平行四边形知识结构图1资料讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、知识结构图:

二、平行四边形的性质

边角对角线平行四边形对边平行且相等对角相等,邻角互补对角线互相平分矩形对边平行且相等四个角都是直角对角线相等且互相平分

菱形对边平行,四边相等对角相等,邻角互补对角线互相垂直平分,每条对角线平分一组对角

正方形对边平行,四边相等四个角都是直角对角线互相垂直平分且相等,每条对角线平分一组

对角

三、平行四边形的常用判定方法

平行四边形1) 两组对边分别平行的四边形是平行四边形; 2) 两组对边分别相等的四边形;

3) 一组对边平行且相等的;4)两组对角分别相等的四边形 5) 对角线互相平分的四边形;

矩形1)有一个角是直角的平行四边形是矩形; 2)有三个角是直角的四边形是矩形;3)对角线相等的平行四边形是矩形。 4)对角线平分且相等的四边形是矩形

菱形1)有一组邻边相等的平行四边形是菱形; 2)四条边都相等的四边形是菱形;3)对角线互相垂直的平行四边形是菱形。 4)对角线平分且垂直的四边形是菱形

正方形1)有一个角是直角且有一组邻边相等的平行四边形是正方形;

2)有一组邻边相等的矩形是正方形; 3)有一个角是直角的菱形是正方形。

1.三角形的中位线平行且等于第三边的一半

2.直角三角形斜边上的中线等于斜边的一半

3.菱形的面积公式:对角线乘积的一半

练习题:

1.不能判定四边形ABCD 为平行四边形的题设是( ) (A )AB 平行且等于CD 。 (B )∠A=∠C ,∠B=∠D 。 (C )AB=AD ,BC=CD 。 (D )AB=CD ,AD=BC 。 2.下面性质中菱形有而矩形没有的是( )

(A )邻角互补(B )内角和为360°(C )对角线相等 (D )对角线互相垂直 3.正方形具有而菱形不一定具有的性质是( ) (A )四条边相等 (B )对角线互相垂直平分 (C )对角线平分一组对角 (D )对角线相等

4、顺次连结任意四边形四边中点所得的四边形一定是( ) A 、平行四边形 B 、矩形 C 、菱形 D 、正方形

5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( ) A.18° B.36° C.72° D.108° 6.下列命题中,真命题是( )

A 、有两边相等的平行四边形是菱形

B 、对角线垂直的四边形是菱形

C 、四个角相等的菱形是正方形

D 、两条对角线相等的四边形是矩形 7、□ABCD 中,∠A =50°,则∠B =__________,∠C =__________。

8.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm .

9、菱形ABCD 的周长为36,其相邻两内角的度数比为1:5,则 此菱形的面积为_________。 10、对角线长为22的正方形的周长为___________,面积为__________。

11.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积

S 1与矩形QCNK 的面积S 2的关系是S 1 S 2(填“>”或“<”或“=” )

A

第11题图 第12题图

12.如图,在矩形ABCD 中,点E 、F 分别在AB 、DC 上,BF ∥DE ,若AD=12cm ,AB=7cm ,

•且AE :EB=5:2,则阴影部分的面积为_______cm

N

M

Q

C

B

E

D

C

B A

例1:

(1)如图,已知四边形ABCD 为平行四边形,∠A +∠C =80°,平行

四边形ABCD 的周长为46 cm ,且AB -BC =3 cm ,求平行四边形ABCD 的各边长和各内角的度数.

例2(1)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOB=2∠BOC ,若对角线AC=6cm ,

则该矩形的周长和面积各是多少?

(2):如图,菱形ABCD 的边长为8㎝,∠BAD=120°,则菱形ABCD 的面积为

例3:如图,矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作DP ∥OC ,且 DP=OC ,连结CP 。

(1)试判断四边形CODP 的形状;

(2)如果条件“矩形ABCD ”变为“正方形ABCD ”呢?

例4:如图,已知四边形ABCD 中,AC=BD ,E 、F 、G 、H 分别是AB 、BC 、

CD 、DA 边上的中点。

(1)求证:四边形EFGH 是菱形;

(2)添加一个条件,使四边形ABCD 是正方形,并说明理由。

D A B

C

O A B C D

O

发现:(1)顺次连接对角线既不相等也不垂直的四边形各边中点得;

(2)顺次连接对角线相等但不垂直的四边形各边中点得;

(3)顺次连接对角线互相垂直但不相等的四边形各边中点得;

(4)顺次连接对角线相等且互相垂直的四边形各边中点得

例5. 如右下图,把AD=12cm,AB=8cm的矩形沿着AE为折痕对折使点D落在BC上点F处,则DE= cm。

例6.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA 的外角平分线CF于点F,交∠ACB内角平分线CE于E.

(1)求证:EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;

(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。

相关文档
最新文档