07年电子设计竞赛电动车跷跷板(悬挂运动控制系统).doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

悬挂运动控制系统

摘要:悬挂轨迹控制系统是一电机控制系统,控制物体在80cm×100cm 的范围内作直线、圆、寻迹等运动,并且在运动时能显示运动物体的坐标。设计采用AT89S51单片机作为核心器件实现对物体运动轨迹的自动控制,通过多圈电位器实现对悬挂物位置的精确测量,并引入局部闭环反馈控制环节对误差进行修正。以达到对物体的控制和对坐标点的准确定位。采用脉冲宽度调制技术控制直流电机驱动芯片L298,以实现对电机的转速、转向、启停等多种工作状态进行快速而准确的控制。采用红外光电传感器实现检测电机速度和画板上黑色曲线轨迹。

关键词:运动轨迹;多圈电位器;脉冲宽度调制;红外反射光电传感;直流电机驱动

第1章引言

悬挂轨迹控制系统是一电机控制系统。为满足控制需要,本系统采用AT89S51单片机作为核心器件,多圈电位器为物体位置数据采集器件,以L298驱动的直流电机为执行设备,键盘和LED显示为人机接口的结构方式。算法方面通过以微小直线为单位的策略,完成较为复杂的长直线、圆周和不确定曲线。系统软件将物体运动的坐标转化成悬绳伸缩的距离,进而计算出多圈电位器需要转动到的位置,再算出两直流电机的脉冲宽度调制(PWM)值。再通过A/D转换实现对悬挂物位置的精确测量,并引入局部闭环反馈控制环节对误差进行修正。对于系统自定的确定线型(直线和圆周),通过调整两个直流电机不同的PWM值的搭配,可以控制物体的运动方向。而对于不确定的曲线,由光电传感器得到路线信息,经过单片机的处理,给出物体运动方向的指令。

本设计的主要特点:

1、优化的软件算法,智能化的自动控制,误差补偿。

2、使用双动滑轮,有效防止滑轮与拉绳之间打滑。

3、使用多圈电位器与动滑轮同步转动,引入反馈,实现物体精确定位。

4、LED显示模块提供一个人机对话界面,并实时显示坐标及物体的运动轨迹。

第2章系统功能及基本原理

2.1设计任务

1、控制系统能够通过键盘或其他方式任意设定坐标点参数;

2、控制物体在80cm×100cm的范围内作自行设定的运动,运动轨迹长度不小于100cm,物体在运动时能够在板上画出运动轨迹,限300秒内完成;

3、控制物体作圆心可任意设定、直径为50cm的圆周运动,限300秒内完成;

4、物体从左下角坐标原点出发,在150秒内到达设定的一个坐标点(两点间直线距离不小于40cm);

图2.1 悬挂控制示意图

5、控制物体沿板上标出的任意曲线运动,如图 2.1所示,曲线在测试时现场标出,线宽1.5cm~1.8cm,总长度约50cm,颜色为黑色;曲线的前一部分是连续的,长约30cm;后一部分是两段总长约20cm的间断线段,间断距离不大于1cm;沿连续曲线运动限定在200秒内完成,沿间断曲线运动限定在300秒内完成;

6、能够显示物体中画笔所在位置的坐标,运动轨迹与预期轨迹之间的偏差不得超过4cm。

2.2系统基本方案

根据设计要求,需要实现勾画设定轨迹和对设定轨迹的搜寻功能,并能实时的显示物体中画笔所在位置坐标。其系统方案框图如图2.2所示。图中多圈电位器安装在两个动滑轮上,电机收放线长度就会通过多圈电位器转换成电压值,通过A/D转换后送入单片机;反射式光电传感器对黑线进行检测,以脉冲信号的形式送入单片机,同时按键信号送入单

片机对物体进行设置校正以及轨迹参数设定,控制器对送来的信号进行分析、运算、处理,将控制信号输送到电机驱动模块,控制电动机的转速,使物体的运动轨迹得以控制。

第3章方案论证和比较

根据题目要求可知,本系统所涉及的核心问题主要有:

1、对电机的转速、转向、启停等多种工作状态进行快速而准确的控制,以保证悬挂物体按照预先设定或即时设定的运动轨迹运行。

2、为保证该控制系统的精度要求,必须对运动物体在画板上的具体位置(坐标点)进行实时的检测。

3、为保证该运动物体能在尽可能短的时间内按设定运动轨迹从起始点到达目标点,还需要相应的设定及显示电路。

我们分以下几个部分进行方案设计和比较论证。

3.1控制器模块

根据题目要求,控制器主要用于控制电机,并对坐标参数进行处理,控制电机移动方向。对于控制器的选择有以下两种方案。

方案一:采用FPGA为系统的控制器,FPGA可以实现各种复杂的逻辑功能,模块大,密度高,它将所有器件集成在一块芯片上,减少了体积,提高了稳定性,并且可应用EDA软件仿真、调试,易于进行功能控制。FPGA采用并行的输入输出方式,提高了系统的处理速度,适合作为大规模实时系统的控制核心。通过输入模块将参数输入给FPGA,FPGA通过程序设计控制步进电机运动,但是由于本设计对数据处理的时间要求不高,FPGA的高速处理的优势得不到充分体现,并且由于其集成度高,使其成本偏高,同时由于芯片的引脚较多,实物硬件电路板布线复杂,加重了电路设计和实际焊接的工作。

方案二:采用AT89c51作为系统控制的方案。单片机算术运算功能强,软件编程灵活、自由度大,可用软件编程实现各种算法和逻辑控制。由于其功耗低、体积小、技术成熟和成本低等优点,各个领域应用广泛。并且,由于芯片引脚少,在硬件很容易实现。因此,在本设计中采用AT89c51处理输入的数据并控制电

机运动。

综合上述两种方案,方案二较为简单,可以满足设计要求。

3.2 电机的选择

方案一:采用直流电机。直流电机具有最优越的调速性能,主要表现在调速方便(可无级调速)、调速范围宽、低速性能好(起动转矩大、起动电流小)、运行平稳、噪音低、效率高等方面,但是控制复杂,定位精度差,积累误差大等缺点。

方案二:采用步进电机。步进电机具有控制简单、定位精确、无积累误差等优点。

基于上述比较,为了方便地对电机进行无级调速,和需要电机带负载能力强的特点,这里我们采用步进电机。

3.3驱动及调速方案

方案一:采用继电器对电动机的开和关进行控制,通过开关的切换对电机的速度进行调整。这个方案的优点是电路较为简单,实现容易;缺点是继电器的响应速度慢、机械结构易损坏、寿命较短。

方案二:采用内集成有达林顿管组成的H型的功率变换桥电路的恒压恒流桥式2A驱动芯片。用单片机输出PWM信号控制使之工作在占空比可调的开关状态,通过程序调节占空比精确调整电机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高;H型电路保证了可以简单实现转速和方向的控制;电子开关的速度很快,稳定性也极强,是一种广泛采用的PWM调速技术。

方案三:采用DSP芯片,配以电机控制所需要的外围功能电路,通过数控电压源调节电机运行速度,实现控制物体的运动轨迹。该方案优点是体积小、结构紧凑、使用便捷、可靠性提高。但系统软硬件复杂、成本高。

基于上述理论分析和实际情况,拟定选择方案二。

相关文档
最新文档