八年级数学月考试卷

合集下载

2024年山东省青岛市崂山实验学校八年级(上)月考数学试卷(12月份)(五四学制)+答案解析

2024年山东省青岛市崂山实验学校八年级(上)月考数学试卷(12月份)(五四学制)+答案解析

2023-2024学年山东省青岛市崂山实验学校八年级(上)月考数学试卷(12月份)(五四学制)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在实数、0、、、、、中,无理数的个数是()A.2个B.3个C.4个D.5个2.点M 在y 轴的左侧,到x 轴、y 轴的距离分别是3和5,点M 坐标为()A. B.C.或D.或3.两个一次函数与为常数,且,它们在同一个坐标系中的图象可能是()A. B.C. D.4.已知是关于x 、y 的二元一次方程组的解,则的立方根是()A.1B.C.D.5.点和都在直线上,则与的关系是() A.B.C. D.6.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.B.C.D.7.某滑雪俱乐部12名会员被分成甲、乙两组,他们的身高情况如图所示,甲组身高的平均数为,则下列结论正确的是()A.,B.,C.,D.,8.《九章算术》中记载了一个问题,大意是:甲、乙两人各带了若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A. B. C. D.9.如图,两条直线的交点坐标可以看作两个二元一次方程的公共解,其中一个方程是,则另一个方程是()A.B.C.D.10.如图,在平面直角坐标系中,点,,……都在x轴上,点,,……都在直线上,,,,……都是等腰直角三角形,且,则点的坐标是()A.B.C.D.二、填空题:本题共5小题,每小题4分,共20分。

11.已知,,,若,则整数n的值为______.12.已知一平面直角坐标系内有点,点,点,若在该坐标系内存在一点D,使轴,且,点D的坐标为______.13.某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚得______元.14.如图.点A的坐标为,点B在直线上运动,当线段AB最短时,点B的坐标为______.15.A,B两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离与时间的关系如图所示,则甲出发______小时后与乙相遇.三、解答题:本题共7小题,共70分。

陕西省咸阳市秦都区咸阳彩虹中学2024-2025学年八年级上学期第一次月考数学试卷

陕西省咸阳市秦都区咸阳彩虹中学2024-2025学年八年级上学期第一次月考数学试卷

陕西省咸阳市秦都区咸阳彩虹中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.下列各数中,绝对值最小的数是( )A .5-B .12C .1-D 2.若6、8、a 为勾股数,则a 的值为( )A.B .10 C .12 D .3.下列各二次根式中,为最简二次根式的是( )A B C D 4.下列运算正确的是( )A 2=±B 5=C .(23=-D 5=±5.如图,数轴上A ,B 6.8,则在点A 和点B 之间表示整数的点共有( )A .7个B .6个C .5个D .4个 6.如图,在Rt ABC V 中,906ACB AB ∠=︒=,,若以AC 边和BC 边向外作等腰直角三角形AFC 和等腰直角三角形BEC .若BEC V 的面积为1S ,AFC V 的面积为2S ,则12S S +=( )A .4B .9C .18D .367.如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度为cm h ,则h 的取值范围是( )A .12cm 19cm h ≤≤B .12cm 17cm h ≤≤C .11cm 12cm h ≤≤D .5cm 12cm h ≤≤8.在证明勾股定理时,甲、乙两位同学分别设计了如下方案:如图,用四个全等的直角三角形拼成,其中四边形ABDE 和四边形CF 均是正方形,通过用两种方法表示正方形ABDE 的面积来进行证明.如图是两个全等的直角三角板ABC 和直角三角板DEF ,顶点F 在BC 边上,顶点C ,D 重合,通过用两种方法表示四边形ACBE 的面积来进行证明.对于甲、乙分别设计的两种方案,下列判断正确的是( )A .甲、乙均对B .甲对、乙不对C .甲不对,乙对D .甲、乙均不对二、填空题9.在下列实数中1-,2π,0 3.1415-227,)01.其中是无理数的有个. 10a 的取值范围是.11.如图,在四边形ABCD 中,连接AC ,DE AC ⊥于E ,15AB =,9BC DE ==,54DAC S =△,则ACB ∠的度数等于︒.12.如图,有一圆柱形油罐,底面周长为24m ,高为10m .从A 处环绕油罐建梯子,梯子的顶端点B 正好在点A 的正上方,梯子最短需要m .13.对角线互相垂直的四边形叫做“垂美”四边形,如图,“垂美”四边形ABCD ,对角线AC 、BD 交于点O .若3AD =,5BC =,22AB CD +=.三、解答题14.求下列各式中的x :(1)21431x -=;(2)()24181x +=15.一支铅笔斜放在圆柱体的笔筒中,如图所示,笔筒的内部底面直径是6cm ,内壁高8cm .若这支铅笔在笔筒外面部分长度是5cm ,求这支铅笔的长度是多少cm ?1617.计算:2.18.已知31a +的算术平方根是2,23a b -+的立方根是3-,(1)求a ,b 的值;(2)求8b a -的平方根.19.已知a ,b ,c 满足(a 2|c -=0.(1)求a ,b ,c 的值;(2)试判断以a ,b ,c 为边长能否构成直角三角形,并说明理由.20.如图,在ABC V 中,17AB AC ==,8BD =,求ABC V 的角平线AD 的长.21.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,ef 的算术平方根是8,求12ab +5c d ++e 2 22.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.23.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .此时BE DE =,若4AB =,8AD =,求BDE V 的面积.24.某村有如图所示的一笔直公路AB ,水源C 处与公路之间有小片沼泽地,为方便公路上的人用水,拟从C 处铺设水管到公路上.已知200AB =米,160AC =米,120BC =米.(1)求ACB ∠的大小;(2)求铺设水管的最小长度.25.如图是放在地面上的一个长方体盒子,其中9cm AB =,6cm BC =,5cm BF =,点M 在棱AB 上,且3cm AM =,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的外表面从点M 爬行到点N ,它需要爬行的最短路程是多少?(盒子底面蚂蚁无法到达)26.已知:如图所示,四边形ABCD 中,AD BC ∥,O 是CD 上一点,且AO 平分BAD ∠,BO 平分ABC ∠,(1)求证:AO BO⊥;(2)若3AO=,5AB=,求四边形ABCD的面积.。

2023-2024学年安徽省亳州市八年级(上)第三次月考数学试卷+答案解析

2023-2024学年安徽省亳州市八年级(上)第三次月考数学试卷+答案解析

2023-2024学年安徽省亳州市八年级(上)第三次月考数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在平面直角坐标系中,点到x轴的距离为()A.4B.3C.D.2.下列图形中,具有稳定性的是()A. B. C. D.3.一次函数的值随x的增大而减小;则点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,≌,点B,E,C,F共线,已知,,则的度数为()A.B.C.D.5.如图,在平面直角坐标系,线段AB的两个端点坐标依次为,,将线段AB向右平移5个单位,再向上平移1个单位,得到对应线段CD,则四边形ABDC的面积为()A. B. C.15 D.186.一次函数中,当时,则函数y的取值范围为()A. B. C. D.7.下列条件能确定的形状与大小的是()A.,,B.,C.,,D.,,8.如图是一个不规则的“五角星”,已知,,,,则的度数为()A.B.C.D.9.同一平面直角坐标系中,一次函数与为常数的图象可能是()A. B. C. D.10.在中,,点D是BC边的中点,过点B作于点E,点F是DA延长线上一点,已知,下列结论不一定正确的是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

11.把命题“全等三角形对应边的高相等”改写成“如果那么”的形式是______.12.在平面直角坐标系中,已知点和,且轴,则a的值为______.13.某数学兴趣小组利用全等三角形的知识测试某小河的宽度,如图,点A,B,C是小河两边的三点,在河边AB下方选择一点,使得,,若测得米,的面积为30平方米,则点C到AB的距离为______米.14.已知一次函数为常数且若该一次函数图象经过点,则______;当时,函数y有最大值11,则a的值为______.三、解答题:本题共9小题,共90分。

解答应写出文字说明,证明过程或演算步骤。

陕西省西安市铁一中学2023-2024学年八年级上学期第一次月考数学试卷(含解析)

陕西省西安市铁一中学2023-2024学年八年级上学期第一次月考数学试卷(含解析)

2023-2024学年陕西省西安市铁一中学八年级(上)第一次月考数学试卷一、选择题(共10小题)1.在实数﹣、、、中,是无理数的是( )A.B.C.D.解析:解:,=2,是整数,属于有理数;是分数,属于有理数;故在实数﹣、、、中,是无理数的是.故选:D.2.如图,分别以直角三角形的三边为直径向三角形外作三个半圆,图中的字母是它们的面积其中S2=6π,S3=10π,则S1为( )A.8πB.4πC.16πD.4解析:解:∵S1=AC2,S2=BC2,S3=AB2,又BC2+AC2=AB2,∴S1=S2﹣S3=10π﹣6π=4π.故选:B.3.若△ABC中,AB=c,AC=b,BC=a,下列不能判定△ABC为直角三角形的是( )A.a=32,b=42,c=52B.a:b:c=5:12:13C.(c+b)(c﹣b)=a2D.∠A+∠B=∠C解析:解:a=32,b=42,c=52,则a2+b2≠c2,故选项A符合题意;当a:b:c=5:12:13时,设a=5x,b=12x,c=13x,则a2+b2=(5x)2+(12x)2=c2,故选项B不符合题意;由(c+b)(c﹣b)=a2整理得:a2+b2=c2,故选项C不符合题意;由∠A+∠B=∠C,可知∠C=90°,故选项D不符合题意;故选:A.4.勾股定理被誉为“几何明珠”.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图所示,把一个边长分别为3,4,5的三角形和三个正方形放置在大长方形ABCD中,则该长方形中空白部分的面积为( )A.54B.60C.100D.110解析:解:如图延长EG交BC于M,其他字母标注如图示:根据题意,EF=3,EG=4,FG=5,在Rt△EFG和Rt△MGQ中,∵∠FEG=∠GMQ=90°,∠EFG=∠MGQ,FG=QG,∴Rt△EFG≌Rt△MGQ(AAS),∴GM=EF=3,MQ=EG=4∴AB=3+4+3=10,同理可证△GMQ≌△QCH,∴CQ=GM=3,∴BC=4+4+3=11.空白部分的面积=长方形面积﹣三个正方形的面积和=11×10﹣(32+42+52)=60.故选:B.5.一个正数a的平方根是2x﹣3与5﹣x,则a的值是( )A.﹣2B.7C.﹣7D.49解析:解:∵2x﹣3与5﹣x是正数a的平方根,∴2x﹣3+5﹣x=0.解得x=﹣2.∴2x﹣3=﹣7,5﹣x=7.∵(±7)2=49.∴a的值为49.故选:D.6.下列说法:①实数和数轴上的点是一一对应的;②实数分为正实数和负实数;③立方根等于它本身的数是±1和0;④无理数都是无限小数;⑤平方根等于本身的数是1和0.正确的个数是( )A.1B.2C.3D.4解析:解:①实数和数轴上的点是一一对应的,故说法正确;②实数分为正实数、负实数和零,故说法错误;③立方根等于它本身的数有﹣1,0和1,故说法正确;④无理数是开方开不尽的数,即无理数是无限不循环小数,也是无限小数,故说法正确;⑤算术平方根等于本身的数是1和0,故说法错误;故选:C.7.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )A.5B.25C.10+5D.35解答】解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.8.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是( )A.B.C.D.解析:解:根据图形可得:AB=AC==,BC==,∠BAC=90°,设△ABC中BC的高是x,则AC•AB=BC•x,×=•x,x=.故选:A.9.已知实数a满足|2022﹣a|+=a,则a﹣20222的值为( )A.2022B.2023C.20222D.20232解析:解:由题意得:a﹣2023≥0,解得:a≥2023,则a﹣2022+=a,∴=2022,∴a﹣2023=20222,∴a﹣20222=2023,故选:B.10.如图,在△ABC中,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.AC=17,AD=15,BC=28,则AE的长等于( )A.5B.20C.D.解析:解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵AD=15,AC=17,∴DC===8,∵BC=28,∴BD=28﹣8=20,由勾股定理得:AB==25,过点E作EG⊥AB于G,∵BF平分∠ABC,AD⊥BC,∴EG=ED,在Rt△BDE和Rt△BGE中,∵,∴Rt△BDE≌Rt△BGE(HL),∴BG=BD=20,∴AG=25﹣20=5,设AE=x,则ED=15﹣x,∴EG=15﹣x,Rt△AGE中,x2=52+(15﹣x)2,x=,∴AE=.故选:D.二、填空题(共6小题)11.81的算术平方根的平方根是 ±3 .解析:解:81的算术平方根的平方根是±3,故答案为:±3.12.比较大小: < .(填“>”,“<”或“=”)解析:解:﹣==∵,∴4,∴,∴﹣<0,∴<.故答案为:<.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是 32或42 .解析:解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.14.已知实数a、b在数轴上的对应点如图所示,化简:|a﹣b|= a .解析:解:由数轴可知,b<0<a,|b|>|a|,∴a﹣b>0,∴|a﹣b|=a+a﹣b﹣(a﹣b)=a,故答案为:a.15.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=6米,AB=5米,该木块的较长边与AD平行,横截面是边长为2米的正方形,一只蚂蚁从点A爬过木块到达C处需要走的最短路程是 3 米.解析:解:由题意可知,将木块展开,相当于是AB﹣2+3个正方形的宽,∴长为5﹣2+3×2=9米;宽为6米.于是最短路径为:=3米.故答案为:3.16.如图,等边△ABC,边长是8.点M、N分别是边AB、BC上的动点,且BM=BN,点P是边AC上的动点,连接PM、PN.若PM+PN=4,则线段PC的长为 4 .解析:解:如图,过点P分别作PD⊥AB于点D,PE⊥BC于点E,AG⊥BC于点G,连接BP,∵△ABC是等边三角形,∴AB=AC=BC=8,∠ABG=60°,∴∠BAG=30°,∴BG=AB=4,∴AG=BG=4,∴S△ABC=BC•AG=8×4=16,∵S△ABC=S△ABP+S△BCP=AB•PD=BC•PE,∴8(PD+PE)=16,∴PD+PE=4,∵PM≥PD,PN≥PE,∴PM+PN≥PD+PE=4,∵PM+PN=4,∴PM+PN=4=PD+PE,∴此时M,D重合,N、E重合,即BD=BE,在Rt△BPD和Rt△BPE中,BP=BP,BD=BE,∴Rt△BPD≌Rt△BPE(HL),∴∠DBP=∠CBP=30°,∵AB=BC=AC=8,∴PC=BC=4,故答案为:4.三、解答题17.化简:(1);(2);(3);(4).解析:解:(1)原式=2﹣3+5=4;(2)原式=﹣+2=4﹣+2=4+;(3)原式=2+﹣﹣=2+﹣﹣=+;(4)原式=4+4+3﹣(9﹣2)+4﹣2=4+2.18.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来,(1)如图1,点A表示的数是 ;(2)如图2,直线l垂直数轴于原点在数轴上,请用尺规作出表示1﹣的点(不写作法,保留作图痕迹).解析:解:(1)如图:∵OA=OB==,∴点A表示的数是,故答案为:;(2)如图所示:点P即为所求.19.求下列各式中x的值:(1)25x2﹣64=0;(2)343(x+3)3+27=0.解析:解:(1)∵25x2﹣64=0∴25x2=64∴x2=,解得,x1=,x2=﹣;(2)∵343(x+3)3+27=0∴343(x+3)3=﹣27∴(x+3)3=∴x+3=﹣,解得,x=﹣3.20.(1)在如图中画出边长为、、的三角形.(2)该三角形的面积为 .解析:解:(1)如图,△ABC即为所求.(2)△ABC的面积为=.故答案为:.21.已知5a+2的立方根是3,b+1是9的平方根,c是的整数部分,求a+b+c的值.解析:解:由已知得:5a+2=27,b+1=±3,c=4,解得:a=5,b=2或b=﹣4,c=4,当b=2时,a+b+c=5+2+4=11;当b=﹣4时,a+b+c=5+(﹣4)+4=5;综上所述,a+b+c等于5或11.22.我们学校有一块四边形空地,如图所示,现计划在这块空地上种植草皮,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.若每平方米草皮需要200元,则共需要投入多少钱?解析:解:连接AC,在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC==25(米).在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=625=AC2.∴△ADC是直角三角形,且∠ADC=90°.∴S四边形ABCD=S△ABC+S△ADC=×15×20+×7×24=234(平方米).∴四边形空地ABCD的面积为234平方米.∴200×234=46800(元).答:学校共需投入46800元.23.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?解析:解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.24.在解决问题“已知a=,求3a2﹣6a﹣1的值”时,小明是这样分析与解答的:∵a=+1,∴a﹣1=,∴(a﹣1)2=2,a2﹣2a+1=2,∴a2﹣2a=1,∴3a2﹣6a=3,3a2﹣6a﹣1=2.请你根据小明的分析过程,解决如下问题:(1)化简:.(2)若a=,求3a2﹣18a+1的值.解析:解:(1)===3+;(2)∵a====3﹣2,∴a﹣3=﹣2,∴(a﹣3)2=8,即a2﹣6a+9=8,∴a2﹣6a=﹣1,∴3a2﹣18a=﹣3,则3a2﹣18a+1=﹣3+1=﹣2.25.如图,长方形纸片ABCD,AB=6,BC=8,点E、F分别是边AB、BC上的点,将△BEF沿着EF翻折得到△B′EF.(1)如图1,点B'落在边AD上,若AE=2,则AB'= 2 ,FB'= 4 ;(2)如图2,若BE=2,点F是BC边中点,连接B'D、FD,求△B'DF的面积;(3)如图3,点F是边BC上一动点,过点F作EF⊥DF交AB于点E,将△BEF沿着EF翻折得到△B'EF,连接DB',当△DB'F是以DF为腰的等腰三角形时,请直接写出CF的长.解析:解:(1)∵AE=2,AB=6,∴BE=4,∵将△BEF沿着EF翻折得到△B′EF,∴BE=B'E=4,BF=B'F,∴AB'===2,如图1,过点B'作BH⊥BC于H,∴四边形ABHB'是矩形,∴BA=B'H=6,AB'=BH=2,∴HF=BF﹣2,∵B'F2=B'H2+HF2=36+(B'F﹣2)2,∴B'F=4,故答案为:2,4;(2)如图2,连接BB',交EF于N,连接B'C,过点B'作B'M⊥于M,∵点F是BC边中点,∴BF=CF=4,∵将△BEF沿着EF翻折得到△B′EF,∴BF=B'F=BC,BN=B'N,BB'⊥EF,∵BE=2,BF=4,∴EF===2,∵S△BEF=×BE•BF=×EF•BN,∴2×4=2BN,∴BN=,∴FN==,BB'=,∴B'M==,∴MF==,∴△B'DF的面积=×(+6)×(4+)﹣×4×6﹣××=13.6;(3)若DF=B'F时,则BF=DF=B'F,∵DF2=DC2+CF2,∴(8﹣CF)2=36+CF2,∴CF=,若DF=B'D时,如图3,过点D作DQ⊥B'F于Q,∴B'Q=QF,∵EF⊥DF,∴∠EFB'+∠DFB'=90°=∠BFE+∠DFC,∴∠DFC=∠DFB',又∵∠DQF=∠C=90°,DF=DF,∴△DFC≌△DFQ(AAS),∴CF=QF=BF,∵BC=BF+CF,∴8=2CF+CF,∴CF=,综上所述:CF的长为或.。

河北省唐山市路北区2024-2025学年上学期八年级数学第二次月考试卷(无答案)

河北省唐山市路北区2024-2025学年上学期八年级数学第二次月考试卷(无答案)

2024-2025第一学期八年级数学第二次月考一、选择题(本题共10小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.已知,,则的值是( )A .2B .−2C .8D .−83.下列多项式中,不能用完全平方公式分解因式的是( )A .B .C .D . 4.若、、是的三条边,且,则一定是( )A .直角三角形B .三条边都不相等的三角形C .等腰三角形D .等边三角形5.若能分解成两个一次因式的积,且为整数,那么不可能是( )A .10B .17C .15D .86.如图1,在中,的平分线CD 交AB 于点D ,,若,则线段CE 的长度是( )A .4B .8C .12D .167.如图2,在中,以点为圆心,的长为半径作圆弧交于点,再分别以点和点为圆心,大于的长为半径作圆弧,两弧分别交于点和点,连接交于点.若,,则的周长为( ).A .B .C .D .8.把一张长方形纸片沿对角线折叠,使折叠后的图形如图3所示.若,则为( )A .B .C .D .9.如图4,三条公路将三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三个村庄的距离相等,那么这个集贸市场应建的位置是( )2xy =-4x y +=22x y xy +2224x xy y ++214x x -+221x x -+269x x ++a b c ABC V ()22a b c a b -=-ABC V 216x kx ++k k ABC V ACB ∠DE BC ∥8DE =ABC V A AC BC D B D 12B D M N MN AB E 9AB =7AC =ADE V 2220181635BAC ∠=︒CBD ∠35︒20︒30︒25︒,,A B CA .三条高线的交点B .三条中线的交点C 三条角平分线的交点D .三边垂直平分线的交点10.将两个等边和按如图5方式放置在等边三角形内.若求四边形和三角形的周长差,则只需知道( )A .线段的长B .线段的长C .线段的长D .线段的长图 1 图 2 图 3 图 4 图 5二、填空题(本题共10小题,每小题3分,共30分)11.等腰三角形一个角为,它的另外两个角为12.有下列命题:①线段垂直平分线上任一点到线段两端的距离相等;②线段上任一点到垂直平分线两端的距离相等;③经过线段中点的直线只有一条;④点在线段外且,过点作直线,则是线段的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.其中正确的是 (填序号).13.在中,,,的对边分别是a ,b ,c ,且满足,则是 三角形.14.在平面直角坐标系中,点与点关于轴对称,则代数式的值为 .15.因式分解:16.若,则的值为 .17.在中,,,,则 .18.如图,在中,,垂直平分,,则的度数是.AGF V DEF V ABC ABEF DGF AD EF FH DG 80︒P AB PA PB =P MN MN AB ABC V A ∠B ∠C ∠22()||0a b b c -+-=ABC V ()2,A n ()1,1B m +x m n -4116a -=2220a a --=3282022a a a +-+ABC V 90C ∠=︒=60B ∠︒2AB =BC =ABC V AB AC =DE AB 48ABD ∠=︒DBC ∠19.如图,在中,,,,,分别是,,上的点,且,,则的度数为 .20.如图,等边的边长为20,D 是中点,点E 、F 分别位于边上,若,则 .月考数学知识质量检测答题卡班级:___________ 姓名:___________ 得分:___________一、选择题题号12345678910答案二、填空题11.__________12.__________13.____________ 14.____________15._____________16.__________ 17.__________18.___________ 19.___________ 20._____________三、解答题(本题共4小题,共40分。

2024-2025学年江西省南昌市红谷滩区八年级(上)第一次月考数学试卷(无答案)

2024-2025学年江西省南昌市红谷滩区八年级(上)第一次月考数学试卷(无答案)

江西省2025届八年级第一次阶段适应性评估数学上册11.1~12.1说明:共有六个大题,23个小题,满分120分,作答时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分.1.下列长度的三条线段不能组成三角形的是( )A .2,3,4B .3,5,8C .6,8,10D .5,5,92.如图,将△ABC 沿直线AB 翻折,点C 与点D 重合,点E 在AB 上,则全等三角形有( )A .1组B .2组C .3组D .4组3.如图,人字梯中间一般会设计一根“拉杆”,以增加使用梯子时的安全性,其中蕴含的数学依据是( )A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .三角形具有稳定性4.王大爷要将一块如图所示的三角形土地平均分配给两个儿子,则图中他所作的线段AD 应该是△ABC 的( )A .角平分线B .高C .中线D .以上都不是5.如图,在△ABC 中,AD ,CE 是三角形的高,若,,,则线段CE 的长为( )5AB =6BC =4AD =A.B .4C .5D .66.如图,在四边形OAPE 中,点D ,B 分别在边OA ,OE 上,△APD ≌△BPE ,下列结论不一定正确的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)7.在△ABC 中,,,则的度数为________.8.“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框可抽象为正六边形(如图2),则该正六边形的内角和为________.图1 图29.若三角形三个内角的比为,则这个三角形是________三角形.10.如图,在△ABC 中,,,CD 是边AB 上的高,AE 是的平分线,则的度数是________.11.如图,,点D ,E 分别在边AB ,AC 上,若,,则________.245PB PA =OB PD =BPA DPE ∠=∠180OBP A ∠+∠=︒45B ∠=︒60C ∠=︒A ∠1:2:330BCD ∠=︒80ACB ∠=︒CAB ∠AEB ∠ABE ACD △△≌3AD =5AC =BD =12.有一张三角形纸片ABC ,其中,,,过三角形纸片的某个顶点将△ABC 剪成两个三角形,其中有一个为直角三角形,则剪完后得到的两个三角形的所有内角中,最大角的度数为________.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)在△ABC 中,三角形各内角的度数如图所示,求的度数.(2)已知一个多边形的内角和是它的外角和的4倍,求该多边形的边数.14.已知一个三角形的两条边长分别为4cm ,8cm .设第三条边长为x cm .(1)求x 的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.15.现有一块如图所示的模板.为了加工成某种特定的形状,需要AB ,CD 的延长线的夹角为().由于交点M 不在模板上,不便测量,工人师傅测得,,,请通过计算判断该模板是否符合要求.16.如图,在△ABC 中,AD 为BC 边上的高,CE 平分交AD 于点E ,若,.100A ∠=︒60B ∠=︒20C ∠=︒B ∠80︒80M ∠=︒122A ∠=︒156C ∠=︒90E F ∠=∠=︒ACD ∠:3:2BAC CAD ∠∠=35DCE ∠=︒(1)求的度数;(2)求的度数.17.如图,在的网格中,每个小正方形的边长均为1,小正方形的每一个顶点称为格点.A ,B ,C 均在格点上,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).图1 图2(1)在图1中,过点C 作△ABC 的中线.(2)在图2中,在边BC 上找到点E ,使.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,已知,点B ,F ,C ,E 在同一条直线上.(1)若,,求线段BF 的长.(2)请判断AC 与DF 的位置关系,并说明理由.19.追本溯源我们知道,三角形三个内角的和等于,利用该定理我们可以得到推论:三角形的外角等于与它不相邻的两个内角的和.推论证明(1)已知:如图1,是△ABC 的一个外角.求证:.CAD ∠B ∠65⨯2ABE ACE S S =△△ABC DEF △△≌11BE =3CF =180︒ACD ∠ACD A B ∠=∠+∠图1知识应用(2)如图2,在△ABC 中,,点D 在边BC 上,交AC 于点F .若,求的度数.图220.定义:若三角形的两个内角与满足,则称该三角形为“准互余三角形”,与为“准互余角”.(1)下列各组给出了三角形的三个内角,其中能构成“准互余三角形”的是________(填序号).①,,;②,,;③,,.(2)若△ABC 为“准互余三角形”,,和是“准互余角”,求的度数.(3)如图,在Rt △ABC 中,,若AD 平分,求证:△ABD 是“准互余三角形”.五、解答题(本大题共2小题,每小题9分,共18分)21.问题情境:在探索多边形的内角与外角关系的活动中,同学们经历了观察、猜想、实验、计算、推理、验证等过程,提出了以下问题,请解答.(1)若六边形的一个内角的度数是.①与它相邻的外角的度数为________;②其他五个内角的和为________.(2)若n 边形的一个外角为,与它不相邻的个内角的和为,求,与n 之间满足的等量关系,并说明理由.22.【模型理解】(1)如图1,AB 和CD 交于点O ,求证:.50B ∠=︒DE AB ∥195∠=︒C ∠αβ90αβ-=︒αβ50︒60︒70︒20︒50︒110︒30︒30︒120︒100A ∠=︒A ∠B ∠C ∠90C ∠=︒BAC ∠50︒α()1n -βαβA C B D ∠+∠=∠+∠图1【模型应用】(2)如图2,AE ,CE 分别平分,,求证:.图2六、解答题(本大题共12分)23.特例感知(1)如图1,BP 是的平分线,CP 是△ABC 外角的角平分线.图1①若,则________;②判断与的数量关系,并说明理由.类比迁移(2)如图2,是的外角,的平分线与的平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点(n 为正整数).设,则________.图2拓展应用BAD ∠BCD ∠2B D E ∠+∠=∠ABC ∠50A ∠=︒P ∠=P ∠A ∠0A CD ∠0A BC △0A BC ∠0A CD ∠1A 1A BC ∠1A CD ∠2A 1n A BC -∠1n A CD -∠n A 0A α∠=n A ∠=(3)如图3,在△ABC 中,是△ABC 的外角,的三等分线与的三等分线交于点P .若,,请直接写出的度数.(用含、的式子表示)图3ACD ∠B ∠ACD ∠A α∠=()B βαβ∠=>P ∠αβ。

2023-2024学年山东省青岛市西海岸新区八年级(上)月考数学试卷(12月份)+答案解析

2023-2024学年山东省青岛市西海岸新区八年级(上)月考数学试卷(12月份)+答案解析

2023-2024学年山东省青岛市西海岸新区八年级(上)月考数学试卷(12月份)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.青岛火车站是一座百年老站,是青岛市的标志性建筑之一.下列能准确表示青岛火车站地理位置的是()A.山东省青岛市B.青岛市市南区泰安路2号C.栈桥风景区的西北方向D.胶州湾隧道口大约2千米处2.在“传唱红色经典,弘扬爱国精神”比赛中,九位评委给某选手打出9个原始分.如果规定:去掉一个最高分和一个最低分,余下7个有效分的平均值作为这位选手的最后得分,则9个原始分与7个有效分这两组分数相比较,一定不会发生改变的是()A.方差B.极差C.中位数D.平均数3.已知一次函数和一次函数的自变量x与因变量,的部分对应数值如表所示,则关于x,y的二元一次方程组的解为()x…012……0123……13…A. B. C. D.4.如果点和都在直线上,则与的大小关系是()A. B. C. D.不确定5.正比例函数的图象如图所示,则图象大致是()A.B.C.D.6.如图是一个“数值转换机”的示意图,当输入81时,输出的值是()A. B.3 C. D.97.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.加权平均数8.已知A、B两地是一条直路,甲从A地到B地,乙从B地到A地,两人同时出发,乙先到达目的地,两人之间的距离与运动时间的函数关系大致如图所示,下列说法错误的是()A.两人出发2h后相遇B.甲的速度为C.乙比甲提前到达目的地D.乙到达目的地时两人相距120km二、填空题:本题共8小题,每小题3分,共24分。

9.的算术平方根是______,的倒数是______,______.10.某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如下表所示单位:分,如果根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比例计算两人的总成绩,得分高者被录用,那么______将被录用.教学能力科研能力组织能力甲818586乙92807411.如图所示,正方形ABCD的边长为2,,则数轴上点P所表示的数是______.12.两个两位数的差是18,在较大的两位数的右边接着写上较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.若这两个四位数的和是6666,这两个两位数分别是多少?设较大的两位数为x,较小的两位数为y,根据题意列出的方程组为______.13.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘,点E在CD上,,一位滑行爱好者从A点到E点,则他滑行的最短距离是______边缘部分的厚度可以忽略不计,取14.如图,在平面直角坐标系中,点是直线上第一象限的点,点A的坐标是,O是坐标原点,的面积为S,则S关于x的函数关系式是______.15.如图,在大长方形ABCD中,放入六个相同的小长方形,则阴影部分的面积为______.16.如图,在平面直角坐标系中,,,,…都是等边三角形,其边长依次为2,4,6,…,其中点的坐标为,点的坐标为,点的坐标为,点的坐标为,…,按此规律排下去,则点的坐标为______.三、解答题:本题共8小题,共72分。

2024-2025学年湖北省襄阳四中八年级(上)月考数学试卷(9月份)(含答案)

2024-2025学年湖北省襄阳四中八年级(上)月考数学试卷(9月份)(含答案)

2024-2025学年湖北省襄阳四中八年级(上)月考数学试卷(9月份)一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图所示,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是( )A. 5米B. 15米C. 10米D. 20米2.不是利用三角形稳定性的是( )A. 自行车的三角形车架B. 三角形房架C. 照相机的三脚架D. 学校的栅栏门3.如图,在△ABC中,BC边上的高为( )A. BFB. CFC. BDD. AE4.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°−∠B,④∠A=∠B=12∠C,⑤∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有( )A. 2个B. 3个C. 4个D. 5个5.如图,在△ABC中,∠A=60度,点D,E分别在AB,AC上,则∠1+∠2的大小为多少度( )A. 140B. 190C. 320D. 2406.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A. γ=2α+βB. γ=α+2βC. γ=α+βD. γ=180°−α−β7.如图,BE、CF分别是∠ABC、∠ACB的角平分线,∠A=50°,那么∠BDF的度数为( )A. 80°B. 65°C. 100°D. 115°8.正多边形的一个外角不可能是( )A. 50°B. 40°C. 30°D. 20°9.如果一个多边形的每个内角都是144°,则它的边数为( )A. 8B. 9C. 10D. 1110.如图,在△ABC中,点E是BC的中点,AB=7,AC=10,△ACE的周长是25,则△ABE的周长是( )A. 18B. 22C. 28D. 3211.如图,△ACE≌△DBF,AD=8,BC=2,则AC=( )A. 2B. 8C. 5D. 312.如图,已知∠ABC=∠BAD,再添加一个条件,仍不能判定△ABC≌△BAD的是( )A. ∠ABD=∠BACB. ∠C=∠DC. AD=BCD. AC=BD二、填空题:本题共6小题,每小题3分,共18分。

八年级上册第一次月考数学试卷

八年级上册第一次月考数学试卷

八年级上册第一次月考数学试卷一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 3,4,8.B. 5,6,11.C. 1,2,3.D. 5,6,10.2. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()A. 14.B. 15.C. 16.D. 17.3. 三角形的一个外角小于与它相邻的内角,则这个三角形是()A. 直角三角形。

B. 锐角三角形。

C. 钝角三角形。

D. 无法确定。

4. 等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为()B. 8cm.C. 3cm或8cm。

D. 以上答案均不对。

5. 如图,在△ABC中,∠A = 50°,∠C = 70°,则外角∠ABD的度数是()A. 110°.B. 120°.C. 130°.D. 140°.6. 正多边形的一个内角是135°,则这个正多边形的边数是()A. 6.B. 7.C. 8.D. 9.7. 下列图形中具有稳定性的是()A. 正方形。

B. 长方形。

C. 直角三角形。

D. 平行四边形。

8. 若一个多边形的内角和是1080°,则这个多边形的边数是()B. 7.C. 8.D. 9.9. 在△ABC中,∠A=∠B = 2∠C,则∠C等于()A. 36°.B. 45°.C. 90°.D. 180°.10. 如图,已知AD是△ABC的中线,CE是△ACD的中线,若△ACE的面积是1,则△ABC的面积是()A. 2.B. 3.C. 4.D. 5.二、填空题(每题3分,共18分)11. 三角形的三个内角之比为1:3:5,则最大内角的度数为______。

12. 若等腰三角形的顶角为80°,则它的底角为______。

13. 一个多边形的每一个外角都等于36°,则这个多边形的边数是______。

人教版2024—2025学年秋季八年级上册数学第三次月考模拟试卷

人教版2024—2025学年秋季八年级上册数学第三次月考模拟试卷

人教版2024—2025学年秋季八年级上册数学第三次月考模拟试卷考试范围:第十一章到第十四章考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟第I卷一.选择题(每题只有一个正确选项,每小题3分,满分30分)1.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,7cm,11cmC.5cm,5cm,5cm D.5cm,13cm,6cm3.如果(x+y﹣3)2+|x﹣y+6|=0,则x2﹣y2的值为()A.9B.﹣9C.18D.﹣184.若a•aᵐ•a2ᵐ+1=a14,则m的值为()A.1B.2C.3D.45.下列计算正确的是()A.a2•a5=a10B.a5+a2=a7C.(a5)2=a7D.a5÷a2=a3 6.已知a=244,b=333,c=411,则有()A.a<b<c B.c<b<a C.c<a<b D.a<c<b7.若x2+2(m﹣3)x+16是完全平方式,则m的值为()A.3B.﹣5C.7D.7或﹣18.如图,AC与BD相交于点O,∠1=∠2,若用“SAS”说明△ABC≌△BAD,则还需添加的一个条件是()A.AD=BC B.∠C=∠D C.AO=BO D.AC=BD9.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.△ABC三条中线的交点处B.△ABC三条角平分线的交点处C.△ABC三条高线的交点处D.△ABC三条边的垂直平分线的交点处10.如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D,E分别是AC,BC边上的动点,DE与CM相交于点F,且∠DME=90°.下列4个结论:①图中共有3对全等三角形;②∠CDM=∠CFE;③AD+BE=AC;④S△ABC=2S四边形CDME.其中不正确的结论有()个.A.3B.2C.1D.0二.填空题(6小题,每题3分,共18分)11.一个多边形的内角和是1080°,这个多边形的边数是.12.因式分解:a3﹣4a=.13.在平面直角坐标系中,若点A(﹣1,b)与点B(a,3)关于x轴对称,则2b﹣a=.14.如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,AE=12,DF=5,则点E到直线AD的距离为.15.已知等腰三角形一边长为7cm,另一边长为14cm,则它的周长是cm.16.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD平分∠CAB交BC于点D,点E、F分别是AD、AC边上的动点,则CE+EF的最小值为.第II卷【模拟卷】人教版2024—2025学年秋季八年级上册数学第三次月考模拟试卷姓名:____________ 学号:____________准考证号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.先化简,再求值:(x+y)(x﹣y)+(x﹣y)2﹣(x2﹣3xy),其中x=2,y=.18.已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.19.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;20.如图,在△ACB中,∠ACB=90°,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:△CEF是等腰三角形.21.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)请画出将△ABC向右平移7个单位得到的△A1B1C1;(2)请画出与△ABC关于x轴对称的△A2B2C2,并写出B2的坐标;(3)在x轴上找一点P使得△AA2P的面积为3,直接写出点P的坐标.22.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划在中间留一块边长为(a+b)米的正方形空地修建雕像,其余部分铺设草坪(阴影部分).(1)求草坪的面积是多少平方米?(用含a、b的代数式表示)(2)若a、b满足(x+2)(x+3)=x2+ax+b时,草坪的单价为每平方米50元.求购买草坪所需要的总费用.23.如图所示,AB=AC,∠ABD=∠ACE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠CAE=20°,∠ACE=25°,求∠ADE的度数;(3)在(2)的条件下判断△ADE的形状,并证明.24.现有若干个正方形纸片,从中任取两个大小不等的正方形如图摆放,A、D、E三点在一条直线上,(1)如图①,AE=m,CG=n,这两个正方形的面积之和是.(用m、n的代数式表示)(2)如图②,如果大正方形ABCD和小正方形DEFG的面积之和是5,图中阴影部分的面积为2,求(mn)2是多少?(3)如图③,大正方形ABCD和小正方形DEFG的面积之和是25,AE的长度等于7,图中阴影部分的面积是.(4)如图④,正方形ABCD和正方形DEFG的边长分别为a、b(a>b),如果a+b=8,ab=6,求图中阴影部分面积之和是多少?25.已知直线AB交x轴于点A(m,0),交y轴于点B(0,n),且m、n满足|m+n|+(n﹣3)2=0.(1)求m,n的值;(2)如图1,若点C在第一象限,且BE⊥AC于点E,延长BE至点D,使得BD=AC,连OC、OD、CD,试判断△COD的形状,并说明理由;(3)如图2,若点C在OB上,点F在AB的延长线上,Q为AF的中点且CQ⊥AF,△ACP是以AC为直角边的等腰直角三角形,求证:.。

2023-2024学年上海市闵行区八年级下学期月考数学试卷含详解

2023-2024学年上海市闵行区八年级下学期月考数学试卷含详解

2023学年第二学期第一次阶段练习八年级数学学科时长:90分钟总分:100分一、选择题:(本大题共6题,每题3分,满分18分)1.下列函数中,y 值随x 的增大而减小的函数()A .3y x =-+; B.12y x =; C.31y x =+; D.11y x =+.2.下图中表示函数x y a a =-和a y x =在同一平面直角坐标系中的图像是()A.B.C.D.3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的()A.B.C.D.4.下列方程中,有实数根的方程是()A.40=;B.2350x x ++=;C.111x x x =--;D.380x +=.5.已知各组x y 、的值①1,2;x y =-⎧⎨=⎩②20x y =-⎧⎨=⎩,;③34x y =-⎧⎨=⎩,;④41x y =-⎧⎨=⎩,;其中,是二元二次方程2244260x xy y x y ++---=的解的个数为()A.1B.2C.3D.46.已知关于x3m x ++=有一个实数根是1x =,那么m 的值为()A.2B.3C.2或3D.一切实数.二、填空题:(本大题共12题,每题2分,满分24分)7.当m _______时,函数7y mx =+是一次函数.8.直线25y x =-的截距是_______.9.已知一次函数()112f x x =-,那么()2f =_______.10.如果点()1,A a -、点()1,B b 在直线1y x =-+上,那么a _______b (填“>”、“<”).11.若一次函数2y x m =+的图象不经过第四象限,那么m 的取值范围是_____.12.一次函数()0y kx b k =+≠的图像如图所示,当0y >时,x 的取值范围是_______.13.换元法解方程()2231512x x x x -+=-时,如果设21x y x =-,那么得到关于y 的整式方程是_______.14.方程(x 0-=的解是_____________________15.某校举行篮球单循环赛,即两队之间互相比赛,共进行了m 场比赛.设有x 个队参加这个比赛,那么可以列出方程为_______.16.已知一个多边形的每个内角都是o160,则这个多边形的边数是_______.17.已知(6,2),B(3,4)A ---,点P 在y 轴上且PA PB +最短,则点P 的坐标为_______________18.如果关于x 的方程2202(2)x x x a x x x x -+++=--只有一个实数根,则实数a 的值为________________.三、简答题:(本大题共4题,每题6分,满分24分)19.解关于x 的方程:()13x x -=.20.解方程:2631x 1x 1-=--21.1=22.解方程组:222910x xy y x y ⎧-+=⎨+-=⎩四、解答题:(本大题共3题,每题8分,满分24分)23.已知一次函数图象经过点()1,7A 、点()1,5B -.(1)求这个一次函数的解析式;(2)求这个一次函数图象、直线y x =-与x 轴围成的三角形面积.24.某校组织甲、乙两班学生参加“美化校园”的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?25.A 、B 两城间的公路长为m 千米,甲、乙两车同时从A 城出发沿这一公路驶向B 城,甲车到达B 城1小时后沿原路用每小时90千米的速度返回.如图是它们离A 城的路程y (千米)与行驶时间x (小时)之间的函数图像.(1)由题设可以得出m 的值为_______;(2)甲车从A 城出发时的速度为_______千米/小时;(3)甲车返回过程中y 与x 之间的函数解析式是_______;(4)如果乙车的行驶速度为60千米/小时,那么甲从B 城开始返回,经过几个小时与途中的乙车相遇.五、综合题:(本题满分10分,第(1)(3)小题各4分,第(2)小题2分)26.如图,直线1:l y x m =-+与y 轴交于点A ,直线2:2l y x n =+与y 轴交于点C ,与x 轴交于点D ,且它们都经过点()2,2B .(1)求点A 、点D 坐标;(2)过点A 作BC 的平行线交x 轴于点E ,求点E 的坐标;(3)在(2)的条件下,直线2l 上是否存在一动点P ,使EDP △是等腰三角形?若存在,请直线写出P 点坐标;若不存在,请说明理由.2023学年第二学期第一次阶段练习八年级数学学科时长:90分钟总分:100分一、选择题:(本大题共6题,每题3分,满分18分)1.下列函数中,y 值随x 的增大而减小的函数()A.3y x =-+; B.12y x =; C.31y x =+; D.11y x =+.【答案】A【分析】此题考查函数的性质,熟知一次函数的性质及反比例函数的性质是解题的关键,根据函数性质依次判断即可.【详解】A.是一次函数,0k <,y 值随x 的增大而减小,故符合题意;B.是正比例函数,0k >,y 值随x 的增大而增大,故不符合题意;C.是一次函数,0k >,y 值随x 的增大而增大,故不符合题意;D.由0x ≠得函数图象是两个分支,在每个象限内,y 值随x 的增大而减小,故不符合题意;故选:A .2.下图中表示函数x y a a =-和a y x =在同一平面直角坐标系中的图像是()A. B. C. D.【答案】B【分析】此题考查了一次函数图像及反比例函数图像,根据a 的取值分别确定一次函数及反比例函数图像所在的象限,即可得到答案【详解】当0a >时,x y a a=-的图像过第一,三,四象限;a y x =的图像在第一,三象限;故C 错误,D 错误;当a<0时,x y a a =-的图像过第一,二,四象限;a y x =的图像在第二,四象限;故A 错误,B 正确;故选:B3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的()A.B.C.D.【答案】B【分析】根据题意,列出函数关系式,即可求解.【详解】解∶根据题意得∶()54008y t t=-+≤≤,∴该图象为一次函数图象的一部分.故选:B【点睛】本题主要考查了一函数的图象,根据题意,列出函数关系式是解题的关键.4.下列方程中,有实数根的方程是()A.40=;B.2350x x++=; C.111xx x=--; D.380x+=.【答案】D【分析】此题考查了二次根式的性质,一元二次方程根的判别式,解分式方程,立方根的概念,据此依次判断即可.【详解】解:A、40+=4=-,无意义,故无实数根,不符合题意;B、2345110∆=-⨯=-<,无实数根,故不符合题意;C、去分母,得1x=,此时10x-=,无实数根,故不符合题意;D、380x+=,得2x=-,有实数根,故符合题意;故选:D.5.已知各组x y、的值①1,2;xy=-⎧⎨=⎩②2xy=-⎧⎨=⎩,;③34xy=-⎧⎨=⎩,;④41xy=-⎧⎨=⎩,;其中,是二元二次方程2244260x xy y x y++---=的解的个数为()A.1B.2C.3D.4【答案】C【分析】本题考查二元二次方程的解,将题目中的各组解分别代入224426x xy y x y ++---中,看哪一组解使得2244260x xy y x y ++---=,则哪一组解就是方程的解,本题得以解决【详解】解:2244260x xy y x y ++---=即()()2216x y x y ++-=①当12x y =-⎧⎨=⎩时,()()2216x y x y ++-=,故该选项符合题意;②.当20x y =-⎧⎨=⎩,()()2216x y x y ++-=,故该选项符合题意;③.34x y =-⎧⎨=⎩,()()2216x y x y ++-≠故该选项不符合题意;④.41x y =-⎧⎨=⎩,()()2216x y x y ++-=故该选项符合题意;则符合题意得有3个.故选:C .6.已知关于x 3m x ++=有一个实数根是1x =,那么m 的值为()A.2B.3C.2或3D.一切实数.【答案】A【分析】本题主要考查的是无理方程,先把方程的根代入方程,可以求出m 的值,然后根据无理方程中二次根式的双重非负性列出不等式,得2m =.【详解】解:把1x =代入方程有:13m ++=,2m =-,两边同时平方得:2244m m m -=-+,即2560m m -+=,即()()230m m --=,∴12m =,23m =,由题意得:2020m x m -≥⎧⎨-≥⎩,∴2020m m -≥⎧⎨-≥⎩,经检验2m =13m ++=的解,3m =不符合题意,要舍去.故选:A .二、填空题:(本大题共12题,每题2分,满分24分)7.当m _______时,函数7y mx =+是一次函数.【答案】0≠##不等于0【分析】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.根据一次函数的定义即可求解.【详解】 函数7y mx =+是一次函数,∴0m ≠故答案为:0≠.8.直线25y x =-的截距是_______.【答案】5-【分析】此题考查了一次函数截距的定义,截距即为图象与y 轴交点的纵坐标,据此解答即可.【详解】当0x =时,25y x =-中5y =-,故答案为5-.9.已知一次函数()112f x x =-,那么()2f =_______.【答案】0【分析】此题考查求一次函数值,根据公式代入计算即可.【详解】∵()112f x x =-,∴()122102f =⨯-=,故答案为:0.10.如果点()1,A a -、点()1,B b 在直线1y x =-+上,那么a _______b (填“>”、“<”).【答案】>【分析】此题考查比较一次函数值的大小,将点()1,A a -、点()1,B b 代入1y x =-+,分别求出a ,b ,比较即可.【详解】将点()1,A a -、点()1,B b 代入1y x =-+,得112,110a b =+==-+=,∴a b >,故答案为:>.11.若一次函数2y x m =+的图象不经过第四象限,那么m 的取值范围是_____.【分析】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系,先判断出一次函数图象经过第一、二、三象限或一、三象限,即可确定m 的取值范围,解题的关键是熟练掌握一次函数的图象及性质.【详解】解:∵一次函数2y x m =+的图象不经过第四象限,∴一次函数2y x m =+图象经过第一、二、三象限或一、三象限,∴0m ≥,故答案为:0m ≥.12.一次函数()0y kx b k =+≠的图像如图所示,当0y >时,x 的取值范围是_______.【答案】3x <【分析】本题主要考查一次函数图像和一元一次不等式的解集,根据图像直接解答即可.【详解】解:根据函数图像可知:当3x <时,0y >,故答案为:3x <.13.换元法解方程()2231512x x x x -+=-时,如果设21x y x =-,那么得到关于y 的整式方程是_______.【答案】25302y y -+=【分析】由21x y x =-,则211x x y -=,将方程()2231512x x x x -+=-变形得25302y y -+=.【详解】解:设21x y x =-,则211x x y-=,则方程()2231512x x x x -+=-为352y y +=整理得25302y y -+=,故答案为25302y y -+=.14.方程(x 0-=的解是_____________________【答案】4x =【详解】解:(x 0-=Q 20x ∴-=或40x -=,解得:2x =或4x =,40x -≥∴4x ≥4x ∴=故答案为:4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.15.某校举行篮球单循环赛,即两队之间互相比赛,共进行了m 场比赛.设有x 个队参加这个比赛,那么可以列出方程为_______.【答案】()112x x m -=【分析】本题主要考查了一元二次方的应用,解决本题的关键是读懂题意,得到总场数的等量关系.根据“比赛场数()12x x -=”,即可求解.【详解】解:根据题意得:()112x x m -=,故答案为:()112x x m -=.16.已知一个多边形的每个内角都是o160,则这个多边形的边数是_______.【答案】18【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解: 多边形每一个内角都等于o 160∴多边形每一个外角都等于o o o180-160=20∴边数o o 3602018n =÷=故答案为:18【点睛】此题主要考查了多边形的外角与内角,解题的关键是掌握多边形的外角与它相邻的内角互补,外角和为360°.17.已知(6,2),B(3,4)A ---,点P 在y 轴上且PA PB +最短,则点P 的坐标为_______________【答案】(0,2)-【分析】要使点P 在y 轴上且PA PB +最短,作A 点关于y 轴对称点A’,连接A’B 交y 轴于点P ,P 即为所求.【详解】解:作A 点关于y 轴对称点A’,连接A’B 交y 轴于点P ,则此时使PA +PB 最小,∵A (-6,2),∴A’坐标为(6,2),设直线A’B 的解析式为y =kx +b ,将A’(6,2),B (-3,−4)代入y =kx +b 得:2643k b k b =+⎧⎨-=-+⎩,解得:232k b ⎧=⎪⎨⎪=-⎩,∴直线A’B 的解析式为y =223x -,当x=0时,y=-2,∴点P 的坐标为(0,2)-,故答案为(0,2)-.【点睛】此题主要考查了最短路径求法以及待定系数法求一次函数解析式等知识,求得直线A’B 的解析式是解题关键.18.如果关于x 的方程2202(2)x x x a x x x x -+++=--只有一个实数根,则实数a 的值为________________.【答案】7,4,82---【分析】先将分式方程化为整式方程,此整式方程为一元二次方程,根据判别式等于0求得a 的值,再分为两种情况,当△=0和△>0,再分别求出即可.【详解】解:去分母得整式方程为:2224=0x x a -++,∵方程只有一个实数根,当△=0时,(-2)2-4×2×(a+4)=0,解得:a=72-,此时方程的解为:x=72-,满足条件;当△>0时,a <72-,此时方程2224=0x x a -++有两个不相等的实数根,则当x=0时,代入方程得:a=-4<72-,即a=-4时,x=0是方程2202(2)x x x a x x x x -+++=--的增根,当x=2时,代入方程得:a=-8<72-,即a=-8时,x=2是方程2202(2)x x x a x x x x -+++=--的增根,综上:a 的值为72-或-4或-8.【点睛】本题考查了分式方程的解和分式有意义的条件,以及一元二次方程根的判别式,能求出符合的所有情况是解此题的关键.三、简答题:(本大题共4题,每题6分,满分24分)19.解关于x 的方程:()13x x -=.【答案】1122x =+,2122x =-【分析】本题主要考查了用公式法解一元二次方程,先把方程变形得到230x x --=,再按公式法解方程即可.【详解】解:方程()13x x -=可化为:230x x --=,1a =,1b =-,3c =-,()()2241413130b ac ∆=-=--⨯⨯-=>,∴方程有两个不相等的实数根.411322b x a -±==,∴1122x =+,2122x =-.20.解方程:2631x 1x 1-=--【答案】x=-4【分析】本题考查解分式方程的能力.因为x 2-1=(x+1)(x-1),所以可得方程最简公分母为(x+1)(x-1).再去分母整理为整式方程即可求解.结果需检验.【详解】方程两边同乘(x+1)(x-1),得6-3(x+1)=x 2-1,整理得x 2+3x-4=0,即(x+4)(x-1)=0,解得x 1=-4,x 2=1.经检验x=1是增根,应舍去,∴原方程的解为x=-4.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.1=【答案】1x 0=【分析】根据解无理方程的一般步骤求解即可.=2x 11+=+x =2x -4x 0=解得1x 0=,2x 4=经检验2x 4=是原方程的增根,所以原方程的解为1x 0=【点睛】本题主要考查解无理方程,去掉根号把无理方程化成有理方程是解题的关键,注意无理方程需验根.需要同学们仔细掌握.22.解方程组:222910x xy y x y ⎧-+=⎨+-=⎩【答案】21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩【分析】本题考查了解二元一次方程组,先变形(1)得出3x y -=,3x y -=-,作出两个方程组,求出方程组的解即可.【详解】解:22291102x xy y x y ⎧-+=⎨+-=⎩()(),由(1)得出3x y -=,3x y -=-,故有31x y x y -=⎧⎨+=⎩或31x y x y -=-⎧⎨+=⎩解得:21x y =⎧⎨=-⎩或12x x =-⎧⎨=⎩原方程组的解是21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩.四、解答题:(本大题共3题,每题8分,满分24分)23.已知一次函数图象经过点()1,7A 、点()1,5B -.(1)求这个一次函数的解析式;(2)求这个一次函数图象、直线y x =-与x 轴围成的三角形面积.【答案】(1)6y x =+(2)9【分析】本题主要考查了求一次函数的解析式,一次函数与x 轴的交点,两直线的交点以及一次函数的几何应用.(1)用待定系数法求一次函数解析式即可.(2)根据题意作出图象,分解求出点A ,B ,O 的坐标,然后计算ABO S 即可.【小问1详解】解:设一次函数的解析式为y kx b =+,∵一次函数图象经过点()1,7A ,点()1,5B -,∴75k b k b +=⎧⎨-+=⎩,解得:16k b =⎧⎨=⎩,∴一次函数的解析式为6y x =+.【小问2详解】根据题意作图如下:令60y x =+=,解得:6x =-,∴一次函数6y x =+与x 轴的交点坐标为:()6,0B -令0y x =-=,解得:0x =,∴直线y x =-与x 轴为()0,0O ,∴6OB =,联立两直线:6y x y x =+⎧⎨=-⎩,解得:33x y =-⎧⎨=⎩,∴()3,3A -.∴点A 到x 轴的距离为3.∴13692ABO S =⨯⨯=.24.某校组织甲、乙两班学生参加“美化校园”的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?【答案】甲、乙两班单独完成这项工作各需8小时、12小时.【分析】单独完成这项工作甲需要x 小时,乙需要y 小时,则甲每小时完成全部工作的1x ,乙每小时完成全部工作的1y ,再根据题意列方程组即可求解.,【详解】解:设甲、乙两班单独完成这项工作各需x 小时、y 小时.由题意得2312211x y x xy ⎧+=⎪⎪⎨+⎪+=⎪⎩①②①-②得:212x y -=得:24y x =-③将③代①得:231242x x +=-解得:8x =所以12y =经检验:812.x y =⎧⎨=⎩是原方程的解且符合题意.答:甲、乙两班单独完成这项工作各需8小时、12小时.【点睛】本题考查了分式方程组的应用,根据方程组的特点化二元分式方程为一元分式方程进一步转化为整式方程求解是关键。

安徽省合肥市庐阳中学2024-2025学年八年级上学期第一次月考数学试卷

安徽省合肥市庐阳中学2024-2025学年八年级上学期第一次月考数学试卷

安徽省合肥市庐阳中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.在平面直角坐标系中,下列各点在第四象限的是( )A .()3,2B .()3,2-C .()3,2--D .()3,2- 2.在函数42y x =-+中,自变量x 的取值范围是( ) A .4x > B .2x >- C .2x ≠- D .2x <- 3.在平面直角坐标系中,把直线21y x =+沿y 轴向下平移2个单位长度后,得到的直线的函数表达式为( )A .21y x =-B .23y x =-C .23y x =+D .25y x =+ 4.在平面直角坐标系中,点()5,12A -,B 是y 轴上的任意一点,则线段AB 的最小值是( ) A .5 B .7 C .12 D .175.某烤鸭店在确定烤鸭的烤制时间时 ,主要依据的是下表中的数据:设鸭的质量为x 千克,烤制时间为t 分钟.当 3.5x =千克时,t 的值为( ) A .130 B .140 C .150 D .1606.如图,直线y kx b =+与坐标轴的交点坐标分别为()2,0A ,()0,3B -,则不等式0kx b +<的解集为( )A .3x >-B .2x <C .2x >D .3x <- 7.如图,这是某蓄水池的横断面示意图,若以固定的水流量把这个空水池注满.则能大致表示水池内水的深度h 和进水时间t 之间的关系的图象是()A .B .C .D .8.如图,这是围棋棋盘的一部分,若建立平面直角坐标系后,黑棋①的坐标是()1,4-,白棋③的坐标是()2,5--,则黑棋②的坐标是( )A .()3,1--B .()3,2--C .()4,1--D .()4,2--9.下列关于一次函数22y x =-+的结论,错误的是( )A .图象经过点()1,4-B .函数值随x 的增大而减小C .图象与y 轴交于点()0,2D .图象经过第二、三、四象限10.已知一次函数1y mx n =+与一次函数2y px p =+,且m ,n ,p 满足0mnp <,则这两个一次函数在同一平面直角坐标系中的图象可能是( )A .B .C .D .二、填空题11.在平面直角坐标系中,A ,B 两点的坐标分别为()5,1-,()5,2,则A ,B 两点间的距离为.12.将点P 先向左平移5个单位长度,再向上平移4个单位长度后与点()0,1Q 重合,则点P 的坐标是.13.1—6个月的婴儿生长发育得很快,如果一个婴儿出生时的体重为3300克,那么他的体重y (克)和月龄x (月)之间的关系可以近似用3300700y x =+来表示.当y 的值为7500时,自变量x 的值为.14.如图(1),在物理实验课上,小明做“小球反弹实验”已知桌面AB 的长为1600cm ,小球P 与木块Q (大小厚度忽略不计)同时从点A 出发,向点B 做匀速直线运动,速度较快的小球P 到达B 处的挡板l 后被弹回(忽略转向时间),沿原来的路径和速度返回,遇到木块Q 后又被反弹回挡板l ,如此反复,直到木块Q 到达l ,小球P 和木块Q 同时停止运动.设小球P 的运动时间为s x ,木块Q 与小球P 之间的距离为ycm ,图(2)是y 与x 的部分图象.(1)小球P 的运动速度为cm /s .(2)t 的值为.三、解答题15.如图,在平面直角坐标系中,每个小正方形网格的边长均为1.(1)点A 的坐标为______,点B 的坐标为______.(2)在图中描出点()1,2C .(3)在(2)的条件下,D 为x 轴上方的一点,且BC AD ∥,BC AD =,则点D 的坐标为_____. 16.已知点()3,26M m m +-.(1)若点M 在x 轴上,求点M 的坐标.(2)若点M 在第四象限,求m 的取值范围.17.如图,在平面直角坐标系中,ABC V 三个顶点的坐标分别为()2,3A -,()3,1B -,()0,2C -.(1)将ABC V 先向右平移4个单位长度,再向下平移2个单位长度得到111A B C △,请画出111A B C △.(2)求ABC V 的面积.18.已知一次函数24y x =+.(1)将下列表格补充完整 ,并在平面直角坐标系中画出这个函数的图象.(2)当函数值y 为10时,自变量x 的值为______.19.已知关于x 的函数()124y k x k =-++.(1)当k =______时,该函数是正比例函数;(2)当k 满足什么条件时,y 随x 的增大而减小?(3)当3k =时,函数图象交y 轴于点A ,交x 轴于点B ,求AOB V 的面积.20.某市自来水公司为了鼓励市民节约用水,水费按分段收费标准收取.居民每月应交水费y (元)与用水量x (吨)之间的函数关系如图所示.请你观察函数图象,回答下列相关问题.(1)若用水不超过10吨,水费为______元/吨.(2)当用水超过10吨时,求该函数图象对应的一次函数的表达式.(3)若某户居民8月共交水费65元,求该户居民8月共用水多少吨?21.在平面直角坐标系中,给出如下定义:点P 到x 轴、y 轴的距离的较小值称为点P 的“短距”;当点Q 到x 轴、y 轴的距离相等时,则称点Q 为“完美点”.(1)点()3,2A -的“短距”为______.(2)若点()31,5B a -是“完美点”,求a 的值.(3)若点()92,5C b --是“完美点”,求点()6,21D b --的“短距”.22.如图,这是某种产品30天的销售图象.图1是产品日销售量y (件)与时间t (天)之间的函数关系图象,图2是一件产品的销售利润z(元)与时间t(天)之间的函数关系图象.已知日销售利润=日销售量⨯一件产品的销售利润.(1)第24天的日销售量为______件.(2)求第10天销售一件产品的利润是多少元?(3)求第12天的日销售利润是多少元?23.已知甲、乙两地相距480km,一辆出租车从甲地出发往返于甲、乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装货物后,发现此时与出租车相距120km,货车改变速度继续出发2h3后,与出租车相遇,出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地,如图,这是两车距各自出发地的距离()kmy与货车行驶时间()hx之间的函数关系图象.(1)求a的值.(2)求出租车从乙地返回甲地的速度.(3)在出租车返回的过程中,货车出发多长时间与出租车相距12km?。

山东省威海市古寨中学2024—-2025学年上学期第一次月考八年级数学试卷

山东省威海市古寨中学2024—-2025学年上学期第一次月考八年级数学试卷

山东省威海市古寨中学2024—-2025学年上学期第一次月考八年级数学试卷一、单选题1.在下列各组图形中,是全等图形的是( )A .B .C .D .2.若长度分别为a 、3、5的三条线段能组成一个三角形,则a 的值可以是( ) A .2 B .3 C .8 D .93.如图,CM 是ABC V 的中线,8cm BC =,若BCM V 的周长比ACM △的周长大3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm 4.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为( )A .70°B .75°C .80°D .85°5.如图,ABC ADE △△≌,则下列结论正确的个数是( )①AB AD =;②E C ∠=∠;③若120BAE ∠=︒,40BAD ∠=︒,则80BAC ∠=︒;④BC DE =.A .1B .2C .3D .46.已知一个三角形三边长为a 、b 、c ,则|a -b -c |-|a +b -c |=( )A .﹣2a +2cB .﹣2b +2cC .2aD .﹣2c7.如图,用直尺和圆规作AOB ∠的平分线的原理是证明POC QOC ∆≅∆,那么证明POC QOC ∆≅∆的依据是( )A .SASB .ASAC .AASD .SSS8.若等腰三角形的两边长分别为3cm 和6cm ,则该等腰三角形的周长是( ) A .9cm B .12cm C .12cm 或15cm D .15cm9.等腰三角形的一个内角是40︒,它的另外两个角的度数是( )A .40︒和100︒或55︒和55︒B .70︒和70︒或40︒和100︒C .80︒和60︒或 40︒和100︒D .60︒和80︒或 70︒和70︒10.AD 是ABC V 的高,若6040BAD CAD ∠=︒∠=︒,,则BAC ∠的度数是( )A .100︒B .20︒C .50︒或110︒D .20︒或100︒ 11.如图,ABC ADE V V ≌,已知点C 和点E 是对应点,BC 的延长线分别交AD DE ,于点FG ,,且10DAC ∠=︒,25B D ∠∠=︒=,120EAB ∠=︒,则DGB ∠的度数是( )A .70︒B .75︒C .60°D .65︒12.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A .10B .7C .5D .4二、填空题13.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =.14.若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是 三角形. 15.如图,ACD CBE V V ≌,且点D 在边CE 上,若24AD =,10BE =,则DE 的长为.16.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是12,则△ABE 的面积是.17.如图,已知∠ACB =90°,OA 平分∠BAC ,OB 平分∠ABC ,则∠AOB =°.18.如图,CA BC ⊥,垂足为C ,2cm 6cm AC BC ==,,射线BM BQ ⊥,垂足为B ,动点P 从C 点出发以1cm /s 的速度沿射线CQ 运动,点N 为射线BM 上一动点,满足PN AB =,随着P 点运动而运动,当点P 运动秒时,BCA V 与点P 、N 、B 为顶点的三角形全等.三、解答题19.已知△ABC 的三边长分别为a ,b ,c .(1)若a ,b ,c 满足(a ﹣b )2+(b ﹣c )2=0,试判断△ABC 的形状;(2)若a =5,b =2,且c 为整数,求△ABC 的周长的最大值及最小值.20.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠B =42°,∠DAE =18°,求∠C 的度数.21.如图所示,在ABC V 中,AB AC =,D ,E 是AB ,AC 的中点,求证:ABE ACD △△≌.22.尺规作图:如图,已知点M 在射线ON 上,α,β.求作点K ,使KOM α∠=,KMO β∠=.(要求:不写作法,保留作图痕迹)23.如图,△ABO ≌△CDO ,点E 、F 在线段AC 上,且AF =CE .试说明FD 与BE 的关系,并说明理由.24.如图,Rt ACB △中,90ACB ∠=︒,ABC V 的角平分线AD 、BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H .(1)求APB ∠的度数;(2)求证:ABP FBP △△≌;(3)求证:AH BD AB +=.。

2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)

2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)

2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。

山东省青岛城阳第十中学2024-2025学年八年级上学期数学第一次月考试卷

山东省青岛城阳第十中学2024-2025学年八年级上学期数学第一次月考试卷

山东省青岛城阳第十中学2024-2025学年八年级上学期数学第一次月考试卷一、单选题1.下列数中,0.4583 3.142π,0.373373337…(每两个7之间增加一个3),133,有理数有( ) A .2个 B .3个 C .4个 D .5个2.下列数组中,是勾股数的是( )A .0.3、0.4、0.5B .6a 、8a 、10aC .7、24、25D .1.5、2、2.53.如图,一个大正方形被两条线段分成两个小正方形和两个小长方形,若两个小正方形的面积分别是4和8,则小长方形的对角线AB =( )A .B .C .D .4.下列计算正确的是( )A 2=±B 2C 3D 1= 5.若ABC V 的三边分别是a ,b ,c ,则下列条件能判断ABC V 是直角三角形的是( ) A .2A B C ∠=∠=∠B .::3:4:5A BC ∠∠∠=C .1a =,2b =,3c =D .1a =,b c =6.如图,数轴上点P 表示的数可能是( )A B .C . 3.2- D .7.下列结论中,正确的是( )A 3±B 325C 32-D .2a 的算术平方根是a8.如果一个正数的平方根是a +3及2a ﹣15,那么这个正数是( )A .441B .49C .7或21D .49或4419.如图,一只蚂蚁从点A 沿圆柱侧面爬到相对一侧中点B 处,如果圆柱的高为16cm ,圆柱的底面半径为6cm π,那么最短的路线长是( ).A .6cmB .8cmC .10cmD .10cm π10.如图,要在河边l 上修建一个水泵站,分别向A 村和B 村送水,已知A 村、B 村到河边的距离分别为2km 和5km ,且C 、D ,则铺水管的最短长度是( )A .5kmB .C .7kmD .二、填空题11.827-21213.若250x +==.14.一根旗杆在离地面6米处折断,旗杆顶部落在地面离旗杆底部8米处,旗杆高米. 15.如图所示,是一段楼梯,高BC 是5米,斜边长AB 是13米,如果在楼梯上铺地毯,那么地毯至少需要米.16.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线上D ¢处.若6AB =,8AD =,则ED 的长为.三、解答题17.计算下列各题(2)()21(3))22(4)(8)(9)(10)- 18.我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?19.如图,在ABC V 中,D 为边BC 上的一点,13AB =,12AD =,15AC =,5BD =.(1)请说明AD BC ⊥;(2)求ABC V 的面积.20.已知21a -的算术平方根是3,31a b +-的平方根是4±,c32a b c +-的平方根.21.阅读下列材料,然后回答问题:在进行二次根式运算时,、一样的式子,其实我们还可以将其进一步化简:==Ⅰ)Ⅱ))()22212111⨯===-(Ⅲ)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:221111-====(Ⅳ)(1)=;①参照(Ⅲ②参照(Ⅳ(2)...。

2023-2024学年安徽省合肥四十五中桐城路校区八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年安徽省合肥四十五中桐城路校区八年级(上)月考数学试卷(10月份)+答案解析

2023-2024学年安徽省合肥四十五中桐城路校区八年级(上)月考数学试卷(10月份)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列点属于第二象限的为()A. B. C. D.2.下列曲线中不能表示y是x的函数的是()A. B. C. D.3.对于一次函数,下列说法正确的是()A.y随x的增大而增大B.直线在y轴上的截距是2C.它的图象过第一、二、三象限D.它的图象过点4.把函数的图象向上平移3个单位,则下列各坐标所表示的点中,在平移后的直线上的是()A. B. C. D.5.如图,已知点和点是一次函数图象上的两点,则m与n的大小关系是()A.B.C.D.6.如图,函数和的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.7.如图是温度计的示意图,图中左边的温度表示摄氏温度,右边的温度表示华氏温度.小明观察温度计发现,两个刻度x,y之间的关系如表.据此可知,摄氏温度为15时,对应华氏温度应为()1020253050687786A.15B.59C.D.548.一次函数与为常数,且,它们在同一坐标系内的图象可能为()A. B.C. D.9.如图,函数的图象经过点,与函数的图象交于点A,则不等式的解集为()A.B.C.D.10.一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离与骑行时间之间的函数关系如图所示,下列结论:①A,B两村相距10km;②甲出发2h后到达C村;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了或时两人相距其中正确的是()A.①③④B.①②③C.①②④D.①②③④二、填空题:本题共4小题,每小题5分,共20分。

11.若,则点P到y轴的距离是______.12.函数的自变量x的取值范围是______.13.若一次函数是常数与y轴交于负半轴,则m的取值范围是______.14.已知直线经过点,直线:经过点直线的解析式为:______;若无论t取何值,直线和的交点Q都在第一象限,则k的取值范围是______.三、解答题:本题共9小题,共90分。

吉林省名校调研系列试卷2024--2025学年八年级上学期第一次月考数学试题

吉林省名校调研系列试卷2024--2025学年八年级上学期第一次月考数学试题

吉林省名校调研系列试卷2024--2025学年八年级上学期第一次月考数学试题一、单选题1.下列各组中的两个图形属于全等图形的是( )A .B .C .D .2.在如图所示的模型中三角形架子是其主要结构,这种设计的原理是( )A .三角形具有稳定性B .两点之间,线段最短C .两点确定一条直线 D .垂线段最短 3.若三角形的三边长分别是2,7,a ,则a 的取值可能是( )A .6B .5C .4D .34.如图,ABC V 中,AB AC =,BE EC =,直接使用“SSS ”可判定( )A .ABD ACD △≌△B .ABE EDC V V ≌ C .ABE ACE △≌△D .BED CED △≌△5.学习了三角形的“中线、高线、角平分线”后,老师给同学们布置了一项作业:作ABC V 的AC 边上的高.下面是四位同学的作业,其中正确的是( )A .B .C .D .6.如图,在ABC V 中,点D 在AC 上,点E 在BC 上,连接BD 、DE .若A B E B =,AD ED =,80A ∠=︒,110BDC ∠=︒,则C ∠的度数为( )A .30︒B .40︒C .45︒D .50︒二、填空题7.若正多边形的一个外角是45°,则该正多边形的边数是.8.如图,若9525ACD ACB ADC DAC ∠=︒∠=︒V V ≌,,,则BCA ∠=°.9.在ABC V 中,20A ∠=︒,=60B ∠︒,则ABC V 是三角形.(填“锐角”“直角”或“钝角”) 10.如图,点B 、E 在CF 上,且ABC DEF ≌△△,若8=CF ,4BE =,则CE 的长为.11.小宇阅读了一篇《东方窗棂之美》的文章,文章中有一张如图1所示的图片,图中有许多不规则的多边形组成,代表一种自然和谐美.如图2是从图1图案中提取的由六条线段组成的图形,若160∠=︒,则23456∠+∠+∠+∠+∠的度数是.12.如图,是某款婴儿车的几何示意图,若AD BC ∥,1125∠=︒,340∠=︒,则2∠的度数是°.13.如图是教科书中的一个片段,由画图我们可以得到A ABC B C '''≌△△,判定这两个三角形全等的依据是 .14.如图,已知ABC V 的面积是12,D 是BC 的中点,E 是AC 的中点,那么CDE V的面积是.三、解答题15.已知一个多边形的内角和为1080︒,求这个多边形的边数.16.如图,六边形ABCDEF 的每个内角都相等,且AD EF P ,求1∠的度数.17.如图,C 是AB 的中点,=AD CE ,CD BE =.求证:ACD CBE V V ≌.18.如图,在△ABC 中,∠ABC=65°,∠C=35°,AD 是△ABC 的角平分线.(1)求∠ADC 的度数.(2)过点B 作BE ⊥AD 于点E ,BE 延长线交AC 于点F.求∠AFE 的度数.19.如图,CA CD =,AB DE =,BC EC =,求证:12∠=∠.20.在ABC V 中,8BC =,1AB =.(1)若AC 是整数,求AC 的长;(2)已知BD 是ABC V 的中线,若ABD △的周长为10,求BCD △的周长.21.图①、图②、图③均是88⨯的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A 、B 、C 均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,不要求写出画法,保留作图痕迹.(1)在图①中画出ABC V 的高线AD .(2)在图②ABC V 的边BC 上找到一点E ,连接AE ,使AE 平分ABC V 的面积.(3)在图③中画BCF V ,使ABC FCB △≌△,其中点F 不与点A 重合.22.如图,AB CD AF CE BE DF ===,,.求证:AB CD ∥.23.将下面求解的过程补充完整:如图,在ABC V 中,2531B BAC ∠=︒∠=︒,,过点A 作BC 边上的高,交BC 的延长线于点D ,CE 平分ACD ∠交AD 于点E ,求AEC ∠的度数.解:∵ACD ∠是ABC V 的一个外角,且2531B BAC ∠=︒∠=︒,,∴ACD ∠=∠______+∠______=______︒(三角形的外角等于与它______的和). 又∵CE 平分ACD ∠, ∴12ECD ACD ∠=∠=______. 又∵AEC ∠是CDE V的一个外角,且AD BD ⊥, AEC ∠=∠______+∠______=______.24.如图,点E ,C 在线段BF 上,AB DE =,BE CF =,AC DF =.(1)求证:ABC DEF ≌△△;(2)若45B ∠=︒,85F ∠=︒,求A ∠的度数.25.【感知】如图①,在ABC V 中,BP CP 、分别是ABC ∠和ACB ∠的平分线.【应用】(1)若4080ABC ACB ∠=︒∠=︒,,则BPC ∠=______°;(2)若80BAC ∠=︒,求BPC ∠的度数;(3)写出BPC ∠与A ∠之间的数量关系并证明;【拓展】(4)如图②,在四边形ABCD 中,BP CP 、分别是ABC ∠和BCD ∠的平分线,直接写出BPC∠与A D ∠+∠的数量关系.26.小明在学习中遇到这样一个问题:如图①,在ABC V 中,C B ∠>∠,AE 平分BAC ∠,AD BC ⊥于点D ,猜想B C EAD ∠∠∠、、的数量关系.(1)小明阅读题目后,没有发现数量关系与解题思路,于是尝试代入B C ∠∠、的特殊值求EAD ∠值并寻找它们的数量关系,得到下面几组对应值:上表中α=______,猜想EAD ∠与B C ∠∠、的数量关系是______;(2)小明继续研究,在图②中,3575B C ∠=︒∠=︒,,其他条件不变,若把“AD BC ⊥于点D ”改为“点F 是线段AE 上任意一点,FD BC ⊥于点D ”,求DFE ∠的度数.小明通过“过点A 作AG BC ⊥于点G ,求出EAG ∠的度数”,使问题得到解决,请你按照小明的思路写出解答过程;(3)在ABC V 中,C B ∠>∠,AE 平分BAC ∠,若点F 是线段AE 延长线上一点,FD BC ⊥于点D ,请直接写出DFE ∠与B C ∠∠、之间的数量关系.。

广东省广州市白云区2024-2025学年上学期八年级数学第一次月考试卷

广东省广州市白云区2024-2025学年上学期八年级数学第一次月考试卷

广东省广州市白云区2024-2025学年上学期八年级数学第一次月考试卷一、单选题1.生活中处处有数学,用数学的眼光观察世界,在生活实践中发现数学的奥秘.下列图形中,不是运用三角形的稳定性的是( )A .B .C .D .2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A .4 cm ,6 cm ,10 cmB .4cm ,5cm ,6cmC .3 cm ,5 cm ,9 cmD .2cm ,5 cm ,8 cm 3.如图,在ABC V 中,70B ∠=︒,点D 在BC 的延长线上,150ACD ∠=︒,则A ∠是( )A .70︒B .80︒C .30︒D .100︒4.下列说法中错误的是( )A .三角形的中线、角平分线、高都是线段B .三角形的三条角平分线交于一点C .任意三角形的外角和都是360°D .三角形的一个外角大于任何一个内角5.如图,点B 、C 、D 在同一直线上,若ABC CDE △≌△,4DE =,13BD =,则AB 等于( )A .7B .8C .9D .106.根据下列已知条件,能画出唯一的ABC V 的是( )A .90A ∠=︒,30B ∠=︒B .3AB =,4BC = C .20A ∠=︒,120B ∠=︒,40C ∠=︒D .30A ∠=︒,45B ∠=︒,3AB =7.如图,已知AB AD BAD CAE =∠=∠,,以下条件中,不能..推出E ABC AD ≅∆∆的是( )A .AE AC =B .B D ∠=∠C .C E ∠=∠D .BC DE =8.如图,OD AB ⊥于D ,OP AC ⊥于P ,且OD OP =,则AOD V 与AOP V 全等的理由是( )A .SSSB .ASAC .SSAD .HL9.如图,ABC V 中,26B ∠=︒,110C ∠=︒,A ∠沿DE 折叠后,点A 落在ABC V 的内部点A '的位置,则12∠+∠=( )A .108︒B .46︒C .114︒D .88︒10.如图,AD 是ABC V 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD V 的面积相等;②BAD CAD ∠=∠;③BF CE ∥;④CE AE =.其中说法正确的有( )A .1个B .2个C .3个D .4个二、填空题11.已知一个多边形每一个外角都是40︒,则它是边形.12.如图,直线12l l ∥,且分别与ABC V 的两边AB AC 、相交,若45165A ∠=︒∠=︒,,则2∠的度数为.13.如图,△ABC ≌△DEC ,∠A =70°,∠ACB =60°,则∠E 的度数为14.如图,在正六边形ABCDEF 中,连接AC 、BF 交于点O ,则∠AOF =.15.如图,在平面直角坐标系中,已知点A (0,3),B (9,0),且∠ACB =90°,CA =CB ,则点C 的坐标为.16.如图,在Rt ACB △中,90ACB ∠=︒,ABC V 的角平分线AD ,BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论①135APB ∠=︒;②PF PA =;③30F ∠=︒;④AH BD AB +=;⑤2ABP ABDE S S =四边形V ,正确的序号是.三、解答题17.如图所示,已知AD 是ABC V 的边BC 上的中线.(1)作出ABD △的边BD 上的高AE .(2)若ABD △的面积为6,求ABC V 的面积.18.如图,已知点E 、C 在线段BF 上,BE CF =,AB DE =,AB DE ∥.求证:ABC DEF ≌△△.19.已知,如图,点A ,D ,B ,E 在同一条直线上,,,AC EF AD EB A E ==∠=∠,BC 与DF 交于点G .(1)求证:ABC EDF △≌△;(2)当110CGD ∠=︒时,求GBD ∠的度数.20.如图,D 是ABC V 的边AB 上一点.CF AB ∥,DF 交AC 于点E ,=DE EF .(1)求证:ADE CFE V V ≌.(2)若10AB =,7CF =,求BD 的长.21.如图,在ABC V 中,AB AC =,AD BC ⊥于点D ,BE AC ⊥于点E ,AD ,BE 相交于点H ,AE BE =.(1)求证:AEH BEC ≌V V ;(2)若4AH =,求BD 的长.22.在Rt ABC △中,90,ACB AC BC ∠=︒=,点E 为AC 上一动点,过点A 作AD BE ⊥于D ,连接CD .(1)【观察发现】如图①DAC ∠与DBC ∠的数量关系是_________;(2)【尝试探究】点E 在运动过程中,CDB ∠的大小是否改变,若改变,请说明理由,若不变,求CDB ∠的度数.23.如图1,在ABC V 中,AD 平分BAC ∠,DE AB ⊥于E ,DF AC ⊥于F ,6AB =,4AC =,(1)求证:ADE ADF V V ≌.(2)若ABD △的面积为9,求ACD V 的面积.(3)爱动脑筋的小明同学,发现一个有趣的结论:三角形内角平分线分对边成两线段,两线段之比等于相应邻边的比(三角形角平分线定理),即AB BD AC DC=. 小明的证明如下:请填空补全证明过程如图2,过点A 作AG BC ⊥于点G ,由(1)得:ADE ADF ≌△△,∴DE DF =, ∵1212ABDADC AB DE S S AC DF ⨯==⨯△△,又 ABD ADC S S =△△. ∴AB BD AC DC=. 24.在ABC V 中,AC BC =,90ACB ∠=︒,点D 在BC 的延长线上,M 是BD 的中点,E 是射线CA 上一动点,且CE CD =,连接AD ,作DF AD ⊥,DF 交EM 延长线于点F .(1)如图1,当点E 在CA 上时,求证:AD DF =.(2)如图2,当点E 在CA 的延长线上时,请根据题意将图形补全,判断AD 与DF 的数量关系并证明.25.如图1,在平面直角坐标系中,AB BC =,90ABC ∠=︒,直线AB 交坐标轴于()0,A a和(),0B b .(1)若a 和b 满足()2310a b -++=,则点A 的坐标为,点B 的坐标为,点C 坐标为.(2)如图2,点()0,A a ,点(),0B b 分别在y 轴正半轴和x 轴负半轴上运动,其中a ,b 满足2a b +=,点C 在第四象限,过点C 作CP x ⊥轴于点P ,试判断BP CP -是否为定值?若是,请求出该定值,若不是,请说明理由.(3)如图3,若y 轴恰好平分BAC ∠,BC 与y 轴交于点D ,过点C 作CE y ⊥轴于点E ,问AD 与CE 有怎样的数量关系?请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N
M C B A
O 2013学年第一学期教学质量检测(一)八年级数学学科试卷
命题学校:东吴镇中学 命题人:胡洁莉 审核人:傅培芳
一、选择题(每题3分,共36分)
1、下列各组长度得线段能构成三角形得就是( )
A 、1、5 cm,3、9 cm,2、3 cm
B 、3、5 cm,7、1 cm,3、6 cm
C 、6 cm,1 cm,6 cm
D 、4 cm,10 cm,4 cm
2、在△ABC 中,∠A=2∠B=3∠C ,则△ABC 为( )
A 、锐角三角形
B 、钝角三角形
C 、直角三角形
D 、都有可能
3、如图,点D 、E 分别在AC 、AB 上,已知AB =AC ,添加下列条件,不能说明△ABD ≌△ACE 得就是( )
A 、∠
B =∠
C B 、A
D =AE
C 、∠BDC =∠CEB
D 、BD =CE
4、下列语句就是定义得就是( )
A 、两点之间线段最短;
B 、一个外角等于与它不相邻得两个内角之与;
C 、两直线平行,同位角相等
D 、在同一平面内不相交得两条直线叫做平行线;
5、如图,在ΔABC 中,BC 边上得垂直平分线交AC 于点D ,
已知AB =3,AC =7,BC =8,则ΔABD 得周长为( )
A 、10
B 、11
C 、15
D 、12
6、等腰三角形得两条边长就是3与6,则它得周长就是( )
A 、12
B 、15
C 、12或15
D 、15或18 7、满足下列条件得两个三角形全等得就是( )
A 、两条边对应相等
B 、一条边、一个角对应相等
C 、三个角对应相等
D 、三条边对应相等
8、如下图,某同学把一块三角形得玻璃打碎成了3块,现在要到玻璃店去配一块完全一样得玻璃,那么最省事得方法就是 ( )
A 、带①去
B 、带②去
C 、带③去
D 、①②③都带去 9、在△ABC 中,与∠A 相邻得外角就是110°,要使△ABC 为等腰三角形,则底角∠B 就是( )
A 、70
B 、55°
C 、70°或55°
D 、60°
10、用直尺与圆规作一个角得平分线得示意图,如上图所示,则能说明∠AOC=∠BOC 得依据就是( ).
A 、SSS
B 、ASA
C 、AAS
D 、角平分线上得点到角两边得距离相等
11、下列定理中,没有逆定理得就是( )
A 、内错角相等,两直线平行
B 、全等三角形得对应角相等
C 、在一个三角形中,等边对等角
D 、等腰三角形得两底角相等
12、等腰三角形一腰上得高与另一腰得夹角为30°,则顶角得度数为( ).
A 、60°
B 、120°
C 、60°或150°
D 、60°或120° 第10题图 第8题图
第5题图
第23题图 D
C B A
D C B A 第21题图 二、填空题(每题3分,共18分)
13、将命题“对顶角相等”改写成“如果……,那么……”得形式。

14、等腰三角形有 条对称轴。

15、已知∠A =50°,∠B =65°,则△ABC 为_________三角形。

16、如下图,在△ABC 中,∠C=90°,BD 平分∠ABC,交AC 于点D 、若DC=3,AB=8,则△ABD 得面积=
17、如上图,在△ABC 中,AB =AC ,∠A =36°,CD 、BE 分别平分∠ABC 与∠ACB ,则图中共有
____ 个等腰三角形。

18、如下图,已知BC =EC ,∠BCE =∠ACD ,要使△ABC ≌△DEC ,则应添加得一个条件为________________(答案不唯一,只需填一个)
三、作图题(每题3分,共6分) 19、① 已知△ABC (如图)
作AB 边上得中线、
作∠C 得平分线、
作BC 边上得高线、
②在直线l 上找一点P ,使PB +PC 得长最短, 不写作法,保留作图痕迹、
四、解答题(20题每空0、5分,共6分,21题6分)
20、解答填空题: 如图,CD 就是线段AB 得垂直平分线,则∠CAD =∠CBD 、请说明理由:
解:∵ CD 就是线段AB 得垂直平分线( 已知 ),
∴AC = , =BD ( )、 在 与 中, =BC ,
∵ AD = ,
CD = CD ( ),
∴ ≌ ( )、
∴ ∠CAD =∠CBD ( )、
21、如图,在△ABD 中,AB = BD ,且AD = AC = BC ,求∠B 得
度数、
五、证明题(22、23题各9分,23题10分,共28分)
22、如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .
求证:∠A =∠D .
23、如图所示,在△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,过点D 作DE ∥BC•交AB 于点E ,过点D 作DF ⊥AB 于点F ,说明:BC =DE +EF 成立得理由、
第18题图
_ E _ D _ C _ B _ A _ C _ B _ A _ l C B A 第16题图 第17题图 第20题图 第22题图 A B C D E F
E D
F A
24、△ABC与△CEF就是两个大小不等得等边三角形,且有一个公共顶点C,连接AF与BE。

(1) 如图a,线段AF与BE有怎样得大小关系?请证明您得结论;(6分)
(2) 如图b,(1)中得结论还成立吗?作出判断并说明理由。

(4分)。

相关文档
最新文档