最大值,最大值为8.13.答案:73解答:由正弦定理sin sin a bA B =2sin 2B=,所以sin B =. 由余弦定理,222cos 2b c a A bc +-=,得214724c c+-=,所以3c =.14.答案:7 解答:通项1813181()()2rrr r T C x x --+=843381()2r r r C x -=. 84033r -=,∴2r =.∴常数项为2281187()7242C ⨯⋅=⨯=. 15.答案:(1,4) (1,3](4,)⋃+∞ 解答:∵2λ=,∴24,2()43,2x x f x x x x -≥⎧=⎨-+<⎩.当2x ≥时,40x -<得24x ≤<.当2x <时,2430x x -+<,解得12x <<. 综上不等式的解集为14x <<.当243y x x =-+有2个零点时,4λ>.当243y x x =-+有1个零点时,4y x =-有1个零点,13λ<≤. ∴13λ<≤或4λ>.16.答案:1260 解答:224121353435337205401260C C A C C C A +=+=.17.答案:5 解答:3 / 7方法一:设11(,)A x y ,22(,)B x y , 当直线斜率不存在时,9m =,20x =.当直线斜率存在时,设AB 为1y kx =+.联立2241x y my kx ⎧+=⎪⎨⎪=+⎩得22(41)8440k x kx m +++-=,20410mk m ∆>⇒+->,122841kx x k +=-+,1224441mx x k -=+. ∵2AP PB =,∴122x x =-,解得121641k x k -=+,22841kx k =+. ∴228821414k x k k k==≤++(当且仅当12k =时取“=”). 122216884141k k x x k k -=⋅=-++,122442241mx x m k -==-+,得5m =,∴当5m =时,点B 横坐标最大.方法二:设11(,)A x y ,22(,)B x y ,则11(,1)AP x y =--,22(,1)PB x y =-,∵2AP PB =,∴1212232x x y y =-⎧⎨=-⎩,∴22222222(2)(32)(1)4(2)4x y m x y m ⎧-+-=⎪⎪⎨⎪+=⎪⎩,由(1)(2)得234m y +=.(3)将(3)代入(2),得222(5)164m x --+=,∴2x =,∴当5m =时,2x 取最大值. 18.答案: (1)45; (2)5665-或1665. 解答:(1)445sin()sin 15απα-+=-=-=.(2)∵()βαβα=+-,∴cos cos[()]βαβα=+-,∵5sin()13αβ+=,∴12cos()13αβ+=±, 又∵4sin 5α=-,且α终边在第三象限,∴3cos 5α=-.①当12cos()13αβ+=时,cos cos()cos sin()sin βαβααβα=+++12354362056()()1351356565--=⨯-+⨯-==-. ②当12cos()13αβ+=-时,cos cos()cos sin()sin βαβααβα=+++1235416()()()13513565=-⨯-+⨯-=. 19.答案: (1)略; (2)13解答:(1)∵12AB B B ==,且1B B ⊥平面ABC , ∴1B B AB ⊥,∴1AB =.同理,1AC ===过点1C 作1B B 的垂线段交1B B 于点G ,则12C G BC ==且11B G =,∴11B C =.在11AB C ∆中,2221111AB B C AC +=,∴111AB B C ⊥,①过点1B 作1A A 的垂线段交1A A 于点H . 则12B H AB ==,12A H =,∴11A B =.在11A B A ∆中,2221111AA AB A B =+,∴111AB A B ⊥,②综合①②,∵11111A B B C B ⋂=,11A B ⊂平面111A B C ,11B C ⊂平面111A B C ,∴1AB ⊥平面111A B C .(2)过点B 作AB 的垂线段交AC 于点I ,以B 为原点,以AB 所在直线为x 轴,以BI 所在直线为y 轴,以1B B 所在直线为z 轴,建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)A -,1(0,0,2)B,1(1C , 设平面1ABB 的一个法向量(,,)n a b c =,则1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩,令1b =,则(0,1,0)n =,又∵1AC =,1cos ,13n AC <>==. 由图形可知,直线1AC 与平面1ABB 所成角为锐角,设1AC 与平面1ABB 夹角为α.∴sin α=20.答案:(1)2q =; (2)243152n n n b -+=-. 解答:(1)由题可得34528a a a ++=,4352(2)a a a +=+,联立两式可得48a =. 所以34518(1)28a a a q q ++=++=,可得2q =(另一根112<,舍去). (2)由题可得2n ≥时,221()2[2(1)(1)]41n n n b b a n n n n n +-=+--+-=-,当1n =时,211()213b b a -=+=也满足上式,所以1()41n n n b b a n +-=-,n N +∈,而由(1)可得41822n n n a --=⋅=,所以1141412n n n n n n b b a +----==, 所以121321()()()n n n b b b b b b b b --=-+-++-01223711452222n n --=++++, 错位相减得1243142n n n b b -+-=-, 所以243152n n n b-+=-.21.答案: (1)略; (2). 解答:(1)设00(,)P x y ,211(,)4y A y ,222(,)4y B y ,则PA 中点为20011(,)282x y y y ++,由AP 中点在抛物线上,可得220101()4()228y y x y +=+, 化简得2210100280y y y x y -+-=,显然21y y ≠, 且对2y 也有2220200280y y y x y -+-=,所以12,y y 是二次方程22000280y y y x y -+-=的两不等实根,5 / 7所以1202y y y +=,1202M P y y y y y +===,即PM 垂直于x 轴. (2)121()(||||)2M P M M S x x y y y y =--+-0121()||2M x x y y =--,由(1)可得1202y y y +=,212008y y x y =-, 2220000012(2)4(8)8(4)0()y x y y x y y ∆=--=->≠,此时00(,)P x y 在半椭圆221(0)4y x x +=<上, ∴2220000008(4)8[4(1)4]32(1)y x x x x x ∆=-=--=--,∵010x -≤<,∴0∆>,∴12||y y -===, 22222200121212000042(8)6(44)()2||38888M P y x y x y y y y y y x x x x x x ---++--=-=-=-=- 2003(1)x x =--,所以23012001()||2M S x x y y x x =--=--=,t =,所以3S =∈, 即PAB ∆的面积的取值范围是. 22.答案: (1)略; (2)略. 解答: (1)1()f x x '=-,不妨设12()()f x f x t ''==,即12,x x1t x-=的两根,2102xtx -+=的根,所以1404t ∆=->,得1016t <<12t =1t=,12122111()()ln ln 2ln 22f x f x x x t t t t+=-=-=+,令1()2ln 2g t t t =+,222141()022t g t t t t -'=-=<,∴()g t 在1(0,)16上单调递减. 所以1()()88ln 216g t g >=-,即12()()88ln 2f x f x +>-. (2)设()()()ln h x kx a f x kx x a =+-=-+,则当x 充分小时()0h x <,充分大时()0h x >,所以()h x 至少有一个零点,则2111())164h x k k x '=+=-+-, ①116k ≥,则()0h x '≥,()h x 递增,()h x 有唯一零点, ②1016k <<,则令211())0416h x k '=+-=,得()h x 有两个极值点1212,()x x x x <,14>,∴1016x <<. 可知()h x 在1(0,)x 递增,12(,)x x 递减,2(,)x +∞递增,∴1111111()ln )ln h x kx x a x x ax =+=-+11ln x a =-++,又1111()h x x '==, ∴1()h x 在(0,16)上单调递增,∴1()(16)ln163ln16334ln 20h x h a <=-+≤-+-=, ∴()h x 有唯一零点,综上可知,0k >时,y kx a =+与()y f x =有唯一公共点.。

浙江高职考数学试卷精选文档

浙江高职考数学试卷精选文档

浙江高职考数学试卷精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2018年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页.满分150分,考试时间120分钟.考生事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分) (在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 已知集合{}4,2,1=A ,{}7,5,3,1=B ,则=⋃B A A. {1} B. {1,3,5,7} C. {1,2,3,4,5,7} D.{1,2,4} 2. 函数()x x x f lg 1+-=的定义域为A. ]1,(-∞B. ]1,0(C. ]1,0[D.)1,0(3. 下列函数在区间()∞+,0上单调递减的是 A. x e y = B. 2x y = C. xy 1=D.x y ln = 4. 在等差数列{}n a 中,5321=++a a a ,11432=++a a a ,则公差d 为 A. 6 B. 3 C. 1 D. 25. 过原点且与直线012=--y x 垂直的直线方程为 A. 2x+y=0 B. 2x-y=0 C. x+2y=0 D. x-2y=06. 双曲线191622=-y x 的焦点坐标为 A. ()07,± B. ()70±, C. ()05,± D. ()50±, 7. 函数⎪⎭⎫ ⎝⎛-=3sin 2πx y 的图像是8. 点()1,1-P 关于原点的对称点的坐标为 A. (-1,-1) B. (1,-1) C. (-1,1) D. (1,1)9. 抛物线y x 212=的焦点到其准线的距离是A. 81B. 41C. 21D. 110. 方程()()10332222=+-+++y x y x 所表示的曲线为A. 圆B. 椭圆C. 双曲线D. 抛物线 11. 不等式231≥-x 的解集是A. ]31,(--∞B. ),1[]31,(+∞--∞C. ]1,31[- D. ),1[+∞12. 命题0:=αp 是命题0sin :=αq 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 ++OEOC OA 13. 如图所示,点O 是正六边形ABCDEF 的中心,则A. B. C. D. 014. 用0,1,2,3四个数字可组成没有重复数字的三位数共有 A. 64个 B. 48个 C. 24个 D. 18个 15. 若m =︒2018cos ,则()=︒-38cosA. 21m -B. 21m --C. mD. -m 16. 函数x x x y 2cos 23cos sin +=的最小值和最小正周期分别为 A. 1,π B. -1,π C. 1,2π D. -1,2π 17. 下列命题正确的是A.垂直于同一平面的两个平面垂直B.垂直于同一平面的两条直线垂直C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 18. 若()()0tan sin <+⋅-θππθ,则θ所在象限为A. 第二或第三象限B. 第一或第四象限C.第三或第四象限D.第一或第二象限 19. 二项式()()*,21N n n x n∈≥-展开式中含2x 项的系数为A. 2n CB. 2n C -C. 1n CD. 1n C -20. 袋中装有5个红球,3个白球,一次摸出两个球,恰好都是白球的概率是A. 143B. 32C. 283D. 563二、填空题(本大题共7小题,每小题4分,共28分) 21. 过点)2,3(-A 和)2,1(-B 的直线的斜率为22. 设函数()⎪⎩⎪⎨⎧≤+>=0,120,sin x x x x xx f ,则()[]=πf f23. 双曲线18222=-y a x 的离心率3=e ,则实半轴长=a 24. 已知2572cos =α,⎪⎭⎫⎝⎛∈20πα,,则=αtan 25. 在等比数列{}n a 中,0>n a ,431=⋅a a ,则=22log a26. 如图所示,相传这个图形表达了古希腊数学家阿基米德最引为自豪的发现:圆柱内切一个球,球的直径与圆柱的高相等,则圆柱的体积与球的体积之比等于圆柱的全面积与球的表面积之比,这个比值为27. 函数()x x x f --+⨯=31229的最小值为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)28. 计算:()2213122365sin 1log 3tan 821-+⎪⎭⎫ ⎝⎛+-+⨯⎪⎭⎫ ⎝⎛-ππ29. 在ABC ∆中,︒=∠45A ,22=b ,6=c ,求: (1)三角形的面积ABC S ∆;(2)判断ABC ∆是锐角、直角还是钝角三角形。

(完整word)2018年浙江高职考数学试卷

(完整word)2018年浙江高职考数学试卷

2018年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页.满分150分,考试时间120分钟.考生事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本题卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 已知集合{}4,2,1=A ,{}7,5,3,1=B ,则=⋃B A A. {1} B. {1,3,5,7} C. {1,2,3,4,5,7} D.{1,2,4} 2. 函数()x x x f lg 1+-=的定义域为A. ]1,(-∞B. ]1,0(C. ]1,0[D.)1,0(3. 下列函数在区间()∞+,0上单调递减的是 A. x e y = B. 2x y = C. xy 1=D.x y ln = 4. 在等差数列{}n a 中,5321=++a a a ,11432=++a a a ,则公差d 为 A. 6 B. 3 C. 1 D. 2 5. 过原点且与直线012=--y x 垂直的直线方程为A. 2x+y=0B. 2x -y=0C. x+2y=0D. x -2y=06. 双曲线191622=-y x 的焦点坐标为 A. ()07,± B. ()70±, C. ()05,± D. ()50±, 7. 函数⎪⎭⎫ ⎝⎛-=3sin 2πx y 的图像是8. 点()1,1-P 关于原点的对称点的坐标为A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)9. 抛物线y x 212=的焦点到其准线的距离是 A. 81 B. 41 C. 21D. 110. 方程()()10332222=+-+++y x y x 所表示的曲线为A. 圆B. 椭圆C. 双曲线D. 抛物线 11. 不等式231≥-x 的解集是A. ]31,(--∞B. ),1[]31,(+∞--∞C. ]1,31[- D. ),1[+∞12. 命题0:=αp 是命题0sin :=αq 的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件 13. 如图所示,点O 是正六边形ABCDEF 的中心,则=++OE OC OA A. AE B. EA C. 0 D. 0 14. 用0,1,2,3四个数字可组成没有重复数字的三位数共有 A. 64个 B. 48个 C. 24个 D. 18个 15. 若m =︒2018cos ,则()=︒-38cosA. 21m -B. 21m --C. mD. -m 16. 函数x x x y 2cos 23cos sin +=的最小值和最小正周期分别为 A. 1,π B. -1,π C. 1,2π D. -1,2π 17. 下列命题正确的是A.垂直于同一平面的两个平面垂直B.垂直于同一平面的两条直线垂直C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 18. 若()()0tan sin <+⋅-θππθ,则θ所在象限为A. 第二或第三象限B. 第一或第四象限C.第三或第四象限D.第一或第二象限 19. 二项式()()*,21N n n x n∈≥-展开式中含2x 项的系数为A. 2n CB. 2n C -C. 1n CD. 1n C -20. 袋中装有5个红球,3个白球,一次摸出两个球,恰好都是白球的概率是A. 143B. 32C. 283D. 563二、填空题(本大题共7小题,每小题4分,共28分)21. 过点)2,3(-A 和)2,1(-B 的直线的斜率为22. 设函数()⎪⎩⎪⎨⎧≤+>=0,120,sin x x x x x x f ,则()[]=πf f23. 双曲线18222=-y a x 的离心率3=e ,则实半轴长=a 24. 已知2572cos =α,⎪⎭⎫⎝⎛∈20πα,,则=αtan 25. 在等比数列{}n a 中,0>n a ,431=⋅a a ,则=22log a26. 如图所示,相传这个图形表达了古希腊数学家阿基米德最引为自豪的发现:圆柱内切一个球,球的直径与圆柱的高相等,则圆柱的体积与球的体积之比等于圆柱的全面积与球的表面积之比,这个比值为27. 函数()x x x f --+⨯=31229的最小值为三、解答题(本大题共9小题,共74分)(解答题应写出文字说明及演算步骤)28. 计算:()2213122365sin 1log 3tan 821-+⎪⎭⎫ ⎝⎛+-+⨯⎪⎭⎫ ⎝⎛-ππ29. 在ABC ∆中,︒=∠45A ,22=b ,6=c ,求: (1)三角形的面积ABC S ∆;(2)判断ABC ∆是锐角、直角还是钝角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2017年浙江省单独考试招生文化考试
数学试题卷
姓名: 准考证号:
本试题卷共三大题,共4页。

满分150分,考试时间120分钟
考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

一、 单项选择题:(本大题共20小题,1-12小题每小题2分,13-20小题每小题3分,共48分)
(在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分)。

1. 已知集合{}{}
-1,0,1,3,A B x x x N A B ==<∈=I ,则,则A B U =
A.{}1012-,,,
B.{}1123-,,,
C.{}012,,
D.{}01,
2.2
3456
已知数列:,-
,,-,,...按此规律第7项为34567
A.
7
8
B.
89 C.7
-8
D.89

3.∈若xR,下列不等式一定成立的是
A.
>
5
2
x
x
B.-
>-52x x C.>20x
D.+>
++2
2(1)1x x x
4、角︒2017是
A,第一象限角 B,第二象限角 C,第三象限角 D,第四象限角
5.=+1
直线的倾斜角为2
y 若函数,则
A.30︒
B.60︒
C.120︒
D.150︒
6.++=+=12直线L 210与直线L :30的位置关系是y
A.平行
B.垂直
C.重合
D.非垂直相交
7.在圆:2
2
+y -6x-7=0x 的内部的点是
(0(7,0)(-2,0)(2,1)
8.函数=
+f ()1
x x 的定义域为
A.-+∞[2,)
B.-+∞(2,)
C.---+∞U [2,1)(1,)
D.--∞U (2,1)(-1,+)
9.命题p:a=1,命题q:
-=2
(a 1)0,p 是q 的 A.充分且必要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分
也不必要条件
10.在∆中,向量表达式正确的是ABC 是
A.u u r u u u r u u r +=AB BC CA
B.AB CA BC -=u u u r u u u r u u u r
C.-=u u r u u u r u u r
AB AC CB
D.
0AB BC CA ++=u u u r u u u r u u u r
11.如图,在数轴上表示的区间是下列那个不等式的解集
A.2
60x x --> B.2
60x x --≥
C.1522
x -
≥ D.
3
02
x x -≥+ 12. 22
已知椭圆方程:
4x +3y =12,下列说法错误的是
A .焦点为(0,-1),(0,1)
B. =
1
离心率2
e
C.长轴在x 轴上
D.短轴长为
13.121212下列函数中,满足“在其定义域上任取,,若,则()()
?的函数为x x x x f x f x <>
A.3
y x
=
B.32
x
y =-
C.1
()2
x
y -= D.ln y x =
14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数小于5的概率为
A.
16
B.
18 C.1
9
D.
5
18
15.已知圆锥底面半径为4,侧面积为60,则母线长为
A.
152
B.15
C.
152π
D.
15
π
16.函数y=sin2x 的图像如何平移得到函数sin(2)3
y x π
=+
的图像
A.向左平移
6
π
个单位 B.向右平移
6
π
个单位
C.向左平移
3
π
个单位 D.向右平移
3
π
个单位 17.设动点M 到1(13,0)F -的距离减去它到2(13,0)F 的距离等于4,则动点M 的轨迹方程为
A.221(2)49-=≤-x y x B .221(2)49-=≥x y x C.22
1(2)49
-=≥y x x D.
22
1(3)94
-=≥x y x 18.已知函数()3sin 3cos ,则f(
)=12
f x x x π
=+
A.6
B. 23
C.22
D. 26
19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有 A. 480种 B. 240种 C. 180种 D.144种 20.如图,在正方体ABCD-A ’B ’C ’D ’中,下列结论错误的是 A.'平面'A C BDC ⊥
B. 平面AB ’D ’//平面BDC ’
C. ''BC AB ⊥
D.平面''平面'AB D A AC ⊥
二、填空题(本大题共8小题,每小题3分,共24分)
21.点(2,
-1)关于点(1,3)为中心的对称点坐标是A B ___________. 22.3 x 0
设(),求[(1)]3 2 x>0
x f x f f x ⎧≤=-⎨
-⎩___________. 23.已知A(1,1)、B (3,2)、C(5,3),若=,则为AB CA λλu u r u u r
___________.
24.等比数列{}n a 满足1234,a a a ++=45612a a a ++=,则其前9项的和9S = ___________. 25. 1
已知sin(),则cos 23
παα-=
=__________. 26.若1
1,则函数()21
x f x x x <-=--
+的最小值为___________. 27.设数列{}n a 的前n 项和为114,若1,2(),则n n n s a a s n N s +==∈=___________. 三、解答题(本大题共9小题,共74分) (解答题应写出文字说明及演算步骤)
28.(本题满分6分)计算:1
232cos (23)27lg 0.01(4)3
π+-+++-
29.(本题满分7分)等差数列{}n a 中,2413,9a a == (1)求1及公差a d ;(4分)
(2)当n 为多少时,前n 项和n s 开始为负?(3分)
30.(本题满分8分)如下是杨辉三角图,由于印刷不清 在“W ”处的数字很难识别。

(1)第六行两个“15”中间的方框内数字是多少(2分) (2)若23
2
(
)n x x
-展开式中最大的二项式系数是35,
从图中可以看出n 等于多少?该展开式中的常数项等于多少?(6分)
31.(本题满分8分)如图平行四边形ABCD 中,AB=3,AD=2,AC=4。

(1)求cos ABC ∠;(4分)
(2)求平行四边形ABCD 的面积。

(4分)
32.(本题满分9分)在35
中,
sin ,cos .513
ABC A B ∆== (1)求sinB,并判断A 是锐角还是钝角;(5分)
(2)求cosC (4分)
33.(本题满分9分)如图平面,2,3,120PC ABC AC BC PC BCA ︒⊥===∠=
(1)求二面角的大小P AB C --;(5分)
(2)求椎体的体积P ABC -。

(4分)
34.(本题满分9分) 当前,“共享单车”在某些城市发展较快,如果某公司要在某城市发展“共享单车”出租自行车业务,设一辆自行车(即单车)按每小时x 元(0.8x ≥)出租,所有自行车每天租出的时间合计为y(y>0)小时,经市场调查及试运行,得到如下数据(见表): x 0.9 1 1.1 1.2 1.3 y
1100
1000
900
800
700
(1)观察以上数据,在我们所学的一次函数、反比例函数、二次函数、指数函数中回答:y 是X 的什么函数?并求出此函数解析式;(5分)
(2)若不考虑其它因素,x 为多少时,公司每天收入最大?(4分)
35.(本题满分9分)过点(1,3)-的直线L 被圆O :2
242200截得弦长为8x
y x y +---=
(1)求该圆的圆心和半径;(3分) (2)求直线L 的方程
36.(本题满分9分)1992年巴塞罗那奥运会开幕式中,运动运安东尼奥.雷波洛以射箭方式点燃主会场的圣火成为历史经典,如图所示,如果发射点A 离主火炬塔水平距离AC=60cm ,塔高BC=20m,已知箭的运动轨迹是抛物线,且离火炬塔水平距离EC=20m 处达到最高点O ,
(1)若以O 为原点,水平方向为x 轴,1m 为单位长度建立直角坐标系,求该抛物线的标准方程;(5分) (2)求射箭方向AD (即与抛物线相切于A 点的切线方向)与水平方向夹角θ的正切值。

(4分)。

相关文档
最新文档