数字电子技术基础(数字电路)第五章触发器
《数字电子技术基础》第五章习题(阎石主编,第四版)
![《数字电子技术基础》第五章习题(阎石主编,第四版)](https://img.taocdn.com/s3/m/6d08f3c477eeaeaad1f34693daef5ef7bb0d125d.png)
[题5.1] 分析图P5.1时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。
画出电路的状态转换图,说明电路能否自启动。
答案:答案:11322131233;J K QJ K Q J Q Q K Q ì==ï==íï==î3Y Q =电路能自启动。
状态转换图如图A5.1。
[题5.7] 在图P5.7电路中,若两个移位寄存器中的原始数据分别为A 3 A 2 A 1 A 0=1001,B 3 B 2 B 1 B 0=0011,试问经过4个CP 信号作用以后两个寄存器中的数据如何?这个电路完成什么功能?成什么功能?答案:经过四个时钟信号作用以后,两个寄存器里的数据分别为:A 3 A 2 A 1 A 0=1100,B 3B 2B 1 B 0=0000。
这是一个四位串行加法计数器。
这是一个四位串行加法计数器。
[题5.8] 分析图P5.8的计数器电路,说明这是多少进制的计数器。
十进制计数器74160的功能表见表5.3.4。
答案:答案:电路为七进制计数器。
图P5.8电路为七进制计数器。
[题5.9] 分析图P5.9的计数器电路,画出电路的状态转换图,说明这是多少进制的计数器。
十六进制计数器74LS161的功能表见表5.3.4。
答案:答案:。
这是一个十进制计数器。
电路的状态转换图如图A5.9。
这是一个十进制计数器。
[题5.10] 试用4位同步二进制计数器74LS161接成十二进制计数器,标出输入、输出端。
可以附加必要的门电路。
74LS161的功能表见表5.3.4。
答案:答案:见图A5.10 [题5.11] 试分析图P5.11的计数器在M=1和M=0时各为几进制。
74160的功能表见表5.3.4。
答案:答案:M=1时为六进制计数器,M=0时为八进制计数器。
时为八进制计数器。
[题5.16] 图P5.16电路是由两片同步十进制计数器74160组成的计数器,试分析这是多少进制的计数器,两片之间是几进制。
数字电子技术基础第五章时序逻辑电路PPT课件
![数字电子技术基础第五章时序逻辑电路PPT课件](https://img.taocdn.com/s3/m/9cc0e963bc64783e0912a21614791711cc7979fc.png)
减小功耗
优化电路结构,降低电路的 功耗,减少能源浪费。
提高可靠性
通过优化设计,提高电路的 可靠性和稳定性,降低故障 发生的概率。
提高性能
优化电路结构,提高电路的 响应速度和性能,满足设计 要求。
05 时序逻辑电路的实现技术
基于中小规模集成电路的时序逻辑电路实现技术
概述
中小规模集成电路是将多个晶体管集成在一块芯片上,实现时序逻辑功能。
冒险现象
由于竞争现象的存在,时序逻辑电路 的输出可能会产生短暂的不确定状态, 这种现象称为冒险现象。
04 时序逻辑电路的设计方法
同步时序逻辑电路的设计方法
建立原始状态图
根据设计要求,确定系统的输入和输出变量,并使用状 态图表示系统的状态转换关系。
逻辑方程组
根据状态图和状态编码,列出逻辑方程组,包括状态转 移方程、输出方程和时钟方程。
分类
根据触发器的不同,时序逻辑电 路可分为同步时序电路和异步时 序电路;根据电路结构,可分为 摩尔型和米立型。
时序逻辑电路的功能与特点
功能
实现数据的存储、记忆、计数、分频 等功能。
特点
具有记忆功能、输出状态不仅与当前 输入有关还与之前状态有关、具有时 钟信号控制等。
时序逻辑电路的应用场景
01
02
数字电子技术基础第五章时序逻辑 电路ppt课件
目 录
• 时序逻辑电路概述 • 时序逻辑电路的基本电路的实现技术 • 时序逻辑电路的应用实例
01 时序逻辑电路概述
时序逻辑电路的定义与分类
定义
时序逻辑电路是一种具有记忆功 能的电路,其输出不仅取决于当 前的输入,还与之前的输入状态 有关。
03
数字钟
利用时序逻辑电路实现时 间的计数和显示。
数字电子技术实验五触发器及其应用(学生实验报告)
![数字电子技术实验五触发器及其应用(学生实验报告)](https://img.taocdn.com/s3/m/b63e6d7c59fafab069dc5022aaea998fcc224063.png)
数字电⼦技术实验五触发器及其应⽤(学⽣实验报告)实验三触发器及其应⽤1.实验⽬的(1) 掌握基本RS、JK、D和T触发器的逻辑功能(2) 掌握集成触发器的逻辑功能及使⽤⽅法(3) 熟悉触发器之间相互转换的⽅法2.实验设备与器件(1) +5V直流电源(2) 双踪⽰波器(3) 连续脉冲源(4) 单次脉冲源(5) 逻辑电平开关(6) 逻辑电平显⽰器(7) 74LS112(或CC4027);74LS00(或CC4011);74LS74(或CC4013)3.实验原理触发器具有 2 个稳定状态,⽤以表⽰逻辑状态“1”和“0”,在⼀定的外界信号作⽤下,可以从⼀个稳定状态翻转到另⼀个稳定状态,它是⼀个具有记忆功能的⼆进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。
(1) 基本RS触发器图4-5-1为由两个与⾮门交叉耦合构成的基本RS触发器,它是⽆时钟控制低电平直接触发的触发器。
基本RS触发器具有置0 、置1 和保持三种功能。
通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此种情况发⽣,表4-5-1为基本RS触发器的功能表。
基本RS触发器。
也可以⽤两个“或⾮门”组成,此时为⾼电平电平触发有效。
图4-5-1 基本RS触发器(2) JK触发器在输⼊信号为双端的情况下,JK触发器是功能完善、使⽤灵活和通⽤性较强的⼀种触发器。
本实验采⽤74LS112双JK触发器,是下降边沿触发的边沿触发器。
引脚功能及逻辑符号如图4-5-2所⽰。
JK触发器的状态⽅程为Q n+1=J Q n+K Q nJ和K是数据输⼊端,是触发器状态更新的依据,若J、K有两个或两个以上输⼊端时,组成“与”的关系。
Q与Q为两个互补输出端。
通常把 Q=0、Q=1的状态定为触发器0 状态;⽽把Q=1,Q=0定为 1 状态。
图4-5-2 74LS112双JK触发器引脚排列及逻辑符号下降沿触发JK触发器的功能如表4-5-2注:×— 任意态↓— ⾼到低电平跳变↑— 低到⾼电平跳变Q n (Q n )— 现态 Q n+1(Q n+1)— 次态φ— 不定态JK 触发器常被⽤作缓冲存储器,移位寄存器和计数器。
阎石《数字电子技术基础》(第5版)(名校考研真题 触发器)【圣才出品】
![阎石《数字电子技术基础》(第5版)(名校考研真题 触发器)【圣才出品】](https://img.taocdn.com/s3/m/f128859631126edb6f1a10c0.png)
第5章 触发器一、选择题1.为了使钟控RS触发器的次态为1,RS的取值应为()。
[成都理工大学2006 研]A.RS=0B.RS=01C.RS=10D.RS=11【答案】B【解析】当S=l,R=0时,Q=1 、Q'=O 。
在SD=1;当S=0,R=1 时,Q=0,Q'=l;当S=R=0时,电路维持原来的状态不变。
2.设计一“00001111”串行序列发生器,最少需要触发器个数是()。
[电子科技大学2006 研]【答案】B【解析】设有三个不同的变量Q2Q1Q0,前三个状态可以确定下一个状态,比如Q2Q1Q0=000确定输出状态为1,001的时候为1,依次类推,八个输出需要计数器至少有8个不同的状态。
3.(多选)下列所示的电路中,能完成逻辑功能的电路有()。
[北京邮电大学2010研]A B C D【答案】ACD【解析】D 触发器特性方程为=;JK 触发器的特性方程为1n QD +=n Q ;T 触发器特性方程为=;n+1n n Q J Q KQ =+0=n n n Q Q Q Q=+n+1Q TQ TQ =+Q n+11⋅=+=n n nQ Q Q Q Q 二、填空题1.对于D 触发器,欲使则输入D =______。
[成都理工大学2006研]【答案】【解析】根据D 触发器的特性方程,可得2.施密特触发器输入端加正弦波信号,则输出为同频率的______。
[北京工业大学2008研]【答案】矩形脉冲【解析】施密特触发器状态转换过程中的正反馈作用,可以将边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号3.图5-1为某触发器状态图,该触发器为______触发器。
[北京工业大学2008研]图5-1【答案】D【解析】该触发器只有保持和翻转功能,没有置数功能,所以肯定不是RS 触发器,而JK 触发器需要两个不同变量的输入,图中的变量数只有一个,所以应该是T 触发器或者D 触发器,T 触发器特性方程为,当Q =1时,输入T =1,应该会得到逻辑电平0,而不是1; D 触n+1Q TQ TQ =+发器特性方程为,符合状态转换图。
数字电子技术习题解答_杨志忠_第五章练习题_部分
![数字电子技术习题解答_杨志忠_第五章练习题_部分](https://img.taocdn.com/s3/m/33630dbafd0a79563c1e72a7.png)
教材:数字电子技术基础(“十五”国家级规划教材) 杨志忠 卫桦林 郭顺华 编著高等教育出版社2009年7月第2版; 2010年1月 北京 第2次印刷;第五章 集成触发器(部分习题答案)练习题5解答:(P213页)【5.1】、由与非门构成的基本RS 触发器,S D 和R D 端输入如图P5.1所示波形,试画出Q 和Q 的输出波形。
设触发器的初始状态为“0”。
解题思路:根据基本RS 触发器功能分段画图,并要注意与非门的基本RS 触发器是低电平有效。
当D S 和D R 端同时为有效低电平时,出现强制1态,有效电平同时撤去后(无效高电平)会出现不定态。
(不确定的状态,具体的状态取决两个与非门的翻转速度快慢)DS D RQ【5.2】、由或非门构成的基本RS 触发器,S D 和R D 端输入如图P5.2所示波形信号,试画出Q 和Q 的输出波形。
(设触发器的初始状态为“1”)。
解题思路:根据基本RS 触发器功能分段画图,并要注意或非门的基本RS 触发器是高电平有效,功能与与非门组成的RS 触发器功能相同。
当R D 和S D 端同时为有效高电平时,出现强制0态,有效电平同时撤去后(无效低电平)会出现不定态。
(不确定的状态,具体的状态取决两个与非门的翻转速度快慢)DS D RQ1≥1≥【5.4】、已知同步RS 触发器的输入CP,R 和S 的电压波形如题P5-4图所示的波形,试画出Q 和Q 的输出波形。
(设触发器的初始状态nQ =0)解题思路:同步钟控RS 触发器是电位型触发器(高电平敏感CP=1),在CP 有效触发期间的状态随输入信号发生变化,n 1n Q R S Q+=+,约束条件:RS=0,R=S=1时出现1Q Q 1n 1n ==++。
CPSQR【5.5】、已知同步D 触发器CP 和D 端的输入电压波形如P5.5图所示,试画出Q 端的输出波形。
(设触发器的初始状态nQ =0)解题思路:同步式触发器是电位型触发器(假定高电平敏感CP=1),在CP 有效触发期间的状态随输入信号发生变化,D Q1n =+。
《数字电子技术》教学课件(高教社) 第五章 脉冲的产生与整形 知识点:用555定时器组成施密特触发器-
![《数字电子技术》教学课件(高教社) 第五章 脉冲的产生与整形 知识点:用555定时器组成施密特触发器-](https://img.taocdn.com/s3/m/312a1286de80d4d8d15a4ffa.png)
(a)数字测速系统图
(b)测速系统各处的工作波形
图5-35 数字测速系统的原理
高等职业教育数字化学习中心
谢 谢!
2.施密特触发器的应用
(2)施密特触发器的幅度鉴别作用 在图5-34中,555定时器组成施密特触发器,配合其他器件组成一个能
根据环境亮度情况自动开启和关断照明灯的控制电路。K为继电器,T为三极 管,LDR是硫化镉光敏电阻。光敏电阻LDR的阻值与环境光线强度成反比,即 光线越强阻值越小,光线越弱阻值越大。RRP为可调电阻,用于调节灵敏度。
(1)第一种稳定状态输出UOH (2)第二种稳定状态输出UOL (3)回差电压
U U T U T
(5.10)
2.施密特触发器的应用
(1)施密特触发器的整形和波形变换作用 由图5-33所示的工作波形可见,若输入信号 uI 的波形不规则,通过施密特触 发器整形后,其输出是一个几乎理想的矩形波。也可以说,施密特触发器具有 波形变换的作用。施密特触发器的这种作用被广泛地应用于电子线路中。
2.施密特触发器的应用
(2)施密特触发器的幅度鉴别作用
图5-34 用施密特触发器组成的照明灯自动控制电路
至此,前面的章节将数字电路的基本器件和基本单元电路都做了介绍,利 用这些器件和单元电路可以组成各种实用的数字系统。例如,图5-35(a)所 示是数字测速系统的原理框图。通过这张图,可以将模拟电路、组合逻辑电路 和时序逻辑电路的内容有机地联系起来。图5-35(a)中非电量转换电路的作 用是将非电量转速信号转换成电信号(利用传感器)。
高等职业教育数字化学习中心
单电子击技此术处编辑母版标题样式
主 讲:
单击此处编辑母版标题样式
讲授内容
第5章: 脉冲波形的产生和整形
数电第五章
![数电第五章](https://img.taocdn.com/s3/m/a665205111a6f524ccbff121dd36a32d7375c788.png)
D 1D E E1
E
Q
D Q
Q
Q
可见,D锁存器存在“空翻 ”现象。
3. 锁存器的动态特性
ቤተ መጻሕፍቲ ባይዱ
D
tSU
tH
C D TG TG
G1
1
Q
E
tW
tpLH
1C C
TG C
tpHL
TG
2
1
Q
Q
G2
建立时间tSU :表示D信号对E下降沿的最少时间提前量。
脉冲宽度tW :为保证D信号正确传送到Q和 Q
保持时间tH :确保数据的可靠锁存的最少时间。 延迟时间tpLH:输出从低电平到高电平的延迟时间;
1 G1
R
≥1
G2 ≥1 S
1
0
10
Q
当S、R 同时回到0时,由于两个与非
门的延迟时间无法确定,使得触发器 最终稳定状态也不能确定。
Q
0
约束条件: SR = 0
2)逻辑符号与逻辑功能
逻辑功能表
SR
Qn
Q n1
00
0
00
1
01
0
01
1
0
不变
1
0 置0
0
10
0
1
置1
10
1
1
11
0
不确定 不确定
11
1
不确定
延迟时间tpHL:高电平到低电平的延迟时间。
4. 典型集成电路
CMOS八D锁存器- 74HC/HCT373
传输门控 D 锁存器
传输门控 制D0
D1
…
D7
1
1
…1
1D
数字电子技术基础第五章触发器
![数字电子技术基础第五章触发器](https://img.taocdn.com/s3/m/f3105370a517866fb84ae45c3b3567ec102ddc13.png)
S
(a)
(a)防抖动开关电路图
uA Q uB Q
Q
反跳
反跳
Q (b)
(b)开关反跳现象及改善后的波形图
20
5.3 同步触发器
实际工作中,触发器的工作状态不仅要由触发输入 信号决定,而且要求按照一定的节拍工作。为此,需要 增加一个时钟控制端 CP。
CP 即 Clock Pulse,它是一串 周期和脉宽一定的矩形脉冲。
具有时钟脉冲控制的触发器称为时钟触发器,
又称钟控触发器。
同步触发器是其中最简单的一种,而 基本 RS 触发器称异步触发器。
21
(一)同步 RS 触发器
1. 电路结构与工作原理 Q 基本 RS 触发器 Q
G1
S1 Q3 G3
G2
Q4 R1 G4
S
10 CP
R
增加了由时钟 CP 控制的门 G3、G4
工作原理 ★ CP = 0 ,G3、G4 被封锁。基本 RS 触发 器的输入均为 1,触发器 状态保持不变。
的作用下,状态转换的 方向。
尾端:表示现态,箭头
指向表示次态。
16
(3) 特征方程(也称为状态方程或次态方程)
RD SD Qn Qn+1
说明
0 0 0 × 触发器状态不定
0 0 1×
0 1 0 0 触发器置 0 0110
1 0 0 1 触发器置 1 1011
1 1 0 0 触发器保持原状态不变 1111
9
2. 工作原理及逻辑功能 Q 1 触发器被置 1 0 Q
G1
G2
11
0 SD
输入 RD SD 00 01 10 11
输出 QQ
01 10
数字电子技术基础第5章锁存器与触发器PPT课件
![数字电子技术基础第5章锁存器与触发器PPT课件](https://img.taocdn.com/s3/m/d813a5a2846a561252d380eb6294dd88d0d23d2e.png)
分立元件触发器和集成触发器。
按工作方式分类
边沿触发器和电平触发器。
触发器的工作原理
触发器在输入信号的作用下,通过内部逻辑门电路的开关特性,实现状态的翻转。
触发器的状态翻转通常发生在时钟脉冲的边沿,此时触发器的输出状态将根据输入 信号和内部状态而改变。
触发器具有置位、复位和保持三种基本功能,这些功能可以通过组合不同的逻辑门 电路来实现。
存储器
触发器还可以用于构建更复杂的存储器,如静态随机存取存储器(SRAM)等。在这些存储器中,触发器 用于存储二进制数据,并在需要时提供数据输出。
两者结合的应用实例
• 数字系统:在数字系统中,锁存器和触发器经常结合使用。 例如,在微处理器或数字信号处理系统中,锁存器和触发器 用于实现数据的存储、传输和控制。这些系统中的锁存器和 触发器通常以大规模集成(LSI)或超大规模集成(VLSI) 的形式存在。
VS
中规模集成电路
在中规模集成电路中,我们将学习一些常 见的数字集成电路,例如译码器、编码器 和比较器等。这些集成电路在数字系统中 有着广泛的应用,例如在计算机、通信和 控制系统等。我们将学习这些集成电路的 工作原理、特性和应用。
THANKS
感谢观看
04
锁存器与触发器的比较
工作原理比较
锁存器
在时钟信号的控制下,实现数据的存 储和传输。当控制信号处于高电平时 ,数据被写入锁存器;当控制信号处 于低电平时,数据保持不变。
触发器
具有记忆功能的基本逻辑单元,能够 在时钟信号的控制下,实现数据的存 储和传输。在时钟脉冲的上升沿或下 降沿时刻,数据被写入触发器。
锁存器和触发器在数字电路中有着广 泛的应用,例如在寄存器、计数器和 时序逻辑电路中。在本章中,我们学 习了这些应用的具体实现和原理。
数字电子技术 第5章
![数字电子技术 第5章](https://img.taocdn.com/s3/m/99bbf21d14791711cc7917b1.png)
锁存器电路图
(1)
E CP 1D 1
(11) 1
C1
(3)
1D Q
C1
EN
(2) 1Q
1
EN
(4) 2D
1D C1 Q
(5) 2 Q
1
EN
(6)
D
3Q
1
& ≥1 Q
(7) 3D
19) 4 Q
1D C1
Q
1
& ≥1
(12)
Q
5Q
EN
5D
(13)
1D C1 Q
1
CP
图5-13 一位D锁存器逻辑图
EN
(15)
6D
(14)
6Q
1D C1
Q
1
EN
(16)
7D
(17)
1D C1
Q
1
7Q
EN
8D
(18)
(19)
1D
Q
1
8Q
(3)移位寄存器
移位寄存器不仅可以存储代码,还可以将代码移位。 ⑴四位右移移位寄存器的原理:
并行输出
Q0 DI FF0 1D Q C1 CP FF1 1D Q1 FF2 1D Q C1 Q2 FF3 1D C1 Q Q3 DO
表5-4 74194的工作状态表
Rd
0 1 1 1 1
S1 S0 × 0 0 1 1 × 0 1 0 1
工作状态 清零 保持 右移 左移 送数
CP A
& & & & & & &
1
并行输出
FA QA Q 1 FB QB Q 1 1S C1 1R R FC Q C Q 1 FD QD Q 1S C1 1R R
74161的逻辑符号
数字电子技术第5章
![数字电子技术第5章](https://img.taocdn.com/s3/m/a5f4f0d95022aaea998f0f4c.png)
(4)逻辑功能分析:当Q1Q0=11时,输出Z=1;当取 其它值时,输出Z=0;在一个循环过程中,Z=1只出现一次, 故为进位输出信号。所以,此电路是带进位输出的同步4 进制加法计数器电路。
EXIT EXIT
第5章 时序逻辑电路
分析举例
【例5.1.2】图所示电路是异步时序逻辑电路的逻辑图, 试分析它的逻辑功能。
3. 求出对应状态值
设电路初始状态为 Q3Q2Q1 Q0 =0000 当某触发器时钟 条件满足时,计算 其状态方程的值; 触发器时钟没有到 来时,则不用计算 其状态方程的值, 保持原有状态。
演 示 文 稿 Presentation
0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1
EXIT EXIT
第5章 时序逻辑电路
画状态图和时序图
演 示 文 稿 Presentation
随着CP脉冲的递 1010至1111在 增,不论从电路输 计数循环外, 出的哪一个状态开 但可以进入计 始,触发器输出的 数循环,称为 变化都会进入同一 自启动 个循环过程
(4)逻辑功能分析:由状态图和时序图 可知,该电路是十进制计数器,或10分频器。
EXIT EXIT
第5章 时序逻辑电路
5.1.2 时序逻辑电路的分析方法
演 示 文 稿 Presentation
基本步骤:
1. 根据给定的电路,写出它的输出方程和驱动方程,并求 状态方程。 时序电路的输出逻辑表达式。 2. 列状态转换真值表。 各触发器输入信号的逻辑表达式。 将驱动方程代入相应触发器的特性方程中所得到的方程 3. 分析逻辑功能。 简称状态转换表,是反映电路状态转换的规律与条件的表格。 方法:将电路现态的各种取值代入状态方程和输 出方程进行计算,求出相应的次态和输出,从而列出 4. 根据状态转换真值表来说明电路逻辑功能。 画状态转换图和时序图。 状态转换表。 如现态起始值已给定,则从给定值开始计算。如 用圆圈及其内的标注表示电路的所有稳态, 没有给定,则可设定一个现态起始值依次进行计算。 在时钟脉冲 CP作用下,各触发器状态变化的波形图。 用箭头表示状态转换的方向,箭头旁的标注表示 状态转换的条件,从而得到的状态转换示意图。 EXIT EXIT
数字电子技术基础第五版期末知识点总结
![数字电子技术基础第五版期末知识点总结](https://img.taocdn.com/s3/m/84d186753169a4517723a3e8.png)
数字电子技术基础第五版期末知识点总结Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】数电课程各章重点第一、二章 逻辑代数基础知识要点各种进制间的转换,逻辑函数的化简。
一、 二进制、十进制、十六进制数之间的转换;二进制数的原码、反码和补码 .8421码二、 逻辑代数的三种基本运算以及5种复合运算的图形符号、表达式和真值表:与、或、非三、 逻辑代数的基本公式和常用公式、基本规则逻辑代数的基本公式逻辑代数常用公式:吸收律:A AB A =+消去律:B A B A A +=+ A B A AB =+多余项定律:C A AB BC C A AB +=++反演定律:B A AB += B A B A •=+基本规则:反演规则和对偶规则,例1-5四、 逻辑函数的三种表示方法及其互相转换逻辑函数的三种表示方法为:真值表、函数式、逻辑图会从这三种中任一种推出其它二种,详见例1-7五、 逻辑函数的最小项表示法:最小项的性质;例1-8六、 逻辑函数的化简:要求按步骤解答1、利用公式法对逻辑函数进行化简2、利用卡诺图对逻辑函数化简3、具有约束条件的逻辑函数化简例1.1 利用公式法化简 BD C D A B A C B A ABCD F ++++=)( 解:BD C D A B A C B A ABCD F ++++=)(例 利用卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y约束条件为∑8)4210(、、、、m解:函数Y 的卡诺图如下:第三章 门电路知识要点各种门的符号,逻辑功能。
一、三极管开、关状态1、饱和、截止条件:截止:T be V V <, 饱和:βCS BS B I I i =>2、反相器饱和、截止判断二、基本门电路及其逻辑符号与门、或非门、非门、与非门、OC 门、三态门、异或;传输门、OC/OD 门及三态门的应用三、门电路的外特性1、输入端电阻特性:对TTL 门电路而言,输入端通过电阻接地或低电平时,由于输入电流流过该电阻,会在电阻上产生压降,当电阻大于开门电阻时,相当于逻辑高电平。
数字电子技术基础(第五版)第五章触发器PPT课件
![数字电子技术基础(第五版)第五章触发器PPT课件](https://img.taocdn.com/s3/m/6ba7e146854769eae009581b6bd97f192279bfee.png)
增加一个下降沿检测电路。
边沿触发器的特点
边沿触发器只在时钟信号的边沿 时刻改变状态,具有较高的抗干 扰能力和稳定性。同时,边沿触 发器可以实现多个触发器的级联
和同步操作。
06
集成触发器及其应用
集成触发器类型与特点
波形分析
在波形图中,可以观察到输入信号J、K以及输出信号Q、Q' 的波形变化。通过对比输入信号和输出信号的波形,可以验 证触发器的逻辑功能是否正确实现。
T触发器实现方法
T触发器定义
T触发器是一种特殊类型的触发器,其输入信号为T,输出信号为Q和Q'。当T=1时,触 发器翻转;当T=0时,触发器保持原状态不变。
和时钟信号CP接入芯片对应的引脚即可。
03
可编程逻辑器件实现
利用可编程逻辑器件(如FPGA、CPLD等)实现D触发器的功能。通过
编程配置逻辑器件的内部逻辑单元,实现D触发器的逻辑功能。
04
JK触发器和T触发器
JK触发器电路结构
基本结构
由两个可控RS触发器构成,输入信号为J和K,输出信号为 Q和Q'。
功能表
列出输入信号S、R与输出信号Q、Q'之间关系的表格,用于描述触发器的逻辑功能。功能表中应包含所有可能的 输入组合及对应的输出状态。
03
同步RS触发器及D触发器
同步RS触发器电路结构
1 2 3
基本RS触发器
由两个与非门交叉耦合构成,具有置0、置1和保 持功能。
同步RS触发器
在基本RS触发器的基础上,引入时钟信号CP, 使得触发器的状态只在CP的上升沿或下降沿发生 改变。
阎石《数字电子技术基础》(第5版)(课后习题 触发器)【圣才出品】
![阎石《数字电子技术基础》(第5版)(课后习题 触发器)【圣才出品】](https://img.taocdn.com/s3/m/8ac50057f90f76c661371ab1.png)
第5章 触发器5.1 画出图5-1由与非门组成的SR 锁存器输出端Q 、Q′的电压波形,输入端S D ′、R D ′的电压波形如图中所示。
图5-1解:波形图如图5-2所示。
图5-25.2 画出图5-3由或非门组成的SR 锁存器输出端Q 、Q′的电压波形,输入端S D 、R D 的电压波形如图中所示。
图5-3解:波形图如图5-4所示。
图5-45.3 试分析图5-5所示电路的逻辑功能,列出真值表,写出逻辑函数式。
图5-5解:当CLK=0时,S、R的值不能加到或非门,此时Q的状态保持不变。
当CLK=1时,Q的状态随SR的不同而发生变化,真值表如表5-1所示。
表5-1卡诺图如图5-6所示。
图5-6化简得n1+=+Q S R'QSR=。
5.4 图5-7所示为一个防抖动输出的开关电路。
当拨动开关S时,由于开关触点接通瞬间发生振颤,S D′和R D′的电压波形如图中所示,试画出Q、Q′端对应的电压波形。
图5-7解:Q 、Q′端对应的电压波形如图5-8所示。
图5-85.5 在图5-9所示电路中,若CLK 、S 、R的电压波形如图中所示,试画出Q 和Q′端与之对应的电压波形。
假定触发器的初始状态为Q =0。
图5-9解:当CLK =0时,SR 的值不能加到或非门,此时Q 的状态保持不变。
当CLK =1时,成为与非门组成的SR 触发器。
Q 和Q′端对应的电压波形如图5-10所示。
图5-105.6 若将电平触发SR 触发器的Q 与R 、Q′与S 相连,如图5-11所示,试画出在CLK 信号作用下Q 和Q′端的电压波形。
已知CLK 信号的宽度t W =4t pd 。
t pd 为门电路的平均传输延迟时间,假定t pd ≈t PHL≈t PLH 。
设触发器的初始状态为Q =0。
图5-11解:当CLK =0时,触发器输出保持不变;当CLK =1时,输出随SR 触发器变化。
脉冲的上升沿到来时,S =1,经过G 1门和G 3门的时延,Q 被置1;同时,经过G 2门的时延,G 2门输出为1。
数字电子技术基础阎石主编第五版
![数字电子技术基础阎石主编第五版](https://img.taocdn.com/s3/m/144ed77b4a35eefdc8d376eeaeaad1f3469311ac.png)
四、触发器分类
SR锁存器
按
SR触发器
按
逻
构 造
电平触发旳触发器 辑 功
JK触发器
可 分
脉冲触发旳触发器 能 可
D触发器
为
边沿触发触发器
分 为
T和T′触发器
5.2 触发器旳电路构造与动作特点
一、SR锁存器 (基本RS触发器)
1.或非门构成
RSD— RSeetset 直直接接复置位位端端 ((置置01端端))
转换环节:
(1)写出已经有触发器和待求触发器旳特征方程。
(2)变换待求触发器旳特征方程,使之形式与已经 有触发器旳特征方程一致。
(3)比较已经有和待求触发器旳特征方程,根据两 个方程相等旳原则求出转换逻辑。
(4)根据转换逻辑画出逻辑电路图。
JK触发器→RS触发器
变换RS触发器旳特征方程,使之形式与JK触发器旳特征 方程一致:
T触发器特征方程:
Q* TQ T Q T Q
J T 与JK触发器旳特征方程比较,得: K T
电 路 图
D触发器→T触发器
D T Q
D触发器→T'触发器
D Q
三、触发器电路构造和逻辑功能旳关系
同一种逻辑功能旳触发器能够用不 同旳电路构造实现。反过来,用同一种 电路构造形式能够作成不同逻辑功能旳 触发器。
RS触发器特征方程
Q* S RQ RS 0
Q* S RQ S(Q Q ) RQ SQ SQ RQ SQ RQ SQ (R R) SQ RQ RSQ RSQ SQ RQ
Q* JQ K Q
Q* SQ RQ
比较,得:
J K
S R
电路图
JK触发器→T触发器
0
阎石《数字电子技术基础》(第5版)(章节题库 触发器)【圣才出品】
![阎石《数字电子技术基础》(第5版)(章节题库 触发器)【圣才出品】](https://img.taocdn.com/s3/m/dc0135484afe04a1b071def7.png)
第5章 触发器一、选择题1.为了使钟控RS触发器的次态为1,RS的取值应为()。
A.RS=0B.RS=01C.RS=10D.RS=11【答案】B【解析】当S=l,R=0时,Q=1、Q'=O。
在SD=1;当S=0,R=1时,Q=0,Q'=l;当S=R=0时,电路维持原来的状态不变。
2.4级移位寄存器,现态为0111,经右移一位后其次态为()。
A.0011或1011B.1111或1110C.1011或1110D.0011或1111【答案】B【解析】实际上移位可以看做小数点做移动,右移相当于小数点右移,应该是前三位为111,最后一位不确定,在阎石教科书中所举的例子从左到右是低位到高位进行的变换。
3.用n个触发器构成计数器,可得到的最大计数长度为()。
A.nB.2nC.n3D.2n【答案】D【解析】每个触发器可以计数为0或1两个不同的状态,这些状态彼此独立,最大计数长度为2n。
4.设计一“00001111”串行序列发生器,最少需要触发器个数是()A.4个B.3个C.5个D.8个【答案】B【解析】设有三个不同的变量Q2Q1Q0,前三个状态可以确定下一个状态,比如Q2Q1Q0=000确定输出状态为1,001的时候为1,依次类推,八个输出需要计数器至少有8个不同的状态。
5.图5-1所示电路是()。
A.无稳态触发器B.单稳态触发器C .双稳态触发器D .多谐振荡器图5-1【答案】B【解析】首先该电路有输入端,一定不会是多谐振荡器。
若以555定时器的V I2端作为触发信号的输入端,并将由T D 和R 组成的反相器输出电压v OD 接至V I1端,同时在V I1对地接入电容C ,则构成单稳态触发器。
6.为将D 触发器转换为T 触发器,图5-2所示电路的虚线框内应是( )。
A .或非门B .与非门C .异或门D .同或门图5-2【答案】D【解析】由T 触发器和D 触发器的触发方程可得:Q n +1=D ;Q n +1=T ’Q n +TQ n ’,需要令输入D =T ’Q n +TQ n ’,与Q n ’作同或运算,与Q n 作异或运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作原理
(2) CP由0跳变到1 :
主锁存器 C G1 D TG1 C C TG2 Q C G3 TG3 C C TG4 从锁存器 Q Q
C =0,C=1,
C CP C
C
C
Q G2
G4
TG1断开,TG2导通——输入信号D 不能送入主锁存器。
约束条件:
工作原理 工作波形
波形图又称时序图,反映了锁存器的输出状态随时间和 输入信号变化的规律。
S R Q Q
置1 置0
动态特性
S tW tW1 R tpLH Q tW tW3 tW
窄脉冲
tW2 tpHL 状态不能确定
定时图
tpLH和tpHL分别为输出由高到低和由低到高时,相对于输入 的延迟时间。 脉冲宽度tW:如果输入脉冲宽度< tW ,Q未越过介稳态点,S 端信号撤出,会使输出状态不稳定。图中tW1和tW2均 tW 。
G23 G4
R
K
G21
Q
G22
门G12 、G22的速度快,先打开。输出状态仍保持不变。
工作原理
(3)CP=1期间:
经过tpd引导门之后:
J
G12
G3
Q
S
G13 G11
S JQ
n
CP
G23 G4
R
R KQ
输出状态?
n
K
G21
Q
G22
仍保持不变!
Q Q n SQ n Q n
Q Qn RQn Qn
1 CP J K
Q
2
3
4
5
6
7
3. T 触发器
逻辑符号
特性表
T
1T
Q Q
CP >C 1
特性方程
T 0 0 1 1
Qn
0 1 0 1
Q n 1
0 1 1 0
状态图
T=1 T=0 0 T=1 1 T=0
Qn 1 T Qn T Qn
T′触发器
逻辑符号
Q CP >C Q
特性方程
Q n 1 Q n
概述
1. 什么是时序逻辑电路?
电路任意时刻的输出状态不仅和当前的输入信 号有关,而且与此前电路的状态有关。
结构特征: 由组合逻辑电路和存储电路组成,电路中存在反馈。
锁存器和触发器是构成时序逻辑电路的基本逻辑单元 。
2、锁存器与触发器
(1)共同点 有0 和1两个稳态,一旦状态被确定,能自行 保持。一个锁存器或触发器能存储一位二进制码。 (2)不同点 锁存器---对脉冲电平敏感的存储 E 电路,在特定输入脉冲电平作用下 改变状态。 E 触发器---对脉冲边沿敏感的存储电 路,在时钟脉冲的上升沿或下降沿 的变化瞬间改变状态。
G2 G3 E C G4 C
Q
Q G2
Q G2
(3) 逻辑功能
G1 Q TG2
TG1 D
D锁存器的功能表 E 0 D × Q
Q
功能 保持
不变 不变
Q G2
1 1
0 1
0 1
1 0
置0 置1
E=0, E=1,
Q不变
Q=D
(4) 工作波形
C D TG1 C C TG2
G1 Q C
D E
G2 G3 E C G4 C
Q
Q Q
3.典型的D锁存器集成电路
74HC/HCT373 八D锁存器
OE LE C1 C1 1D C1 C1 1D Q0
D0
Q1
D1
…
…
C1 C1 1D
…
Q7
D7
74HC/HCT373的功能表
工作模式
使能和读锁存器 (传送模式) 锁存和读锁存器 输 入 Dn OE LE L H L L L L H H H L L × × H L* H* × × 内部锁存器 状 态 L H L H × × 输 出 Qn L H L H 高阻 高阻
逻辑电路图
G4 Q4
D锁存器的功能表
G2 Q
R=S
E
E 0
D × 0 1
Q
Q
功能 保持 置0 置1
G5 Q D
不变 不变 0 1 Q=0 Q=1 1 0
1 1
S=D
G3
Q3
G1
(1) E=0 Q不变 (2)E=1
若 D=0 若 D=1
S =0 R=1 S =1 R=0
三、D锁存器
2.传输门控D锁存器
RD SD
G2
G4
74HC/HCT74的逻辑符号和功能表 74HC/HCT74的功能表
1SD 1CP 1D 1R D 2SD 2CP 2D 2RD S C1 1D R S C2 2D R
输
1Q 1Q 2Q 2Q
SD
L H L
RD H L L
入 CP × × × CP ↑ ↑
D × × × D L H
R
Q
五、触发器的逻辑功能
不同逻辑功能的触发器国际逻辑符号
D CP 1D > C1 Q Q
J CP K 1J > C1 1K Q Q
D 触发器
T 1T Q Q
JK 触发器
S CP R 1S >C1 1R Q Q
CP > C1
T 触发器
SR 触发器
1. D触发器
特性表
以输入信号和触发器的现态为变量,以 次态为函数的真值表,称特性表。
触发脉冲宽度
tH tW Tcmin tpHL
C D
C1 1D
Q Q
传输延迟时间
tpHL
tpLH
传输延迟时间
3. 主从D触发器的动态特性
建立时间tSU:保证与D 相关的电路建立起稳定的状态,D必 须提前于时钟信号CP的上升沿就稳定在指定的逻辑电平上。
保持时间tH:保证D状态可靠地传送到Q,D在CP上升沿到来 之后还应保持一定时间。 触发脉冲宽度tW:保证内部各门正确翻转,时钟脉冲CP的宽 度不小于tW 。
D 0 0 1 1
特性方程
Qn 0 1 0 1
Qn+1 = D
D=1 D=0 0 D=0 1
Qn+1 0 0 1 1
触发器的逻辑功能用逻 辑表达式来描述。
D=1
状态图
2. JK触发器
特性表
J K Qn Qn+1 说 明 状态不变 置 0 置 1
特性方程
KQn J 0 1 00 01 11 10
时钟脉冲每作用一次,触发器翻转一次。
主锁存器维持原态不变。
TG3导通,TG4断开——从锁存器把Q的信号送Q端。
触发器的状态仅仅取决于CP信号上升沿到达前瞬间的D信号
2. 典型的主从D触发器集成电路
74HC/HCT74 中D触发器的逻辑图
C TG1 D TG G1 C C C CP C TG2 TG C C C TG3 TG C TG4 TG C G3 Q Q
SD
H H
RD
H H
国标逻辑符号
输 出 Q Q H L L H H H Qn+1 Q n1 L H H L
具有直接置1、直接置0、上升沿触发功能的触发器
3. 主从D触发器的动态特性
动态特性反映触发器对输入逻辑信号和时钟信号的时间要求, 以及输出状态对时钟信号响应的延迟时间。
保持时间
建立时间
D C P Q Q tSU tpLH
1.基本SR锁存器
工作原理
R G1 Q
G2 S Q
现态:R、S信号作用前Q端的 状态,现态用Q n表示。
次态:R、S信号作用后Q端的 状态,次态用Q n+1表示。
工作原理
R=0、 S=0
Q
R
G1
状态不变
置1 置0 状态不确定 SR = 0
R=0、 S=1
R=1 、 S=0
G2 S Q
S=1 、 R=1
S R Q
二、SR锁存器
2.门控SR锁存器
电路结构
G4 R Q4 G2 Q
基本SR锁存器
国标逻辑符号
R 1R E1 1S Q Q
E
E
Q S G3 Q3 G1
S
使能信号控制门电路
工作原理
E=0:状态不变
G4
E=1: Q3 = S
Q4 = R
R
Q4
G2 Q
状态发生变化。 S=0,R=0:Qn+1=Qn S=1,R=0:Qn+1=1 S=0,R=1:Qn+1=0
Q
S
R
Q
Q
0 0
0 0
0
R
Q
0
S
0 0 1 1
R
0 1 0 1
Q
不允许
1 0
不变
【例】运用基本SR锁存器消除机械开关触点抖动引起的脉冲输出。
+5V R vO vO +5V t0 t1 t
t0 t1
【例】运用基本SR锁存器消除机械开关触点抖动引起的脉冲输出。
+5V 100k A S B 100k +5V R S Q
0 1
1 1
n
0 0
0 1
n
0 0
0 0 1 1
0 0
1 1 0 0
0 1
0 1 0 1
0 1
0 0 1 1
Q
n1
JQ KQ
J=1 K=×
状态图
J=0 K=× J=× K=0
1 1
1 1
0 1
1 0
翻 转
0 J=× K=1