七年级下册数学压轴题集锦
初一数学下学期压轴题精选
1.(1)如图1,把△ABC 沿DE 折叠,使点A 落在点A’处,试探索△1+△2与△A 的关系.(不必证明).(2)如图2,BI 平分△ABC ,CI 平分△ACB ,把△ABC 折叠,使点A 与点I 重合,若△1+△2=130°,求△BIC 的度数;(3)如图3,在锐角△ABC 中,BF△AC 于点F ,CG△AB 于点G ,BF 、CG 交于点H ,把△ABC 折叠使点A 和点H 重合,试探索△BHC 与△1+△2的关系,并证明你的结论.2.己知ABC ∆的三边长a 、b 、c 都是正整数,且满足22614580a b a b +--+=(1)求a 、b 的值;(2)求ABC ∆的周长的最小值.3. 9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从苏州出发,1日到4日在北京旅游,8月5日上午返回苏州.苏州与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~1.5米的儿童享受半价票;飞机 (普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用.(1) 他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x ,y 的值;(2) 他们往返都坐飞机 (成人票五五折),其他开支不变,至少要准备多少元?(3) 他们去时坐火车,回来坐飞机 (成人票五五折),其他开支不变,准备了14000元,是否够用? 如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?4. 如图1,一副三角板的两个直角重叠在一起,△A =30°,△C =45°△COD 固定不动,△AOB 绕着O 点顺时针旋转α°(0°< α <180° )(1)若△AOB 绕着O 点旋转图2的位置,若△BOD =60°,则△AOC =________;(2)若0°<α<90°,在旋转的过程中△BOD +△AOC 的值会发生变化吗?若不变化,请求出这个定值;(3)若90°< α <180° ,问题(2)中的结论还成立吗?说明理由;(4)将△AOB 绕点O 逆时针旋转α度(0°< α <180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).5. 阅读材料:方程x 2﹣x ﹣2=0中,只含有一个未知数且未知数的次数为2.像这样的方程叫做一元二次方程.把方程的左边分解因式得到(x ﹣2)(x+1)=0.我们知道两个因式乘积为0,其中有一个因式为0即可,因此方程可以转化为:x ﹣2=0或x+1=0.解这两个一次方程得:x=2或x=﹣1.所以原方程的解为:x=2或x=﹣1.上述将方程x 2﹣x ﹣2=0转化为x ﹣2=0或x+1的过程,是将二次降为一次的“降次”过程,从而使得问题得到解决.仿照上面降次的方法,解决下列问题:(1)解方程x 2﹣3x=0;(2)2a 2﹣a ﹣3=0;(3)解方程组:. 图1 A B D C 图2 B D C A O O。
初中七年级下册期末压轴题数学附答案(一)
初中七年级下册期末压轴题数学附答案(一)一、解答题1.如图所示,A (1,0)、点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,且点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒1个单位长度,运动时间为t 秒,回答下列问题:①当t=秒时,点P 的横坐标与纵坐标互为相反数;②求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);③当点P 运动到CD 上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x ,y ,z 之间的数量关系能否确定?若能,请用含x ,y 的式子表示z ,写出过程;若不能,说明理由.2.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠= ,140PAB ∠= ,求PEH ∠的度数.3.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°.求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质,可得∠APC =∠APE +∠CPE =50°+60°=110°.问题解决:(1)如图2,AB ∥CD ,直线l 分别与AB 、CD 交于点M 、N ,点P 在直线I 上运动,当点P 在线段MN 上运动时(不与点M 、N 重合),∠PAB =α,∠PCD =β,判断∠APC 、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P 在线段MN 或NM 的延长线上运动时.请直接写出∠APC 、α、B 之间的数量关系;(3)如图3,AB ∥CD ,点P 是AB 、CD 之间的一点(点P 在点A 、C 右侧),连接PA 、PC ,∠BAP 和∠DCP 的平分线交于点Q .若∠APC =116°,请结合(2)中的规律,求∠AQC 的度数.4.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直线AB 与CD 的位置关系是;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由.5.如图1,已AB ∥CD ,∠C =∠A .(1)求证:AD ∥BC ;(2)如图2,若点E 是在平行线AB ,CD 内,AD 右侧的任意一点,探究∠BAE ,∠CDE ,∠E 之间的数量关系,并证明.(3)如图3,若∠C =90°,且点E 在线段BC 上,DF 平分∠EDC ,射线DF 在∠EDC 的内部,且交BC 于点M ,交AE 延长线于点F ,∠AED +∠AEC =180°,①直接写出∠AED 与∠FDC 的数量关系:.②点P 在射线DA 上,且满足∠DEP =2∠F ,∠DEA ﹣∠PEA =514∠DEB ,补全图形后,求∠EPD 的度数6.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED =.(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.7.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷ 个(a≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___;(2)关于除方,下列说法错误的是___A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___;5⑥=___;(-12)⑩=___.(2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷338.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③=,(﹣12)⑤=;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④=;5⑥=;(﹣12)⑩=.(2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于;9.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈4次方”.一般地,把个记作a ⓝ,读作“a 的圈n 次方”(初步探究)(1)直接写出计算结果:2③,(﹣12)③.(深入思考)2④21111112222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩.(3)猜想:有理数a (a≠0)的圈n (n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧10.已知,在计算:()()12++++N N N 的过程中,如果存在正整数N ,使得各个数位均不产生进位,那么称这样的正整数N 为“本位数”.例如:2和30都是“本位数”,因为2349++=没有进位,30313293++=没有进位;15和91都不是“本位数”,因为15161748++=,个位产生进位,919293276++=,十位产生进位.则根据上面给出的材料:(1)下列数中,如果是“本位数”请在后面的括号内打“√”,如果不是“本位数”请在后面的括号内画“×”.106();111();400();2015().(2)在所有的四位数中,最大的“本位数”是,最小的“本位数”是.(3)在所有三位数中,“本位数”一共有多少个?11.阅读下面的文字,解答问题.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数;用{a }表示a 减去[a ]所得的差.例如:=1,[2.2]=2,1,{2.2}=2.2﹣2=0.2.(1)仿照以上方法计算:={5}=;(2)若=1,写出所有满足题意的整数x 的值:.(3)已知y 0是一个不大于280的非负数,且满足}=0.我们规定:y 1=],y 2=],y 3=],…,以此类推,直到y n 第一次等于1时停止计算.当y 0是符合条件的所有数中的最大数时,此时y 0=,n =.12.阅读下列材料:小明为了计算22019202012222+++++ 的值,采用以下方法:设22019202012222s =+++++ ①则22020202122222s =++++ ②②-①得,2021221s s s -==-请仿照小明的方法解决以下问题:(1)291222++++= ________;(2)220333+++= _________;(3)求231n a a a a ++++ 的和(1a >,n 是正整数,请写出计算过程).13.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()0,C a ,(),D b a ,其中a 、b 满足关系式:24(1)0a b a ++--=.()1a =______,b =______,BCD 的面积为______;()2如图2,石AC BC ⊥于点C ,点P 是线段OC 上一点,连接BP ,延长BP 交AC 于点.Q 当CPQ CQP ∠=∠时,求证:BP 平分ABC ∠;(提示:三角形三个内角和等于180) ()3如图3,若AC BC ⊥,点E 是点A 与点B 之间上一点连接CE ,且CB 平分.ECF ∠问BEC ∠与BCO ∠有什么数量关系?请写出它们之间的数量关系并请说明理由.14.如图,已知//AB CD ,CN 是BCE ∠的平分线.(1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.15.在平面直角坐标系xOy 中,如图正方形ABCD 的顶点A ,B 坐标分别为()1,0A -,()3,0B ,点E ,F 坐标分别为(),0E m ,()3,0F m ,且12m -<≤,以EF 为边作正方形EFGH .设正方形EFGH 与正方形ABCD 重叠部分面积为S .(1)①当点F 与点B 重合时,m 的值为______;②当点F 与点A 重合时,m 的值为______.(2)请用含m 的式子表示S ,并直接写出m 的取值范围.16.中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?17.对于平面直角坐标系xOy 中的图形G 和图形G 上的任意点P (x ,y ),给出如下定义:将点P (x ,y )平移到P '(x +t ,y ﹣t )称为将点P 进行“t 型平移”,点P '称为将点P 进行“t 型平移”的对应点;将图形G 上的所有点进行“t 型平移”称为将图形G 进行“t 型平移”.例如,将点P (x ,y )平移到P '(x +1,y ﹣1)称为将点P 进行“l 型平移”,将点P (x ,y )平移到P '(x ﹣1,y +1)称为将点P 进行“﹣l 型平移”.已知点A (2,1)和点B (4,1).(1)将点A (2,1)进行“l 型平移”后的对应点A '的坐标为.(2)①将线段AB 进行“﹣l 型平移”后得到线段A 'B ',点P 1(1.5,2),P 2(2,3),P 3(3,0)中,在线段A ′B ′上的点是.②若线段AB 进行“t 型平移”后与坐标轴有公共点,则t 的取值范围是.(3)已知点C (6,1),D (8,﹣1),点M 是线段CD 上的一个动点,将点B 进行“t 型平移”后得到的对应点为B ',当t 的取值范围是时,B 'M 的最小值保持不变.18.如图1,以直角AOC △的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 80b -=.(1)直接写出点A ,点C 的坐标;(2)如图1,坐标轴上有两动点P ,Q 同时出发,点P 从点C 出发沿x 轴负方向以每秒2个单位长度的速度匀速运动,点Q 从点O 出发沿y 轴正方向以每秒1个单位长度的速度匀速运动,当点P 到达点O 整个运动随之结束;线段AC 的中点D 的坐标是()4,3D ,设运动时间为t 秒.是否存在t ,使得DOP △与DOQ △的面积相等?若存在,求出t 的值;若不存在,说明理由;(3)如图2,在(2)的条件下,若DOC DCO ∠=∠,点G 是第二象限中一点,并且OA 平分DOG ∠,点E 是线段OA 上一动点,连接CE 交OD 于点H ,当点E 在OA 上运动的过程中,探究DOG ∠,OHC ∠,ACE ∠之间的数量关系,直接写出结论.19.题目:满足方程组3512332x y kx y k+=+⎧⎨+=-⎩的x与y的值的和是2,求k的值.按照常规方法,顺着题目思路解关于x,y的二元一次方程组,分别求出xy的值(含有字母k),再由x+y=2,构造关于k的方程求解,从而得出k值.(1)某数学兴趣小组对本题的解法又进行了探究利用整体思想,对于方程组中每个方程变形得到“x+y”这个整体,或者对方程组的两个方程进行加减变形得到“x+y”整体值,从而求出k值请你运用这种整体思想的方法,完成题目的解答过程.(2)小勇同学的解答是:观察方程①,令3x=k,5y=1解得y=15,3x+y=2,∴x=95∴k=3×95=275把x=95,y=15代入方程②得k=﹣35所以k的值为275或﹣35.请诊断分析并评价“小勇同学的解答”.20.如图,已知∠a和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD//EF,AC AE⊥.(1)分别求∠a和β∠的度数;(2)请判断AB与CD的位置关系,并说明理由;(3)求C∠的度数.21.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为25347+=+=,所以2534是“7类诚勤数”.(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值.22.在平面直角坐标系中,若点P (x ,y )的坐标满足x ﹣2y +3=0,则我们称点P 为“健康点”:若点Q (x ,y )的坐标满足x +y ﹣6=0,则我们称点Q 为“快乐点”.(1)若点A 既是“健康点”又是“快乐点”,则点A 的坐标为;(2)在(1)的条件下,若B 是x 轴上的“健康点”,C 是y 轴上的“快乐点”,求△ABC 的面积;(3)在(2)的条件下,若P 为x 轴上一点,且△BPC 与△ABC 面积相等,直接写出点P 的坐标.23.如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为()1A m n -,,B 点的坐标为()0n -,,其中,m n 是二元一次方程组2202m n m n +=⎧⎨-=-⎩的解,过点A 作x 轴的平行线交y 轴于点C .(1)求点,A B 的坐标;(2)动点P 从点B 出发,以每秒4个单位长度的速度沿射线BO 的方向运动,连接PC ,设点P 的运动时间为t 秒,三角形OPC 的面积为()0S S ≠,请用含t 的式子表示S (不用写出相应的t 的取值范围);(3)在(2)的条件下,在动点P 从点B 出发的同时,动点Q 从点C 出发以每秒1个单位长度的速度沿线段CA 的方向运动.过点O 作直线PC 的垂线,点G 为垂足;过点Q 作直线PC 的垂线,点H 为垂足.当2OG QH =时,求t 的值.24.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()28212a b -+-=,(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点,①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.25.阅读材料:形如2213x <+<的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如221213x x <+⎧⎨+<⎩;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得122x <<,然后同时除以2,得1112x <<.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式2235x ≥-+>-;(3)已知532x -≤<-,求35x +的整数值.26.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[x ].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x =[x ]+a ,其中0≤a <1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]=,[-6.5]=;(2)如果[x ]=3,那么x 的取值范围是;(3)如果[5x -2]=3x +1,那么x 的值是;(4)如果x =[x ]+a ,其中0≤a <1,且4a =[x ]+1,求x 的值.27.阅读理解:例1.解方程|x |=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2,在数轴上找出|x ﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x ﹣1|=2的解为x =﹣1或x =3,因此不等式|x ﹣1|>2的解集为x <﹣1或x >3.参考阅读材料,解答下列问题:(1)方程|x ﹣2|=3的解为;(2)解不等式:|x ﹣2|≤1.(3)解不等式:|x ﹣4|+|x +2|>8.(4)对于任意数x ,若不等式|x +2|+|x ﹣4|>a 恒成立,求a 的取值范围.28.如图①,在平直角坐标系中,△ABO 的三个顶点为A (a ,b ),B (﹣a ,3b ),O(0,0|b ﹣2|=0,线段AB 与y 轴交于点C .(1)求出A ,B 两点的坐标;(2)求出△ABO 的面积;(3)如图②,将线段AB 平移至B 点的对应点B '落在x 轴的正半轴上时,此时A 点的对应点为A ',记△A B C ''的面积为S ,若24<S <32,求点A '的横坐标的取值范围.29.已知关于x 、y 的二元一次方程23,3 3.x y a x y a +=-⎧⎨-=-⎩①②(1)若方程组的解x 、y 满足0,1x y ≤<,求a 的取值范围;(2)求代数式638x y +-的值.30.如图,在平面直角坐标系中,已知△ABC,点A 的坐标是(4,0),点B 的坐标是(2,3),点C 在x 轴的负半轴上,且AC=6.(1)直接写出点C 的坐标.(2)在y 轴上是否存在点P ,使得S △POB =23S △ABC 若存在,求出点P 的坐标;若不存在,请说明理由.(3)把点C 往上平移3个单位得到点H ,作射线CH,连接BH ,点M 在射线CH 上运动(不与点C 、H 重合).试探究∠HBM ,∠BMA ,∠MAC 之间的数量关系,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)(-2,0);(2)①t=2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,z=x+y.【分析】(1)根据平移的性质即可得到结论;(2)①由点C的坐标为(-3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论.【详解】解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(-2,0);故答案为:(-2,0);(2)①∵点C的坐标为(-3,2)∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,如图,过P作PF∥BC交AB于F,则PF∥AD,∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.【点睛】本题考查了坐标与图形的性质,坐标与图形的变化-平移,平行线的性质,正确的作出辅助线是解题的关键.2.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=12∠FEG,∠GEH=12∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.【详解】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC ,∴∠APC =β-α;(3)如图3,过点P ,Q 分别作PE ∥AB ,QF ∥AB ,∵AB ∥CD ,∴AB ∥QF ∥PE ∥CD ,∴∠BAP =∠APE ,∠PCD =∠EPC ,∵∠APC =116°,∴∠BAP +∠PCD =116°,∵AQ 平分∠BAP ,CQ 平分∠PCD ,∴∠BAQ =12∠BAP ,∠DCQ =12∠PCD ,∴∠BAQ +∠DCQ =12(∠BAP +∠PCD )=58°,∵AB ∥QF ∥CD ,∴∠BAQ =∠AQF ,∠DCQ =∠CQF ,∴∠AQF +∠CQF =∠BAQ +∠DCQ =58°,∴∠AQC =58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.4.(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ;(2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠.【详解】解:(1)2(402)|20|0αβ-+-= ,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ;(2)180FMN GHF ∠+∠=︒;理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠ ,PME MGH ∴∠=∠,//GH PN ∴,GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒ ,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠;理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠ ,12PFQ PFN =∠,PER PFQ ∴∠=∠,//ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x R y x EPM =+∠⎧⎨=+∠⎩,可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠.【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.5.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=514∠DEB,求出∠AED=50°,即可得出∠EPD的度数.【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.6.(1)70°;(2)EAF AED EDG∠=∠+∠,证明见解析;(3)122°【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.理由如下:过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒,180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠= ,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒ ,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒ ,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒,DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒,1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.7.初步探究:(1)12,8;(2)C ;深入思考:(1)213,415,82;(2)21n a -;(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n 次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=12(12)⑤=11111822222÷÷÷÷=(2)A :任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A 错误;B :因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1,故选项B 错误;C :3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C 正确;D :负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D 错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=2135⑥=5÷5÷5÷5÷5÷5=415(-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.8.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12,111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2;5⑥=5÷5÷5÷5÷5÷5=(15)4;同理可得:(﹣12)⑩=82;(2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.9.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a⎛⎫⎪⎝⎭;(4)7-28.【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为1a,则aⓝ=a×(1a)n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2;(2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8;(3)aⓝ=a×1a×1a×…×n-211a a⎛⎫= ⎪⎝⎭;(4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧=(-3)8×(1-3)7-(﹣12)9×(-2)6=-3-(-12)3=-3+1 8=7 -2 8.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.10.(1)×,√,×,×;(2)3332;1000;(3)36(个).【分析】(1)根据“本位数”的定义即可判断;(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000;(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有34336⨯⨯=(个).【详解】解:(1)106107108321++=有进位;111112113336++=没有进位;4004014021203++=有进位;2015201620176048++=有进位;故答案为:×,√,×,×.(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000,故答案为:3332,1000.(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有34336⨯⨯=(个).【点睛】本题考查了新定义计算题,准确理解新定义的内涵是解题的关键.11.(1)2;32)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,04x <<,则可得满足题意的整数的x 的值为1、2、3;(3)由0=,可知,0y 是某个整数的平方,又0y 是符合条件的所有数中最大的数,则0256y =,再依次进行计算.【详解】解:(1)由定义可得,2=,[52=,{53∴=.故答案为:2;3.(2)1= ,2∴<,即04x <<,∴整数x 的值为1、2、3.故答案为:1、2、3.(3)0= ,即0=-=,∴2t ,且t 是自然数,0y 是符合条件的所有数中的最大数,0256y ∴=,1[16]16y ∴===,2[4]4y ===,3[2]2y ===,41y ===,即4n =.故答案为:256,4.【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.12.(1)1021-;(2)21332-;(3)111n a a +--【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案;(3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++ ①,∴2s=29102222++++ ②,②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++ ①,∴3s=22021333+++ ②,②-①得:2s=2133-,∴21332s -=,故答案为:21332-;(3)设s=231n a a a a ++++ ①,∴as=231n n a a a a a +++++ ②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--.【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.13.(1)4-;3-;6;(2)证明见解析;(3)2BEC BCO ∠=∠,理由见解析.【详解】分析:(1)求出CD 的长度,再根据三角形的面积公式列式计算即可得解;(2)根据等角的余角相等解答即可;(3)首先证明∠ACD=∠ACE ,推出∠DCE=2∠ACD ,再证明∠ACD=∠BCO ,∠BEC=∠DCE=2∠ACD 即可解决问题;【解答】(1)解:如图1中,∵|a+4|+(b-a-1)2=0,∴a=-4,b=-3,∵点C(0,-4),D(-3,-4),∴CD=3,且CD∥x轴,∴△BCD的面积=12×4×3=6;故答案为-4,-3,6.(2)如图2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)如图3中,结论:∠BEC=2∠BCO.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB 平分∠ECF ,∴∠ECB=∠BCF ,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE ,∴∠DCE=2∠ACD ,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO ,∵C (0,-4),D (-3,-4),∴CD ∥AB ,∠BEC=∠DCE=2∠ACD ,∴∠BEC=2∠BCO ,点睛:本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质等知识,熟记性质并准确识图是解题的关键.14.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠,12BCN BCE ∴=∠,12BCM BCD ∠=∠,180BCE BCD ∠+∠=︒ ,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒;(2)CM CN ⊥ ,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒,CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒ ,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,。
2023-2024学年七年级数学下册 实数 压轴题(十大题型)(原卷版)
(1)如图1,当2n =时,拼成的大正方形ABCD 的边长为
如图2,当5n =时,拼成的大正方形1111D C B A 的边长为
如图3,当10n =时,拼成的大正方形2222A B C D 的边长为
(2)小李想沿着正方形纸片1111D C B A 边的方向能否裁出一块面积为()22.42dm
的长方形纸片,使它的长宽之比
为21:?他能裁出吗?请说明理由.
(1)仿照康康上述的方法,探究7
(2)继续仿照上述方法,在(1)中得到的
确,精确到0.001(画出示意图,标明数据,并写出求解过程)
(3)综合上述具体探究,已知非负整数
的估算值.
(1)有44⨯的网格,每个方格的边长为1,把正方形ABCD画在网格中,要求顶点在格点上.
(2)如图,把正方形ABCD放到数轴上,使得点A与数1-重合,边
为________.
任务:
(1)在图3中画图确定表示10的点M.
(2)把5个小正方形按图中位置摆放,并将其进行裁剪,拼成一个大正方形.请在图中画出裁剪线,并在图中画出所拼得的大正方形的示意图.
(3)小丽想用一块面积为36cm
它的长是宽的2倍.小丽能用这块纸片裁出符合要求的纸片吗?请你通过计算说明理由.
(4)在图6中的数轴上分别标出表示数。
(完整版)七年级下学期数学压轴题
1如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形,写出作法并证明。
(5分)请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。
直接写出FE 和FD 之间的数量关系;(3分)(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
(8分)2如图12-1,点O 是线段AD 上的一点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . (1)求∠AEB 的大小;(2)如图12-2,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕着点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小.O图12-1 A 图12-2 (第18题图)O P AMNEB CD FACEFBD图①图② 图③3.如图,在ABC ∆中,40,2=∠==B AC AB ,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40=∠ADE ,DE 交线段AC 于E .(1)当115=∠BDA 时,=∠EDC °,=∠DEC °;点D 从B 向C 运动时,BDA ∠逐渐变 (填“大”或“小”);(本小题3分)(2)当DC 等于多少时,ABD ∆≌DCE ∆,请说明理由;(本小题4分)(3)在点D 的运动过程中,ADE ∆的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数.若不可以,请说明理由。
(本小题3分)4、如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是_______ 40、(本题满分10分)如图1,两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O 。
2023-2024学年七年级数学下册 专题03 平行线与三角形综合特训(压轴30题)(解析版)
专题03平行线与三角形综合特训(压轴30题)一.选择题(共7小题)1.将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个【答案】A【解答】解:如图,根据题意得:AB∥CD,∠FEG=90°,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;故(1),(2),(3),(4)正确;∴∠1+∠3=90°.故(5)正确.∴其中正确的共有5个.故选:A.2.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.9【答案】B【解答】解:五边形的内角和为(5﹣2)×180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.3.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.140°B.130°C.110°D.70°【答案】A【解答】解:∵四边形ADA′E的内角和为(4﹣2)•180°=360°,而由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,∴∠AED+∠A′ED+∠ADE+∠A′DE=360°﹣∠A﹣∠A′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.故选:A.4.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011【答案】C【解答】解:由图中可知:1个三角形组成的图形的周长是3;2个三角形组成的图形的周长是3+1=4;3个三角形组成的图形的周长是3+2=5;…那么2008个这样的三角形镶嵌而成的四边形的周长是3+2007=2010.故选:C.5.如图,在△ABC中,BE,CE,CD分别平分∠ABC,∠ACB,∠ACF,AB∥CD,下列结论:①∠BDC=∠BAC;②∠BEC=90°+∠ABD;③∠CAB=∠CBA;④∠ADB+∠ABC=90°,其中正确的为()A.①②③B.①②④C.②③④D.①②③④【答案】C【解答】解:∵CD平分∠ACF,∠ACF=∠ABC+∠BAC,∴∠ACD=∠DCF=∠ACF=∠ABC+∠BAC.∵∠DCF=∠DBC+∠BDC=∠ABC+∠BDC,∴∠BAC=∠BDC,即∠BAC=2∠BDC,①错误;∵CE平分∠ACB,∴∠ACE=∠ACB,∵∠ACB+∠ACF=180°,∴∠ACE+∠ACD=90°,即∠ECD=90°,∴∠BEC=∠ECD+∠CDB=90°+∠CDB,∵CD∥AB,∴∠CDB=∠ABD,∴∠BEC=90°+∠ABD,故②正确;∵BD平分∠CBA,∴∠CBA=2∠ABD=2∠CDB,∵∠BAC=2∠BDC,∴∠CAB=∠CBA,故③正确;∵BD平分∠ABC,CD平分∠ACF,∴AD为△ABC外角∠MAC的平分线,∴∠MAC=2∠MAD,∵∠MAC=∠ABC+∠ACB,∠MAD=∠ABD+∠ADB,∠ABC=2∠ABD,∴∠ACB=2∠ADB,∴∠ADB=∠ACE,∵CD∥AB,∴∠ABC=∠DCF=∠ACD,∵∠ACE+∠ACD=90°,∴∠ADB+∠ABC=90°,故④正确.故选:C.6.如图,在△ABC中,延长CA至点F,使得AF=CA,延长AB至点D,使得BD=2AB,=36,则S△ABC为()延长BC至点E,使得CE=3CB,连接EF、FD、DE,若S△DEFA.2B.3C.4D.5【答案】A【解答】解:如图,连接AE,CD,设△ABC的面积为m.∵BD=2AB,∴△BCD的面积为2m,△ACD的面积为3m,∵AC=AF,∴△ADF的面积=△ACD的面积=3m,∵EC=3BC,∴△ECA的面积=3m,△EDC的面积=6m,∵AC=AF,∴△AEF的面积=△EAC的面积=3m,∴△DEF的面积=m+2m+6m+3m+3m+3m=18m=36,∴m=2,∴△ABC的面积为2,故选:A.7.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16【答案】C【解答】解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的多边形的边数为13或14或15,故选:C.二.填空题(共8小题)8.如图所示,在三角形ABC中,AC=3AE,三角形ABD的面积是三角形ADC面积的2倍,则阴影部分的面积占三角形ABC面积的=.【答案】.【解答】解:连接OC,=S△EOC,则S△AOES△ODC=S△BOD,=S△ABD,又∵S△ADC+S△ODC=(S△AOB+S△BOD),∴S△AOC=S△AOB∴S△AOC=m,设S△AOE=2m,S△AOC=3m,S△AOB=6m,则S△OEC=S△BEC=S△ABC,∵S△ABD=S四边形EODC=6m,∴S△AOB=4m,S△BOD=8m,∴S△ODC=21m,∴S△ABC∴阴影部分的面积占三角形ABC面积de=.9.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC =36°,则∠CAP=54°.【答案】见试题解答内容【解答】解:过P点作PF⊥BA于F,PN⊥BD于N,PM⊥AC于M,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,又∵PF⊥BA于F,PM⊥AC于M,∴∠FAP=∠PAC.∵∠BPC=36°,∴∠ABP=∠PBC=(x﹣36)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣36°)﹣(x°﹣36°)=72°,∴∠CAF=108°,∴∠FAP=∠PAC=54°.故答案为:54°.10.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=.【答案】见试题解答内容【解答】解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.11.已知△ABC中,∠A=α.在图(1)中∠B、∠C的角平分线交于点O1,则可计算得∠BO1C=90°+;在图(2)中,设∠B、∠C的两条三等分角线分别对应交于O1、O2,则∠BO2C=60°+α;请你猜想,当∠B、∠C同时n等分时,(n﹣1)条等分角线分别对应交于O1、O2,…,O n﹣1,如图(3),则∠BO n﹣1C=+(用含n和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O2B和O2C分别是∠B、∠C的三等分线,∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=(180°﹣α)=120°﹣α;∴∠BO2C=180°﹣(∠O2BC+∠O2CB)=180°﹣(120°﹣α)=60°+α;在△ABC中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,B和O n﹣1C分别是∠B、∠C的n等分线,∵O n﹣1BC+∠O n﹣1CB=(∠ABC+∠ACB)=(180°﹣α)=﹣∴∠O n﹣1.C=180°﹣(∠O n﹣1BC+∠O n﹣1CB)=180°﹣(﹣)∴∠BO n﹣1=+.故答案为:60°+α;+.12.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=20度.【答案】见试题解答内容【解答】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.13.如图,在△ABC中,∠A=α、∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC 与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2010BC与∠A2010CD的平分线相交于点A2011,得∠A2011,则∠A2011=.【答案】见试题解答内容【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1=180°﹣∠ACD﹣∠ACB﹣∠ABC=180°﹣(∠ABC+∠A)﹣(180°﹣∠A﹣∠ABC)﹣∠ABC=∠A=;同理可得,∠A2=∠A1=,…∴∠A2011=.故答案为:.14.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为17.5°;第n个三角形中以A n为顶点的底角的度数为.【答案】见试题解答内容【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A=(180°﹣∠B)=(180°﹣40°)=70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以A n为顶点的底角的度数=.故答案为:17.5°,.15.如图a是长方形纸带,∠DEF=α°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是(180﹣3α)°(用含α的代数式表示).【答案】180﹣3α.【解答】解:∵AD∥BC,∠DEF=α°,∴∠BFE=∠DEF=α°,∴∠EFC=180°﹣α°(图a),∴∠BFC=∠BFC=180°﹣α°﹣α°=180°﹣2α°(图b),∴∠CFE=180°﹣2α°﹣α°=180°﹣3α°(图c).故答案为:180﹣3α.三.解答题(共15小题)16.已知ABCD为四边形,点E为边AB延长线上一点.【探究】:(1)如图1,∠ADC=110°,∠BCD=120°,∠DAB和∠CBE的平分线交于点F,则∠AFB=25°;(2)如图2,∠ADC=α,∠BCD=β,且α+β>180°,∠DAB和∠CBE的平分线交于点F,则∠AFB=;(用α,β表示)(3)如图3,∠ADC=α,∠BCD=β,当∠DAB和∠CBE的平分线AG,BH平行时,α,β应该满足怎样的数量关系?请证明你的结论;【挑战】:如果将(2)中的条件α+β>180°改为α+β<180°,再分别作∠DAB和∠CBE的平分线,若两平分线所在的直线交于点F,则∠AFB与α,β有怎样的数量关系?请画出图形并直接写出结论.【答案】(1)25°;(2);(3)若AG∥BH,则α+β=180°;90°﹣.【解答】解:(1)如图1.∵BF平分∠CBE,AF平分∠DAB,∴∠FBE=∠CBE,∠FAB=∠DAB.∵∠D+∠DCB+∠DAB+∠ABC=360°,∴∠DAB+∠ABC=360°﹣∠D﹣∠DCB=360°﹣120°﹣110°=130°.又∵∠F+∠FAB=∠FBE,∴∠F=∠FBE﹣∠FAB===(180°﹣130°)=25°;(2)如图2.由(1)得:∠AFB=,∠DAB+∠ABC=360°﹣∠D﹣∠DCB.∴∠AFB==.(3)若AG∥BH,则α+β=180°.证明:如图3.若AG∥BH,则∠GAB=∠HBE.∵AG平分∠DAB,BH平分∠CBE,∴∠DAB=2∠GAB,∠CBE=2∠HBE.∴∠DAB=∠CBE.∴AD∥BC.∴∠DAB+∠DCB=α+β=180°.挑战:如图4.∵AM平分∠DAB,BN平分∠CBE,∴∠BAM=,.∵∠D+∠DAB+∠ABC+∠BCD=360°,∴∠DAB+∠ABC=360°﹣∠D﹣BCD=360°﹣α﹣β.∴∠DAB+180°﹣∠CBE=360°﹣α﹣β.∴∠DAB﹣∠CBE=180°﹣α﹣β.∵∠ABF与∠NBE是对顶角,∴∠ABF=∠NBE.又∵∠F+∠ABF=∠MAB,∴∠F=∠MAB﹣∠ABF.∴∠F===90°﹣.17.已知直线MN与PQ互相垂直,垂足为O,点A在射线OQ上运动,点B在射线OM上运动,点A,B均不与点O重合.(1)如图1,AI平分∠BAO,BI平分∠ABO,则∠AIB=135°.(2)如图2,AI平分∠BAO交OB于点I,BC平分∠ABM,BC的反向延长线交AI的延长线于点D.①若∠BAO=30°,则∠ADB=45°.②在点A,B的运动过程中,∠ADB的大小是否会发生变化?若不变,求出∠ADB的度数;若变化,请说明理由.(3)如图3,已知点E在BA的延长线上,∠BAO的平分线AI,∠OAE的平分线AF与∠BOP的平分线所在的直线分别相交于点D,F.在△ADF中,如果有一个角的度数是另一个角的3倍,请直接写出∠ABO的度数.【答案】(1)135°;(2)①45°,②不变.∠ADB=45°(3)60°或45°.【解答】解:(1)∵AI平分∠BAO,BI平分∠ABO,∴,∴∠BIC=180°﹣∠IBA﹣∠IAB=====90°+α,∵直线MN与PQ互相垂直,垂足为O,∴∠BOA=90°,∴,故答案为:135°.(2)①∵直线MN与PQ互相垂直,垂足为O,∴∠BOA=90°,∵∠BAO=30°,∴∠ABM=120°,∵AI平分∠BAO交OB于点I,BC平分∠ABM,∴,∠BAD==15°,∴∠ADB=∠CBA﹣∠BAD=60°﹣15°=45°,故答案为:45.②不变,∠ADB=45°.设∠BAO=α,∵AI平分∠BAO交OB于点I,BC平分∠ABM,∴,∠MBA=90°+α,,∴∠ADB=∠CBA﹣∠BAD=45,∴不变,∠ADB=45°.(3)∵∠BAO的平分线AI,∠OAE的平分线AF,∴∠DAF=90°,∵一个角是另一角的3倍,∴分两种情况讨论:①当∠DAF=3∠ADF时,∠ADF=30°,∵OF为∠BOP的平分线,∴∠DOA=135°,∴∠OAI=15°,∴∠OAB=30°,∴∠OBA=90°﹣30°=60°;②当∠AFD=3∠ADF时,∠ADF=22.5°,∵OF为∠BOP的平分线,∴∠DOA=135°,∴∠OAI=22.5°,∴∠OAB=45°,∴∠OBA=90°﹣45°=45°.∴∠OBA等于60°或45°.18.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【答案】见试题解答内容【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO为60°或45°.19.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】见试题解答内容【解答】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.20.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.【答案】见试题解答内容【解答】解:(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)∠3=∠2﹣∠1;证明:过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.(4)过P作PQ∥l1∥l2;①当P在C点上方时,同(2)可证:∠3=∠DFP﹣∠CEP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠DFP﹣∠CEP+∠2﹣∠1=0,即∠3=∠1﹣∠2.②当P在D点下方时,∠3=∠2﹣∠1,解法同上.综上可知:当P在C点上方时,∠3=∠1﹣∠2,当P在D点下方时,∠3=∠2﹣∠1.21.如图1,已知线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;(2)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系(直接写出结论即可)【答案】见试题解答内容【解答】解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,∴∠OCB﹣∠OAD=4°,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°;(3)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.22.如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O(a)若∠A=60°,求∠BOC的度数;(b)若∠A=n°,则∠BOC=90°+n°;(c)若∠BOC=3∠A,则∠A=36°;(2)如图(2),在△A′B′C′中的外角平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)上面(1),(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系?【答案】见试题解答内容【解答】解:(1)(a)∵∠ABC、∠ACB的平分线相交于点O,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=×(180°﹣60°)=60°,∴∠BOC =180°﹣60°=120°;(b ))∵∠ABC 、∠ACB 的平分线相交于点O ,∴∠1=∠ABC ,∠2=∠ACB ,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=×(180°﹣n °)=90°﹣n °,∴∠BOC =180°﹣(90°﹣n °)=90°+n °.故答案为:90°+n °;(c )∵∠ABC 、∠ACB 的平分线相交于点O ,∠BOC =3∠A ,∴∠1=∠ABC ,∠2=∠ACB ,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=90°﹣∠A ,∴90°﹣∠A +3∠A =180°,解得∠A =36°故答案为:36°;(2)∵∠A ′=40°,∴∠A ′的外角等于180°﹣40°=140°,∵△A ′B ′C ′另外的两外角平分线相交于点O ′,三角形的外角和等于360°,∴∠1+∠2=×(360°﹣140°)=110°,∴∠B ′O ′C ′=180°﹣110°=70°;(3)∵由(1)知,∠BOC =,由(2)知,∠B ′O ′C ′=180°﹣,∴∠B ′O ′C ′=180°﹣∠BOC .23.已知,BC ∥OA ,∠B =∠A =100°,试回答下列问题:(1)如图1所示,求证:OB ∥AC ;(2)如图2,若点E 、F 在BC 上,且满足∠FOC =∠AOC ,并且OE 平分∠BOF .试求∠EOC 的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.【答案】见试题解答内容【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,又∵∠B=∠A,∴∠A+∠O=180°,∴OB∥AC;(2)∵∠B+∠BOA=180°,∠B=100°,∴∠BOA=80°,∵OE平分∠BOF,∴∠BOE=∠EOF,又∵∠FOC=∠AOC,∴∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°;(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2=;24.有一款灯,内有两面镜子AB、BC,当光线经过镜子反射时,入射角等于反射角,即图1、图2中的∠1=∠2,∠3=∠4.(1)如图1,当AB⊥BC时,说明为什么进入灯内的光线EF与离开灯的光线GH互相平行.(2)如图2,若两面镜子的夹角为α°(0<α<90)时,进入灯内的光线与离开灯的光线的夹角为β°(0<β<90),试探索α与β的数量关系.(3)若两面镜子的夹角为α°(90<α<180),进入灯内的光线与离开灯的光线所在直线的夹角为β°(0<β<90).直接写出α与β的数量关系.【答案】见试题解答内容【解答】(1)证明:如图1所示:∵∠1=∠2,又∵∠5=180°﹣∠1﹣∠2=180°﹣2∠2,∴∠5=180°﹣2∠2,同理∠6=180°﹣2∠3,∵∠2+∠3=90°,∴∠5+∠6=180°,∴EF∥GH,即进入灯内的光线EF与离开灯的光线GH互相平行.(2)解:2α+β=180°,理由如下:如图2所示:由(1)所证,有∠5=180°﹣2∠2,∠6=180°﹣2∠3,∵∠2+∠3=180°﹣∠α,∴∠β=180°﹣∠5﹣∠6=2(∠2+∠3)﹣180°=2(180°﹣∠α)﹣180°=180°﹣2∴α与β的数量关系为:2α+β=180°,(3)解:2α﹣β=180°.25.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=105°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请直接写出α,β所满足的数量关系式;(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.【答案】(1)105°;(2)β﹣α=90°(或α﹣β=﹣90°等均正确);(3)BE∥DF,理由见答案.【解答】解:(1)∵四边形ABCD的内角和为360°,∴α+β=∠A+∠BCD=360°﹣(∠ABC+∠ADC),∵∠MBC和∠NDC是四边形ABCD的外角,∴∠MBC=180°﹣∠ABC,∠NDC=180°﹣∠ADC,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC),=105°;(2)β﹣α=90°(或α﹣β=﹣90°等均正确).理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=45°,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+45°=180°,∴β﹣α=90°.(3)BE∥DF.理由:如图2,过点C作CP∥BE,则∠EBC=∠BCP,∴∠DCP=∠BCD﹣∠BCP=β﹣∠EBC,由(1)知∠MBC+∠NDC=α+β,∵α=β,∴∠MBC+∠NDC=2β,又∵BE、DF分别平分∠MBC和∠NDC,∴∠EBC+∠FDC=(∠MBC+∠NDC)=β,∴∠FDC=β﹣∠EBC,又∵∠DCP=β﹣∠EBC,∴∠FDC=∠DCP,∴CP∥DF,又CP∥BE,∴BE∥DF.26.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=70°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.【答案】见试题解答内容【解答】解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.27.如图,在△ABC中,BD、CD分别是∠ABC、∠ACB的平分线,BP、CP分分别是∠ABC、∠ACB的外角平分线.(1)当∠A=40°时,分别求∠D和∠P的度数.(2)当∠A的大小变化时,试探究∠D+∠P的度数是否变化.如果不变化,求出∠D+∠P的值;如果变化,请说明理由.【答案】见试题解答内容【解答】解:(1)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵BD、CD分别是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(90°﹣∠A)=90°+∠A=90°+20°=110°;∵BP、CP分别是∠ABC与∠ACB的外角平分线,∴∠CBP=∠CBE,∠BCP=∠BCF,∴∠CBP+∠BCP=∠CBE+∠BCF=(∠CBE+∠BCF)=(∠A+∠ACB+∠A+∠ABC)=(180°+∠A),∴∠BPC=180°﹣(∠CBP+∠BCP)=180°﹣(180°+∠A)=90°﹣∠A=90°﹣×40°=70°.(2)∠D+∠P的值不变.∵由(1)知∠D=90°+∠A,∠P=90°﹣∠A,∴∠D+∠P=180°.28.直线MN与直线PQ相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM 的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=50°;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=65°.(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ 的角平分线及其延长线相交于E、F,则∠EAF=90°;(4)如图3,若AF,AE分别是∠GAO,∠BAO的角平分线,∠AOB=90°,在△AEF 中,如果有一个角是另一个角的4倍,则∠ABO的度数=36°或45°.【答案】见试题解答内容【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ相交于O,∴∠AOB=80°,∴∠OAB+∠OBA=80°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=50°,∴∠AEB=130°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ相交于O,∴∠AOB=80°,∴∠OAB+∠OBA=80°,∴∠PAB+∠MBA=280°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=140°,∴∠F=50°,∴∠FDC+∠FCD=140°,∴∠CDA+∠DCB=220°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=115°,∴∠E=65°;故答案为:50°,65°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°;故答案为:90°;(4)在△AEF中,∵有一个角是另一个角的4倍,故有:①∠EAF=4∠E,∠E=22.5°,∠ABO=45°;②∠EAF=4∠F,∠E=67.5°,∠ABO=135°(舍去);③∠F=4∠E,∠E=18°,∠ABO=36°;④∠E=4∠F,∠E=72°,∠ABO=144°(舍去).∴∠ABO为36°或45°.故答案为:36°或45°.29.(1)如图1,AC平分∠DAB,∠1=∠2.求证:AB∥CD;(2)如图2,在(1)的条件下,AB的下方两点E、F,满足:BF平分∠ABE,CF平分∠DCE,若∠CFB=20°,∠DCE=70°,求∠ABE的度数;(3)如图3,在(1)、(2)的条件下,若P是射线BE上一点,G是CD上任一点,PQ 平分∠BPG,PQ∥GN,GM平分∠DGP,求∠MGN的度数.【答案】见试题解答内容【解答】(1)证明:∵AC平分∠DAB,∴∠1=∠CAB,∵∠1=∠2,∴∠2=∠CAB,∴AB∥CD;(2)解:如图2,∵BF平分∠ABE,CF平分∠DCE,∴∠DCF=∠DCE=35°,∠ABE=2∠ABF,∵CD∥AB,∴∠2=∠DCF=35°,∵∠2=∠CFB+∠ABF,∠CFB=20°,∴∠ABF=15°,∴∠ABE=2∠ABF=30°;(3)解:如图3,根据三角形的外角性质,∠1=∠BPG+∠B,∵PQ平分∠BPG,GM平分∠DGP,∴∠GPQ=∠BPG,∠MGP=∠DGP,∵AB∥CD,∴∠1=∠DGP,∴∠MGP=(∠BPG+∠B),∵PQ∥GN,∴∠NGP=∠GPQ=∠BPG,∴∠MGN=∠MGP﹣∠NGP=(∠BPG+∠B)﹣∠BPG=∠B,根据前面的条件,∠B=30°,∴∠MGN=×30°=15°.30.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.(2)如图(2)若∠AOC=150°,求∠BOD的度数.(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【答案】见试题解答内容【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图2,若∠AOC=150°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=360°﹣150°﹣90°﹣90°=30°;(3)∠AOC与∠BOD互补.∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(4)OD⊥AB时,∠AOD=30°,CD⊥OB时,∠AOD=45°,CD⊥AB时,∠AOD=75°,OC⊥AB时,∠AOD=60°,即∠AOD角度所有可能的值为:30°、45°、60°、75°.。
七年级下学期压轴题集
一、平行类压轴题(选填题)12.(2015春•武昌区期末)如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K= .13. (2015春•江岸区期末)如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E , AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .∠F 的度数为___________A .120°B .135°C .150°D .不能确定14.(2014春•洪山区期末)如图,已知AB ∥DC ∥EO ,∠1=70°,∠2=30°,OG 平分∠BOD ,则∠BOG= .15.(2014春•武昌区期末)如图,AB ∥EF ,则∠A ,∠C ,∠D ,∠E 满足的数量关系是( )A .∠A+∠C+∠D+∠E=360°B .∠A+∠D=∠C+∠EC .∠A ﹣∠C+∠D+∠E=180°D .∠E ﹣∠C+∠D ﹣∠A=90° 16.(2013春•新洲区期末)珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE= 度.M 1FEBA第10题图NM 21FE DCBA17.(3分)(2012春•武昌区期末)如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于点E ,EC 延长线交∠ABC 的外角平分线于点D ,若∠D 比∠E 大10°,则∠A 的度数是 .18.(2014春•硚口区期末)如图,BD 平分∠ABC ,AF 平分∠BAD ,∠EAD=2∠DBC ,∠BDC=∠AFB ,下列结论:①AD ∥BC ;②∠AFB=90°;③∠FAG=∠DCG ,其中正确的是( )A .①②③B .①②C .①D .②③19.(2014春•二中期末)如图,点P 的坐标为(0,2),PF ∥CD ,OE 平分∠AOC ,OE ⊥OF 。
七年级(下册)数学压轴题集锦
1、如图,已知(0a ),(,b ),()求点坐标()作±DC ,交y 轴于点,为/求证:FD^Z ADO (m ,b )且(a-)2+|b+3|=0,S =14. 11ABC(3)E 在y 轴负半轴上运动时.连EC.点P 为AC 延长线上一点.EM 平分NAEC.且 PM ,EM,PN ,x 轴于N 点.PQ 平分NAPN.交x 轴于Q 点.则E 在运动过程中.Z MPQ2、如图1.AB//EF,N2=2N1⑴证明NFEC=NFCE;⑵如图25为AC 上一点.N 为FE 延长线上一点.且NFNM=NFMN.贝iNNMC 与NCFM 有何数量关系.并证明。
3、(1)如图.4人8必NABC 、NACB 的三等分线交于点E 、D.若N1=130°.N的平分线,也 o 0。
的大小是否发生变化.若不变.求出其值。
图22=110°.求NA的度数。
(2)如图.△ABC,NABC的三等分线分别与NACB的平分线交于点D,E若N1=110°.N2=130°.求NA的度数。
4、如图.NABC+NADC=180°.OE、OF分别是角平分线.则判断OE、OF的位置关系为?5、已知NA=NC=90°.(1)如图.NABC的平分线与NADC的平分线交于点E.试问BE与DE有何位置关系?说明你的理由。
(2)如图.试问NABC的平分线BE与NADC的外角平分线DF有何位置关系?说明你的理由。
(3)如图.若NABC的外角平分线与NADC的外角平分线交于点E.试问BE与DE有何位置关系?说明你的理由。
6.(1)如图.点E在AC的延长线上.NBAC与NDCE的平分线交于点F.NB=60NF=56°,求NBDC的度数。
(2)如图.点E在CD的延长线上.NBAD与NADE的平分线交于点F.试问NF、NB和NC之间有何数量关系?为什么?7.已知NABC与NADC的平分线交于点E。
初一下数学期末压轴题
期末复习解答压轴题专项训练1.(2022春·安徽滁州·七年级校考期末)已知点B,D分别在AK和CF上,且CF∥AK.(1)如图1,若∠CDE=25°,∠DEB=80°,则∠ABE的度数为________;(2)如图2,BG平分∠ABE,GB的延长线与∠EDF的平分线交于H点,若∠DEB比∠DHB大60°,求∠DEB的度数;(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说明理由.【思路点拨】(1)过点E作ES∥CF,根据CF∥AK,则ES∥CF∥AK,运用平行线的性质计算即可.(2)延长DE,交AB于点M,则∠DEB=∠EMB+∠EBM,利用平行线的性质,角平分线的定义,三角形外角的性质计算即可.(3)过点E作EQ∥DN,则EQ∥DN∥BP,利用前面的结论和方法,进行等量代换并推理计算即可.【解题过程】(1)解:如图1,过点E作ES∥CF,∵CF∥AK,∴ES∥CF∥AK,∴∠CDE=∠DES,∠SEB=∠ABE,∴∠CDE+∠ABE =∠DES+∠SEB=∠DEB,∵∠CDE=25°,∠DEB=80°,∴∠ABE =∠DEB-∠CDE=80°-25°=55°.故答案为:55°.(2)解:如图2,延长DE,交AB于点M,则∠DEB=∠EMB+∠EBM,∵CF∥AK,BG平分∠ABE,∴∠EMB=180°-∠MDF,∠EBM=2∠ABG=2∠HBN,∠MDH=∠HDF=∠HNK=1∠MDF,2∵∠HBN+∠DHB=∠HNK,∠MDF−∠DHB),∴∠DEB=(180°-∠MDF) +2∠HBN=180°-∠MDF+2×(12∴∠DEB=180°-∠MDF+∠MDF-2∠DHB=180°-2∠DHB,∵∠DEB−∠DHB=60°,∴∠DEB=180°-2(∠DEB-60°),∴3∠DEB=300°,解得∠DEB=100°.(3)解:过点E作EQ∥DN,则EQ∥DN∥BP,根据(1)得,∠DEB=∠CDE+∠ABE,∵BM平分∠EBK,DN平分∠CDE,∴∠DEB=2∠NDE+180°-2∠EBM,∵∠DEB=100°,∴∠EBM-∠NDE=40°,∵EQ∥DN,∴∠DEQ=∠NDE,∴∠EBM =40°+∠DEQ,∵EQ∥DN,DN∥BP,∴EQ∥BP,∴∠EBM+∠PBM +∠BEQ =180°,∴40°+∠DEQ+∠PBM +∠BEQ =180°,∴40°+∠DEB+∠PBM =180°,∴∠PBM =180°-100°-40°=40°,∴∠PBM 的度数不变,值为40°.2.(2022春·广西南宁·七年级统考期末)综合与实践:问题情境:如图1,AB∥CD,∠PAB=25°,∠PCD=37°,求∠APC的度数,小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC问题解决:(1)按小明的思路,易求得∠APC 的度数为°;问题迁移:如图2,AB∥CD,点P 在射线OM 上运动,记∠PAB=α,∠PCD=β.(2)当点P 在B,D 两点之间运动时,问∠APC 与α,β 之间有何数量关系?请说明理由;拓展延伸:(3)在(2)的条件下,如果点P 在B,D 两点外侧运动时(点P 与点O,B,D 三点不重合)请你直接写出当点P 在线段OB 上时,∠APC 与α,β 之间的数量关系,点P 在射线DM 上时,∠APC 与α,β 之间的数量关系.【思路点拨】(1)根据平行线的性质,得到∠APE=∠PAB=25°,∠CPE=∠PCD=37°,即可得到∠APC;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠APE=α,∠CPE=β,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;【解题过程】解:(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠PAB=25°,∠CPE=∠PCD=37°,∴∠APC=25°+37°=62°;故答案为:62;(2)∠APC与α,β之间的数量关系是:∠APC=α+β;理由:如图,过点P作PE//AB交AC于点E,∵AB//CD,∴AB//PE//CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=a+β;(3)如图3,所示,当P在射线DM上时,过P作PE∥AB,交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∴∠APC=∠1−∠PCD,∴∠APC=α−β,∴当P在射线DM上时,∠APC=α−β;如图4所示,当P在线段OB上时,同理可得:∠APC=β−α,∴当P在线段OB上时,∠APC=β−α.故答案为:∠APC=β−α;∠APC=α−β.3.(2022春·江苏扬州·七年级统考期末)汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图,灯A射出的光束自AM顺时针旋转至AN便立即回转,灯B射出的光束自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A射出的光束转动的速度是a°/秒,灯B射出的光束转动的速度是b°/秒,且a、b满足|a−3b|+(a+b−4)2=0.假定这一带水域两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值;(2)如图2,两灯同时转动,在灯A射出的光束到达AN之前,若两灯射出的光束交于点C,过C作CD⊥AC交PQ于点D,若∠BCD=20°,求∠BAC的度数;(3)若灯B射线先转动30秒,灯A射出的光束才开始转动,在灯B射出的光束到达BQ之前,A灯转动几秒,两灯的光束互相平行?【思路点拨】(1)根据|a−3b|+(a+b−4)2=0,可得a−3b=0,且a+b−4=0,进而得出a、b的值;(2)设灯A射线转动时间为t秒,根据∠BCD=90°﹣∠BCA=90°−(180°−2t)=2t−90°=20°可得t的值,根据∠BAC=45°−(180°−3t)=3t−135°可得∠BAC;(3)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:①在灯A射线转到AN之前,②在灯A 射线转到AN之后,分别求得t的值即可.【解题过程】(1)∵|a−3b|+(a+b−4)2=0.又∵|a﹣3b|≥0,(a+b−4)2≥0.∴a=3,b=1;(2)设A灯转动时间为t秒,如图,作CE//PQ,而PQ//MN,∴PQ//CE//MN,∴∠ACE=∠CAN=180°−3t°,∠BCE=∠CBD=t°,∴∠BCA=∠CBD+∠CAN=t+180°−3t=180°−2t,∵∠ACD=90°,∴∠BCD=90°﹣∠BCA=90°−(180°−2t)=2t−90°=20°,∴t=55°,∵∠CAN=180°−3t,∴∠BAC=45°−(180°−3t)=3t−135°=165°−135°=30°;(3)设A灯转动t秒,两灯的光束互相平行.依题意得0<t<150①当0<t<60时,3t=(30+t)×1,解得t=15;②当60<t<120时,3t−3×60+(30+t)×1=180,解得t=82.5;③当120<t<150时,3t−360=t+30,解得t=195>150(不合题意)综上所述,当t=15秒或82.5秒时,两灯的光束互相平行.4.(2022春·湖南永州·七年级统考期末)如图,直线AB∥CD,直线EF与AB、CD分别交于点G、H,∠EHD=α(0°<α<90°).小安将一个含30°角的直角三角板PMN按如图①放置,使点N、M分别在直线AB、CD上,且在点G、H的右侧,∠P=90°,∠PMN=60°.(1)填空:∠PNB+∠PMD∠P(填“>”“<”或“=”);(2)若∠MNG的平分线NO交直线CD于点O,如图②.①当ON∥EF,PM∥EF时,求α的度数;②当PM∥EF时,求∠MON的度数(用含α的式子表示).【思路点拨】(1)过P点作PQ∥AB,根据平行线的性质可得∠PNB=∠NPQ,∠PMD=∠QPM,进而可求解;(2)①由平行线的性质可得∠ONM=∠PMN=60°,结合角平分线的定义可得∠ANO=∠ONM=60°,再利用平行线的性质可求解;②可分两种情况:点N在G的右侧时,点N在G的左侧时,利用平行线的性质及角平分线的定义计算可求解.【解题过程】(1)解:过P点作PQ∥AB,∴∠PNB=∠NPQ,∵AB∥CD,∴PQ∥CD,∴∠PMD=∠QPM,∴∠PNB+∠PMD=∠NPQ+∠QPM=∠MPN,故答案为:=(2)①∵ON∥EF,PM∥EF,∴PO∥PM,∴∠ONM=∠NMP,∵∠PMN=60°,∴∠ONM=∠PMN=60°,∵NO平分∠MNO,∴∠ANO=∠ONM=60°,∵AB∥CD,∴∠NOM=∠ANO=60°,∴α=∠NOM=60°;②点N在G的右侧时,如图②,∵PM∥EF,∠EHD=α,∴∠PMD=α,∴∠NMD=60°+α,∵AB∥CD,∴∠ANM=∠NMD=60°+α,∵NO平分∠ANM,∴∠ANO=12∠ANM=30°+12α,∵AB∥CD,∴∠MON=∠ANO=30°+12α;点N在G的左侧时,如图,∵PM∥EF,∠EHD=α,∴∠PMD=α,∴∠NMD=60°+α,∵AB∥CD,∴∠BNM+∠NMO=180°,∠BNO=∠MON,∵NO平分∠MNG,∴∠BNO=12[180°−(60°+α)]=60°−12α,∴∠MON=60°−12α,综上所述,∠MON的度数为30°+12α或60°−12α.5.(2022秋·重庆沙坪坝·七年级统考期末)已知:如图,直线a∥b,AC⊥BC于点C,连接AB且分别交直线a、b于点E、F.(1)如图①,若∠DEF和∠EFG的角平分线EM、FM交于点M,请求∠M的度数;(2)如图②,若∠EDC的角平分线DM分别和直线b及∠FGC的角平分线GQ的反向延长线交于点N和点M,试说明:∠1+∠2=135°;(3)如图③,点M为直线a上一点,连结MF,∠MFE的角平分线FN交直线a于点N,过点N作NQ⊥NF交∠HFM 的角平分线FQ于点Q,若∠DEA记为β,请直接用含β的代数式来表示∠MNQ+∠HFQ.【思路点拨】(1)由平行线的性质及角平分线的定义可得∠DEF+∠GFE=180°,∠DEM=12∠DEF;∠GFM=12∠GFE,即∠DEM+∠GFM=12(∠DEF+∠GFE)=90°,过点M作直线l∥a交AB于点H,可得∠HME=∠DEM,∠HMF=∠GFM,进而可得∠EMF=∠HME+∠HMF=∠DEM+∠GFM=90°.(2)过点C作直线l∥a,由平行线的性质可得∠FGC+∠4=180°,∠EDC+∠5=180°,由题意得∠4+∠5=90°,可得∠FGC+∠FGC=270°,由角平分线的定义可得∠6+∠7=12(∠FGC+∠FGC)=135°,由a∥b得∠6=∠3=∠2,由对顶角相等可得∠7=∠1,可得∠1+∠2=135°;(3)由题意可知∠MEF=∠DEA=β,根据平行线的性质及角平分线的定义可得∠HFE=180°−β,∠EFN=∠MFN=12∠MFE=x,∠HFQ=∠MFQ=12∠HFM=y,,进而可得x+y=180°−β2,由a∥b,NQ⊥NF∠HFN+∠MNF=180°,∠QNF=90°,即∠MNQ+∠QNF+∠MFN+∠MFQ+∠HFQ=180°,可得∠MNQ= 90°−x−2y,进而可求∠MNQ+∠HFQ.【解题过程】(1)∵a∥b,∴∠DEF+∠GFE=180°.∵EM、FM分别平分∠DEF和∠GFE,∴∠DEM=12∠DEF;∠GFM=12∠GFE,∴∠DEM+∠GFM=12(∠DEF+∠GFE)=90°,过点M作直线l∥a交AB于点H,∵a∥b,∴l∥b,∴∠HME=∠DEM,∠HMF=∠GFM,∴∠EMF=∠HME+∠HMF=∠DEM+∠GFM=90°.(2)过点C作直线l∥a,∵a∥b,∴l∥b,∴∠FGC+∠4=180°,∠EDC+∠5=180°.又∵∠4+∠5=90°∴∠FGC+∠FGC=270°又∵GQ、DM分别平分∠FGC和∠EDC,∴∠6+∠7=12(∠FGC+∠FGC)=135°∵a∥b,∴∠6=∠3=∠2又∵∠7=∠1∴∠1+∠2=135°.(3)∠MNQ +∠HFQ =β2.理由如下:由题意可知∠MEF =∠DEA =β, ∵a ∥b ,∴∠MEF +∠HBE =180°,即∠HFE =180°−β, ∵FN 平分∠MFE ,FQ 平分∠HFM ,∴∠EFN =∠MFN =12∠MFE =x ,∠HFQ =∠MFQ =12∠HFM =y ,∴∠HFE =180°−β=2(∠EFN +∠MFQ )=2(x +y ),即x +y =180°−β2,∵a ∥b ,NQ ⊥NF∴∠HFN +∠MNF =180°,∠QNF =90°,则∠MNQ +∠QNF +∠MFN +∠MFQ +∠HFQ =180°, ∴∠MNQ =90°−x −y −y =90°−x −2y ,∴∠MNQ +∠HFQ =90°−x −2y +y =90°−x −y =90°−180°−β2=β2.6.(2022秋·四川宜宾·七年级统考期末)几何模型在解题中有着重要作用,例如美味的“猪蹄模型”.(1)导入:如图①,已知AB∥CD∥EF ,如果∠A =26°,∠C =34°,那么 ∠AEC = °;(1)发现:如图②,已知AB∥CD,请判断∠AEC与∠A,∠C之间的数量关系,并说明理由;(3)运用:(i)如图③,已知AB∥CD,∠AEC=88°,点M、N分别在AB、CD上,MN∥AE,如果∠C=28°,那么∠MND=°;(ii)如图④,已知AB∥CD,点M、N分别在AB、CD上,ME、NE分别平分∠AMF和∠CNF.如果∠E=116°,那么∠F=°;(iii)如图⑤,已知AB∥CD,点M、N分别在AB、CD上,MF、NG分别平分∠BME和∠CNE,且EG∥MF.如果∠MEN=α,那么∠EGN=.(用含α的代数式表示)【思路点拨】(1)根据平行线的性质得出∠A=∠AEF,∠C=∠FEC,进而根据∠AEC=∠AEF+∠CEF,即可求解;(2)过点E作EF∥AB,根据(1)的方法即可求解;(3)(i)由(2)可得∠AEC=∠A+∠C=88°,∠C=28°,得出∠A=60°,根据∠MND=180°−∠BMN,即可求解;(ii)由“猪蹄模型”,可得∠E=∠AME+∠CNE=116°,∠F=∠BMF+∠DNF,根据角平分线的性质得出∠AME=12∠AMF,∠CNE=12∠CNF,继而根据∠F=∠BMF+∠DNF=128°,即可求解;(iii)如图所示,延长GE交AB于点H,设∠ENG=β,∠HME−θ,根据平行线的性质得出∠MHE=∠BMF=180−θ2=90°−θ2,α=θ+2β,根据∠EGN=∠GNC+∠AHE=∠GNC+∠AMF,即可得出结论.【解题过程】(1)解:如图1,∵AB∥CD∥EF∴∠A=∠AEF,∠C=∠FEC∵∠A=26°,∠C=34°,∴∠AEC=∠AEF+∠CEF=∠A+∠B=26°+34°=60°∴∠AEC=60°故答案为:60.(2)∠AEC=∠A+∠C,如图所示,过点E作EF∥AB,∵EF∥AB,∴∠A=∠AEF,∵EF∥AB,AB∥CD,∴EF∥CD,∴∠FEC=∠C,∴∠AEC=∠AEF+∠FEC=∠A+∠C;(3)解:(i)由(2)可得∠AEC=∠A+∠C=88°,∠C=28°,∴∠A=60°,∵MN∥AE,∴∠BMN=∠A=60°,∵AB∥CD,∴∠MND=180°−∠BMN=180°−60°=120°,故答案为:120.(ii)解:如图所示,∵AB∥CD由“猪蹄模型”,可得∠E=∠AME+∠CNE=116°,∠F=∠BMF+∠DNF;∵ME、NE分别平分∠AMF和∠CNF∴∠AME=12∠AMF,∠CNE=12∠CNF∴∠AMF+∠CNF=116°×2=232°∴∠MBF+∠DNF=360°−232°=128°,∴∠F=∠BMF+∠DNF=128°,故答案为:128.(iii )解:如图所示,延长GE 交AB 于点H ,设∠ENG =β,∠HME −θ∵MF 、NG 分别平分∠BME 和∠CNE ,∴∠BMF =12∠BME =12(180°−θ)=90°−θ2,∠CNE =2∠ENG =2β,∵HG∥MF∴∠MHE =∠BMF =180−θ2=90°−θ2,∵AB∥CD∴∠MEN =∠AME +∠CNE ,∴α=θ+2β∴∠EGN =∠GNC +∠AHE =∠GNC +∠AMF =β+θ+90°−θ2=β+90°+θ2=90°+α2.7.(2022秋·海南海口·七年级校考期末)点E 在射线DA 上,点F 、G 为射线BC 上两个动点,满足∠DBF =∠DEF ,∠BDG =∠BGD ,DG 平分∠BDE .(1)如图1,当点G在点F右侧时,①试说明:BD∥EF;②试说明∠DGE=∠BDG−∠FEG;(2)如图2,当点G在点F左侧时,(1)中的结论②是否成立,若不成立,请写出正确结论;(不用说理)(3)如图3,在(2)的条件下,P为BD延长线上一点,DM平分∠BDG,交BC于点M,DN平分∠PDM,交EF于点N,连接NG,若DG⊥NG,∠B−∠DNG=∠EDN,求∠B的度数.【思路点拨】(1)①根据角平分线的定义即可得到∠BDG=∠ADG,从而可得∠ADG=∠DGB,则AB∥BC,可得∠DEF =∠EFG,即可得到∠DBF=∠EFG,从而证明BD∥EF;②过点G作GH∥DB交DA于点H,根据平行线的性质求解即可;(2)过点G作GK∥DB交AD于K,则KG∥EF,可得∠BDG=∠DGK,∠GEF=∠KGE,即可得到∠DGE =∠BDG+∠FEG;(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α∠PDE=180∘−4α,∠PDM=180°−α,由角平分线的定义可得∠PDN=∠MDN=12∠PDM=90∘−α2,然后分别求出∠EDN=72α−90∘,∠DNG=32α,∠B−∠DNG=∠EDN进行求解即可.【解题过程】(1)证明:①∵DG平分∠BDE,∴∠BDG=∠ADG,又∵∠BDG=∠BGD,∴∠ADG=∠DGB,∴AD∥BC,∴∠DEF=∠EFG,∵∠DBF=∠DEF,∴∠DBF=∠EFG,∴BD∥EF;②过点G作GH∥DB交DA于点H,由①得BD∥EF,∴GH∥DB∥EF,∴∠BDG=∠DGH,∠FEG=∠EGH,∴∠DGE=∠DGH-∠EGH,∴∠DGE=∠BDG-∠FEG;(2)解:过点G作GK∥DB交AD于K,同理可证BD∥EF,∴KG∥EF,∴∠BDG=∠DGK,∠GEF=∠KGE,∴∠DGE=∠DGK+∠KGE,∴∠DGE=∠BDG+∠FEG;(3)解:设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180∘−∠BDE=180∘−4α,∠PDM=180°−α,∵DN平分∠PDM,∴∠PDN=∠MDN=12∠PDM=90∘−α2,∴∠EDN=∠PDN−∠PDE=90∘−α2−(180∘−4α)=72α−90∘,∠GDN=∠MDN−∠MOG=90∘−α2−α=90∘−32α,∵DG⊥NG,∴∠DGN=90∘,∴∠DNG=90∘−∠GDN=90∘−(90∘−32α)=32α,∵DE∥BF,∴∠B=∠PDE=180∘−4α,∵∠B−∠DNG=∠EDN,∴180∘−4α−32α=72α−90∘,∴α=30∘,∴∠B=180∘−4α=60∘.8.(2022春·湖北武汉·七年级统考期末)直线AB∥CE,BE—EC是一条折线段,BP平分∠ABE.(1)如图1,若BP∥CE,求证:∠BEC+∠DCE=180°;(2)CQ平分∠DCE,直线BP,CQ交于点F.①如图2,写出∠BEC和∠BFC的数量关系,并证明;②当点E在直线AB,CD之间时,若∠BEC=40°,直接写出∠BFC的大小.【思路点拨】(1)延长DC交BE于K,交BP于T,由AB∥CD,BP平分∠ABE,可得∠BTK=∠TBK,又BP∥CE,故∠KCE=∠KEC,即可得∠BEC+∠DCE=180°;(2)①延长AB交FQ于M,延长DC交BE于N,设∠ABP=∠EBP=α,∠DCQ=∠ECQ=β,可得∠F=180°-∠FBM-∠FMB=180°-(α+β),∠E=180°-∠NCE-∠CNE=180°-(180°-2β)-(180°-2α)=2(α+β)-180°,故∠E+2∠F=180°;②由∠E+2∠F=180°,即可得∠F=70°.【解题过程】(1)解:证明:延长DC交BE于K,交BP于T,如图:∵AB∥CD,∴∠ABT=∠BTK,∵BP平分∠ABE,∴∠ABT=∠TBK,∴∠BTK=∠TBK,∵BP∥CE,∴∠BTK=∠KCE,∠TBK=∠KEC,∴∠KCE=∠KEC,∵∠KCE+∠DCE=180°,∴∠KEC+∠DCE=180°,即∠BEC+∠DCE=180°;(2)①∠E+2∠F=180°,证明如下:延长AB交FQ于M,延长DC交BE于N,如图:∵射线BP、CQ分别平分∠ABE,∠DCE,∴∠ABP=∠EBP,∠DCQ=∠ECQ,设∠ABP=∠EBP=α,∠DCQ=∠ECQ=β,∴∠FBM=∠ABP=α,∠MBE=180°-2α,∠NCE=180°-2β,∠FCN=∠DCQ=β,∵AB∥DC,∴∠CNE=∠MBE=180°-2α,∴∠F=180°-∠FBM-∠FMB=180°-(α+β),∠E=180°-∠NCE-∠CNE=180°-(180°-2β)-(180°-2α)=2(α+β)-180°,∴∠E+180°=2(180°-∠F),∴∠E+2∠F=180°;②由①知∠E+2∠F=180°,∵∠BEC=40°,∴∠F=70°.9.(2022春·山东德州·七年级统考期末)如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图2,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG−∠F=45°,求证:CF平分∠BCD;(3)如图3,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=的值.∠DCH,求∠ABM∠GBM【思路点拨】(1)先根据平行线的性质可得∠GAD=∠BGA,再根据角平分线的定义可得∠BAG=∠GAD,然后根据等量代换即可得证;(2)过点F作FM∥BC于M,先根据平行线的性质可得∠BGA=∠MFG,∠BCF=∠MFC,从而可得∠BAG−∠GFC=∠MFC,则∠BCF=∠MFC=45°,再根据角平分线的定义即可得证;(3)设∠ABC=4x(x>0),则∠ABP=3x,∠PBG=x,先根据平行线的性质可得∠BAD=180°−4x,从而可得∠BGA=90°−2x,再根据平行线的性质可得∠BCH=∠BGA=90°−2x,从而可得∠PBM=∠DCH= 2x,然后分①点M在BP的下方和②点M在BP的上方两种情况,根据角的和差可得∠ABM和∠GBM的值,由此即可得.【解题过程】(1)证明:∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA.(2)证明:如图,过点F作FM∥BC于M,∴∠BGA=∠MFG,∠BCF=∠MFC,由(1)已证:∠BAG=∠BGA,∴∠BAG=∠MFG=∠MFC+∠GFC,即∠BAG−∠GFC=∠MFC,又∵∠BAG−∠GFC=45°,∴∠MFC=45°,∴∠BCF=45°,又∵∠BCD=90°,∴CF平分∠BCD.(3)解:设∠ABC=4x(x>0),∵∠ABP=3∠PBG,∴∠ABP=3x,∠PBG=x,∵AD∥BC,∴∠BAD=180°−∠ABC=180°−4x,由(1)已得:∠BGA=∠BAG=12∠BAD=90°−2x,∵AG∥CH,∴∠BCH=∠BGA=90°−2x,∵∠BCD=90°,∴∠PBM=∠DCH=90°−(90°−2x)=2x,由题意,分以下两种情况:①如图,当点M在BP的下方时,∴∠ABM=∠ABP+∠PBM=3x+2x=5x,∠GBM=∠PBM−∠PBG=2x−x=x,∴∠ABM∠GBM =5xx=5;②如图,当点M在BP的上方时,∴∠ABM=∠ABP−∠PBM=3x−2x=x,∠GBM=∠PBM+∠PBG=2x+x=3x,∴∠ABM∠GBM =x3x=13;综上,∠ABM∠GBM 的值是5或13.10.(2022春·河南安阳·七年级统考期末)猜想说理:(1)如图,AB∥CD∥EF,分别就图1、图2、图3写出∠A,∠C,∠AFC的关系,并任选其中一个图形说明理由:拓展应用:(2)如图4,若AB∥CD,则∠A+∠C+∠AFC=度;(3)在图5中,若A1B∥A n D,请你用含n的代数式表示∠1+∠2+∠3+∠4+⋯+∠n的度数.【思路点拨】(1)根据平行线的性质可直接得到结论;(2)过点F作AB的平行线,利用平行线的性质,计算出∠A+∠C+∠AFC的度数;(3)过点E作AB的平行线,过点F作AB的平行线,利用平行线的性质,计算出∠A+∠AEF+∠EFC+∠C度数;通过前面的计算,找出规律.利用规律得到有n个折点的结论;【解题过程】解:(1)如图1:∠A+∠C=∠AFC,如图2:∠A−∠C=∠AFC,如图3:∠C−∠A=∠AFC,如图1说明理由如下:∵AB∥CD∥EF,∴∠A=∠AFE,∠C=∠EFC,∴∠A+∠C=∠AFE+∠EFC,即∠A+∠C=∠AFC;(2)如下图:过F作FH∥AB,∴∠A+∠AFH=180°,又∵AB∥CD,∴CD∥FH,∴∠C+∠CFH=180°,∴∠A+∠AFH+∠C+∠CFH=360°,即∠A+∠C+∠AFC=360°;故答案为:360;(3)如下图:AB∥CD,过E作EG∥AB,过F作FH∥AB,∵AB∥CD,∴AB∥EG∥FH∥CD,∴∠A+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠C=180°,∴∠A+∠AEG+∠GEF+∠EFH+∠HFC+∠C=180°×3,即∠A+∠AEF+∠EFC+∠C=540°;综上所述:由当平行线AB与CD间没有点的时候,∠A+∠C=180°,当A、C之间加一个折点F时,∠A+∠AFC+∠C=2×180°;当A、C之间加二个折点E、F时,则∠A+∠AEF+∠EFC+∠C=3×180°;以此类推,如图5,A1B∥A n D,当A1、A5之间加三个折点A2、A3、A4时,则∠A1+∠A2+∠A3+∠A4+∠A5=4×180°;…当A1、A n之间加n个折点A2、A3、…A n−1时,则∠A1+∠A2+∠A3+…∠A n=(n-1)×180°,即∠1+∠2+∠3+∠4+⋯+∠n的度数是(n-1)×180°.11.(2022春·黑龙江·七年级统考期末)点E在射线DA上,点F、G为射线BC上两个动点,满足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如图1,当点G在F右侧时,求证:BD//EF;(2)如图2,当点G在F左侧时,求证:∠DGE=∠BDG+∠FEG;(3)如图3,在(2)的条件下,P为BD延长线上一点,DM平分∠BDG,交BC于点M,DN平分∠PDM,交EF于点N,连接NG,若DG⊥NG,∠DBF−∠DNG=∠EDN,则∠DBF的度数是多少.【思路点拨】(1)通过证明∠DBF=∠EFG,利用同位角相等,两直线平行即可得出结论;(2)过点E作GH∥BD,交AD于点H,利用(1)的结论和平行线的性质即可得出结论;(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°-4α,∠PDM=180°-α;利用已知条件用含α的式子表示∠PDN,∠EDN,∠GDN,∠DNG,再利用∠DBF-∠DNG=∠EDN,得到关于α的方程,解方程求得α的值,则∠B=180°-4α,结论可求.【解题过程】(1)证明:∵DG平分∠BDE,∴∠BDG=∠ADG,又∵∠BDG=∠BGD,∴∠ADG=∠DGB,∴AD//BC,∴∠DEF=∠EFG,∵∠DBF=∠DEF,∴∠DBF=∠EFG,∴BD//EF;(2)证明:过点G作GH//BD,交AD于点H,如图,由(1)可知:BD//EF,∴GH//EF,∴∠BDG=∠DGH,∠GEF=∠HGE,∵∠DGE=∠DGH+∠HGE,∴∠DGE=∠BDG+∠FEG;(3)解:设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°−4α,∴∠PDM=180°−α,∵DN平分∠PDM,∴∠PDN=∠MDN=90°−12α,∴∠EDN=∠PDN−∠PDE=90°−12α−(180°−4α)=72α−90°,∴∠GDN =∠MDN −∠MDG =90°−12α−α=90°−32α, ∵DG ⊥ON ,∴∠DNG =90°,∴∠DNG =90°−(90°−32α)=32α,∵DE//BF ,∴∠DBF =∠PDE =180°−4α,∵∠DBF −∠DNG =∠EDN ,∴180°−4α−32α=72α−90°,解得:α=30°,∴∠DBF =180°−4α=60°.12.(2022春·河北衡水·七年级校考期末)【发现】如图1,CE 平分∠ACD ,AE 平分∠BAC .(1)当∠EAC =∠ACE =45°时,AB 与CD 的位置关系是______;当∠EAC =50°,∠ACE =40°时,AB 与CD 的位置关系是______;当∠EAC +∠ACE =90°,请判断AB 与CD 的位置关系并说明理由;(2)【探究】如图2,AB ∥CD ,M 是AE 上一点,∠AEC =90°保持不变,移动顶点E ,使CE 平分∠MCD ,∠BAE 与∠MCD 存在怎样的数量关系?并说明理由,(3)【拓展】如图3,AB ∥CD ,P 为线段AC 上一定点,Q 为直线CD 上一动点,且点Q 不与点C 重合.直接写出∠CPQ +∠CQP 与∠BAC 的数量关系.【思路点拨】(1)由角平分线的定义得∠BAC=2∠EAC,∠ACD=2∠ACE,则∠BAC+∠ACD=180°,可得结论AB∥CD;(2)过点E作EF∥AB,利用平行线的性质可得答案;(3)利用平行线的性质和三角形内角和定理可得答案.【解题过程】(1)解:当∠EAC=∠ACE=45°时,AB∥CD,理由如下:∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE,∵∠EAC=∠ACE=45°,∴∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB∥CD,故答案为:AB∥CD;当∠EAC=50°,∠ACE=40°时,AB∥CD,理由如下:∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE,∵∠EAC=50°,∠ACE=40°∴∠BAC=100°,∠ACD=80°,∴∠BAC+∠ACD=180°,∴AB∥CD,故答案为:AB∥CD;当∠EAC+∠ACE=90°,AB∥CD,理由如下:∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE,∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;∠MCD=90°,理由如下:(2)解:∠BAE+12过点E作EF∥AB,如图所示,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠AEC=90°,∴∠AEF+∠FEC=∠BAE+∠ECD=90°,∵CE平分∠MCD,∴∠ECD=1∠MCD,2∠MCD=90°;∴∠BAE+12(3)解:分两种情况分类讨论,第一种情况如图,当点Q在射线CD上运动时,∠BAC=∠PQC+∠QPC,理由:过点P作PE∥AB,∵AB∥CD,∴EP∥AB∥CD,∴∠BAC=∠EPC,∠PQC=∠EPQ,∵∠EPC=∠EPQ+∠QPC∴∠BAC=∠PQC+∠QPC;第二种情况如图,当点Q在射线CD的反向延长线上运动时(点C除外)∠PQC+∠QPC+∠BAC=180°,理由:∵AB∥CD,∴∠BAC=∠PCQ,∵∠PQC+∠QPC +∠PCQ=180°,∴∠PQC+∠QPC+∠BAC=180°,综上,∠BAC=∠PQC+∠QPC或∠PQC+∠QPC+∠BAC=180°.13.(2022春·广东深圳·七年级深圳大学附属中学校考期末)(1)如图1,点E在BC上,∠A=∠D,∠ACB =∠CED.请说明AB∥CD的理由.(2)如图2,AB∥CD,BG平分∠ABE,与∠EDF的平分线交于H点,若∠DEB比∠DHB大60°.求∠DEB 的度数.(3)保持(2)中所求的∠DEB的度数不变,如图3,AB∥CD,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请直接写出∠PBM的度数;若改变,请说明理由.【思路点拨】(1)由∠ACB=∠CED,得AC∥DF,可得∠A=∠DFB,又∠A=∠D,进而可得结论;(2)如图2,作EM∥CD,HN∥CD,根据AB∥CD,可得AB∥EM∥HN∥CD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数;(3)如图3,过点E作ES∥CD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数.【解题过程】(1)∵∠ACB=∠CED,∴AC∥DF,∵∠A =∠D , ∴∠DFB =∠D , ∴AB ∥CD ;(2)如图2,作EM ∥CD ,HN ∥CD ,∵AB ∥CD ,∴AB ∥EM ∥HN ∥CD ,∴∠1+∠EDF =180°,∠MEB =∠ABE , ∵BG 平分∠ABE , ∴∠ABG =12∠ABE ,∵AB ∥HN , ∴∠2=∠ABG , ∵CF ∥HN , ∴∠2+∠β=∠3, ∴12∠ABE +∠β=∠3, ∵DH 平分∠EDF , ∴∠3=12∠EDF , ∴12∠ABE +∠β=12∠EDF ,∴∠β=12(∠EDF -∠ABE ),∴∠EDF -∠ABE =2∠β, 设∠DEB =∠α,∵∠α=∠1+∠MEB =180°-∠EDF +∠ABE =180°-(∠EDF -∠ABE )=180°-2∠β, ∵∠DEB 比∠DHB 大60°,∴∠α=180°-2(∠α-60°) 解得∠α=100°∴∠DEB 的度数为100°;(3)∠PBM 的度数不变,理由如下:如图3,过点E 作ES ∥CD ,设直线DF 和直线BP 相交于点G ,∵BM 平分∠EBK ,DN 平分∠CDE , ∴∠EBM =∠MBK =12∠EBK , ∠CDN =∠EDN =12∠CDE ,∵ES ∥CD ,AB ∥CD , ∴ES ∥AB ∥CD ,∴∠DES =∠CDE ,∠BES =∠ABE =180°-∠EBK ,∠G =∠PBK , 由(2)可知:∠DEB =100°, ∴∠CDE +180°-∠EBK =100°, ∴∠EBK -∠CDE =80°, ∵BP ∥DN , ∴∠CDN =∠G ,∴∠PBK =∠G =∠CDN =12∠CDE ,∴∠PBM =∠MBK -∠PBK =12∠EBK -12∠CDE =12(∠EBK -∠CDE )=12×80°=40°.14.(2022春·浙江宁波·七年级校联考期末)如图①,AB ,BC 被直线AC 所截,点D 是线段AC 上的点,过点D 作DE ∥AB ,连接AE ,∠B =∠E =60°.(1)请说明AE∥BC;(2)将线段AE沿着直线..AC平移得到线段PQ,连接DQ.①.如图②,当DE⊥DQ时,则∠Q的度数=_____________;②.在整个运动中,当∠Q=2∠EDQ时,∠Q=_____________.【思路点拨】(1)根据平行线的性质得到∠BAE+∠E=180°,利用等量代换得到∠BAE+∠B=180°,即可证出AE∥BC;(2)①过点D作DM∥PQ,则DM∥AE,根据平行线的性质即可得到答案;②两种情况,运用类比的方法,当点P在线段AD上时,过点D作DF∥AE交AB于点F,根据平行线的性质即可得到答案;当点P在线段DA的延长线上时,过点D作DF′∥AE交AB于点F′,根据平行线的性质即可得到答案.【解题过程】(1)证明:∵DE∥AB,∴∠BAE+∠E=180°,又∵∠B=∠E,∴∠BAE+∠B=180°,∴AE∥BC.(2)解:①解:过点D作DM∥PQ,如图所示:∵AE∥PQ,∴DM∥AE,∴∠E=∠EDM,∠Q=∠MDQ,∵DE⊥DQ,∴∠EDQ=90°,∴∠E+∠Q=∠EDM+∠MDQ=90°,而∠E=60°,∴∠Q=90°−60°=30°.故答案为:30°.②当点P在线段AD上时,过点D作DF∥AE交AB于点F,如图所示:∵PQ∥AE,∴DF∥PQ,∴∠QDF=180°−∠Q,∵∠Q=2∠EDQ,∴∠EDQ=1∠Q,2∵∠E=60°,∴∠EDF=180°−60°=120°,∠Q=180°−∠Q,∴∠QDF=120°+12∴∠Q=40°;当点P在线段DA的延长线上时,过点D作DF′∥AE交AB于点F′,如图所示:∵PQ∥AE,∴DF′∥PQ,∴∠QDF′=180°−∠Q,∵∠Q=2∠EDQ,∠Q,∴∠EDQ=12∵∠E=60°,∴∠EDF′=180°−60°=120°,∴180°−∠Q+1∠Q=120°,2∴∠Q=120°;综上所述:∠Q的度数为40°或120°.故答案为:40°或120°.15.(2022春·重庆·七年级西南大学附中校考期末)对于各位数字均不为零的三位自然数m=abc,若m满足各位数字之和能被十位数字整除,则称m为“对偶数”.例如m=327,∵3+2+7=12,12÷2=6,∴327是“对偶数”;又如n=136,∵1+3+6=10,10不能被3整除,∴136不是“对偶数”.将m的百位数字放在其个位数字后得m1=bca,再将m1的百位数字放在其个位数字后得m2=cab.记F(m)=m+m1+m2.111(1)判断248,933是否是“对偶数”,并说明理由;(2)已知“对偶数”n=100a+10b+4(其中1≤a+b≤9),若18F(n)+2(a−4)能被7整除,求出所有满足条件的n.【思路点拨】(1)根据“对偶数”的定义直接判断即可;(2)先表示出F(n),进而得出F(n)=a+b+4,即可得出18F(n)+2(a−4)=7(2a+2b+9)+6a+4b+ 1,进而得出(6a+4b+1)是7的倍数,可推导6a+4b+1=21或35或49,最后分类讨论即可求出答案.【解题过程】(1)解:248不是“对偶数”,933是“对偶数”,理由如下:∵对于248,2+4+8=14,14不能被4整除,∴248不是“对偶数”,∵对于933,9+3+3=15,15能被3整除,∴933是“对偶数”;(2)∵n=100a+10b+4,∴n1=b4a=100b+40+a,n2=4ab=400+10a+b,∴F(n)=n+n1+n2111=100a+10b+4+100b+40+a+400+10a+b111=a+b+4,∴18F(n)+2(a−4)=18(a+b+4)+2(a−4)=20a+18b+64=7(2a+2b+9)+6a+4b+1,∵18F(n)+2(a−4)能被7整除,∴(6a+4b+1)是7的倍数,∵1≤a+b≤9,且a、b为整数,∴1≤a≤8,1≤b≤8,∴11≤6a+4b+1≤53,∴6a+4b+1=14或21或28或35或42或49,∵6a+4b=2(3a+2b),即为偶数,∴6a+4b+1是奇数,∴6a+4b+1=21或35或49,①当6a+4b+1=21时,b=5−32a,∵a、b为整数,∴a=2,b=2,∴n=224,∵2+2+4=8,8能被2整除,∴224是“对偶数”,符合题意;②当6a+4b+1=35时,b=17−3a2,∵a、b为整数,∴a=1,b=7或a=3,b=4或a=5,b=1,当a=1,b=7时,n=174,1+7+4=12,12不能被7整除,故174不是“对偶数”,不符合题意;当a=3,b=4时,n=344,3+4+4=11,11不能被4整除,故344不是“对偶数”,不符合题意;当a=5,b=1时,n=514,5+1+4=10,10能被1整除,故514是“对偶数”,符合题意;③当6a+4b+1=49时,b=12−3a,2∵a、b为整数,∴a=4,b=6或a=6,b=3,当a=4,b=6时,n=464,4+6+4=14,14不能被6整除,故464不是“对偶数”,不符合题意;当a=6,b=3时,n=634,6+3+4=13,13能被3整除,故634不是“对偶数”,不符合题意;综上所述,所以满足条件的n为224或514.16.(2022春·湖北黄石·七年级统考期末)如图,以直角△AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足√a−b+2+|b−8|=0.(1)点A的坐标为________;点C的坐标为________.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ 的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOA,∠OHC,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).【思路点拨】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t,OP=8-2t,根据△ODP与△ODQ的面积相等列方程求解即可;(3)由∠AOC=90°,y轴平分∠GOD证得OG∥AC,过点H作HF∥OG交x轴于F,得到∠FHC=∠ACE,∠FHO=∠GOD,从而∠GOD+∠ACE=∠FHO+∠FHC,即可证得2∠GOA+∠ACE=∠OHC.【解题过程】解:(1)∵√a−b+2+|b−8|=0,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴S△ODQ=12OQ×|x D|=12t×4=2t,S△ODP=12OP×|y D|=12(8−2t)×3=12−3t,∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.17.(2022春·湖北武汉·七年级统考期末)在平面直角坐标系中,A(a,0),B(1,b),a,b满足|a+b−1|+√2a−b+10=0,连接AB交y轴于C.(1)直接写出a=______,b=______;(2)如图1,点P是y轴上一点,且三角形ABP的面积为12,求点P的坐标;(3)如图2,直线BD交x轴于D(4,0),将直线BD平移经过点A,交y轴于E,点Q(x,y)在直线AE上,且三角形ABQ的面积不超过三角形ABD面积的13,求点Q横坐标x的取值范围.【思路点拨】(1)根据非负数的性质构建方程组,解方程组求出a,b;(2)过点B作BM⊥x轴于M,设OC=m,由三角形面积关系得出12OA⋅OC+12(OC+BM)⋅OM=12AM⋅BM,求出m=3,过点B作BN⊥y轴于N,由三角形面积关系得出12×3×CP+12CP=12,求出CP即可;(3)连接DQ,过点Q作QR⊥x轴,分点Q在第二象限,点Q在第三象限时,两种情况,分别列出方程,解之即可.【解题过程】(1)解:∵√a+b−1+|2a−b+10|=0,又∵√a +b −1⩾0,|2a −b +10|⩾0,∴ {a +b −1=02a −b +10=0 ,解得:{a =−3b =4 ,故答案为:-3,4.(2)过点B 作BM ⊥x 轴于M ,设OC =m ,∵三角形AOC 的面积+四边形OCBM 的面积=三角形ABM 的面积,∴ 12OA ⋅OC +12(OC +BM)⋅OM =12AM ⋅BM ,即12×3m +12(m +4)×1=12×4×4,解得:m =3,点C 的坐标为(0,3),过点B 作BN ⊥y 轴于N ,∵三角形ABP 的面积=三角形ACP 的面积+三角形BCP 的面积,∴ 12OA ⋅CP +12BN ⋅CP =12,即12×3×CP +12CP =12,∴CP =6,∴点P 的坐标为(0,−3)或(0,9).(3)点B 向左平移4个单位长度,向下平移4个单位长度到点A ,∵点D 向左平移4个单位长度后的对应点正好在y 轴上,∴点D 平移后的对应点恰好是点E(0,−4),连接DQ ,过点Q 作QR ⊥x 轴,如图所示:∵AE ∥BD ,∴三角形ADQ 的面积=三角形ABQ 的面积,当三角形ABQ 的面积=13三角形ABD 的面积时,QR =13y B =43,当点Q 在第三象限时,∴ 12(x +3)×43+12(43+4)(−x)=12×4×3,解得:x =−2,当点Q 在第二象限时,∴ 12×3×4+12(3−x)×43=12(−x)×163,解得:x =−4,∴当三角形ABQ 的面积不超过三角形ABD 面积的13时,点Q 的横坐标x 的取值范围是−4⩽x ⩽−2,且x ≠−3.18.(2022秋·黑龙江绥化·七年级校考期末)如图①,在平面直角坐标系中,点A 、B 的坐标分别为(−1,0)、(3,0),现同时将点A 、B 向上平移2个单位长度,再向右平移一个单位长度,得到A 、B 的对应点C 、D ,连接AC 、BD 、CD .(1)写出点C 、D 的坐标并求出四边形ABDC 的面积;(2)在x轴上是否存在一点F,使得△DFC的面积是△DFB面积的2倍?若存在,请求出点F的坐标;若不存在,请说明理由;(3)如图②,点P是直线BD上一个动点,连接PC、PO,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD、∠POB的数量关系.【思路点拨】(1)根据点的平移规律可得C,D的坐标,然后利用平行四边形的面积计算即可求出四边形ABDC的面积;(2)根据△DFC的面积是△DFB面积的2倍,得BF=12CD=2,即可求出点F的坐标;(3)当点P在线段DB延长线上运动时,当点P在线段BD的延长线上时,当点P在线段BD上运动时,作PQ∥AB,分别根据平行线的性质和平行线间的传递性求解即可.【解题过程】(1)∵点A,B的坐标分别为(−1,0)、(3,0),将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,∴点C(0,2),点D(4,2),AB=4,AB∥CD,AB=CD,∴OC=2,四边形ABDC是平行四边形,∴S四边形ABDC=4×2=8;(2)存在,理由:设F坐标为(m,0),∵△DFC的面积是△DFB面积的2倍,∴12×CD×OC=2×12BF×OC,即4=2|m−3|,解得m=5或1,∴P点的坐标为(5,0)或(1,0);(3)①当点P在线段BD上时,如图,作PE∥CD,由平移可知:CD∥AB,∴CD∥PE∥AB,∴∠DCP=∠EPC,∠BOP=∠EPO,∴∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;即∠OPC=∠PCD+∠POB;②当点P在线段BD的延长线上时,如图,作PE∥CD,由平移可知:CD∥AB,∴CD∥PE∥AB,∴∠DCP=∠EPC,∠BOP=∠EPO,∴∠BOP−∠DCP=∠EPO−∠EPC=∠CPO;即∠OPC=∠POB−∠PCD;③当点P在线段DB的延长线上时,如图,作PE∥CD,由平移可知:CD∥AB,∴CD∥PE∥AB,∴∠DCP=∠EPC,∠BOP=∠EPO,∴∠DCP−∠BOP=∠EPC−∠EPO=∠CPO;即∠OPC=∠PCD−∠POB;综上,∠OPC=∠PCD+∠POB或∠OPC=∠POB−∠PCD或∠OPC=∠PCD−∠POB.19.(2022春·湖南长沙·七年级校联考期末)如图所示,在平面直角坐标系中,如图①,将线段AB平移至线段CD,点A在x轴的负半轴,点C在y轴的正半轴上,连接AC、BD.(1)若A(−3,0)、B(−2,−2),C(0,2),直接写出点D的坐标;(2)如图②,在平面直角坐标系中,已知一定点M(2,0),两个动点E(a,2a+1)、F(b,−2b+3).请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求点E、F的坐标;若不存在,请说明理由;(3)如图③,在直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=110°,∠DCF=60°,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.【思路点拨】(1)根据平移变换只改变图形的位置不改变图形的形状可知对应线段平行且相等,对应点的连线平行且相等;(2) 根据EF∥OM,EF=OM,O(0,0),M(2,0),得出2a+1=−2b+3,|a−b|=2,解答即可.(3) 分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据内错角相等两直线平行,列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据同位角相等两直线平行,列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据同位角相等两直线平行,列式计算即可得解.【解题过程】(1)解:设D(x,y),∵将线段AB平移至线段CD,A(−3,0)、B(−2,−2),C(0,2),∴x−0=−2−(−3),y−2=−2−0,∴x=1,y=0,∴D(1,0);。
七年级下册数学几何压轴题
七年级下册数学几何压轴题
1. 把一个长方形沿x轴正方向移动m个单位,求移动前后阴影的面积差。
2. 一个小正方体沿着x轴正方向移动,它的一面在x轴上翻转,求翻转前后阴影的面积比值。
3. 一个方形沿着y轴正方向移动,移动到一个圆的周围,求圆和方形的阴影面积比值。
4. 把一个正方形沿对角线方向移动,它最后完全重合的时候恰好覆盖了一个面积为S的等腰三角形,求三角形面积S。
5. 把一个正方形沿着y轴正方向移动,移动m个单位的时候与另外一个正方形刚好重合,求另外一个正方形的边长。
6. 一个矩形沿x轴正方向移动,移动到另外一个矩形的正上方还有b个单位,求两个矩形的阴影面积比值。
7. 把一个半圆形沿y轴正方向移动,移动到正方形的中心时,求正方形面积和半圆形面积的阴影面积比值。
8. 把一个梯形沿y轴正方向移动,移动到一个与梯形相似的大梯形上面靠着底边的位置,求阴影的面积比值。
9. 把一个正三角形沿着x轴正方向移动,相邻两次的位移满足一个等差数列,第一次移动2个单位,第三次移动8个单位,求正三角形的边长。
10. 一个椭圆形沿y轴正方向移动,移动到一个长方形上方恰好横跨长方形的两个端点,求已经移动了多少个单位。
七年级下册数学压轴题
1、若关于x的方程3x - 2(x - 1) = 4的解也是方程ax - 2x = 4的解,则a的值为?A、1B、2C、3D、4解析:首先解方程3x - 2(x - 1) = 4,得到x = 2。
然后将x = 2代入方程ax - 2x = 4,得到2a - 4 = 4,解得a = 4。
(答案)D2、下列说法中正确的是?A、两个有理数的和一定大于每一个加数B、两个有理数的和一定小于每一个加数C、两个有理数的和可能等于其中一个加数D、两个有理数相加,和一定不等于0解析:考虑两个有理数的和,它可能大于、小于或等于其中一个加数。
例如,当两个加数相等时,它们的和就等于其中一个加数。
因此,选项C是正确的。
(答案)C3、若a、b互为相反数,c、d互为倒数,则(a + b)100 + (-cd)99 = ?A、-1B、0C、1D、2解析:由于a、b互为相反数,所以a + b = 0。
c、d互为倒数,所以cd = 1。
代入原式,(a + b)100 + (-cd)99 = 0100 + (-1)99 = 0 - 1 = -1。
(答案)A4、下列运算中,结果正确的是?A、3(x - 1) = 3x - 1B、-(a + b) = -a - bC、2(x + y) = 2x + yD、a(b - c) = ab - a解析:根据分配律,我们可以检查每个选项。
选项B是正确的,因为-(a + b)确实等于-a - b。
其他选项都不符合分配律。
(答案)B5、若关于x、y的方程组{x + 2y = 3, 3x + 2y = k}的解也是方程2x + y = 5的解,则k的值为?A、4B、6C、8D、10解析:首先解方程组{x + 2y = 3, 2x + y = 5},得到x = 1,y = 1。
然后将x = 1,y = 1代入方程3x + 2y = k,得到k = 5。
但考虑到x、y已经满足2x + y = 5,所以直接代入3x + 2y 得k = 31 + 21 = 5*2 = 10(因为3x+2y与2x+y的和是5的两倍)。
七年级下册数学的压轴题
1.下面哪个数是 8 和 12 的最小公倍数?
A.24
B.36
C.48
D.60
2.如果 3x - 7 = 11,那么 x 的值是多少?
A. 4
B. 6
C.8
D.9
3.一个三角形的三个内角分别为 50°、60°和多少度?
A.70°
B.80°
C.90°
D.100°
4.一辆汽车以每小时 60 公里的速度行驶,4 小时后行驶了多少公里?
A.120 公里
B.180 公里
C.240 公里
D.300 公里
5.一个正方形的边长是 7 厘米,它的面积是多少平方厘米?
A.49 平方厘米
B.54 平方厘米
C.56 平方厘米
D.63 平方厘米
6.如果一个圆的半径是 5 厘米,则它的直径是多少厘米?
A. 5 厘米
B.10 厘米
C.15 厘米
D.20 厘米
7.下列哪个数是 7 的平方?
A.49
B.56
C.64
D.72
8.一个长方体的长是 8 厘米,宽是 5 厘米,高是 4 厘米,它的体积是多少立方厘米?
A.160 立方厘米
B.180 立方厘米
C.200 立方厘米
D.240 立方厘米
9.如果一个数的 25% 是 15,那么这个数是多少?
A.50
B.60
C.75
D.80。
七年级下册压轴题50道人教版
七年级下册压轴题50道人教版一、相交线与平行线1. 如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE = 4:1,求∠AOF的度数。
解析:设∠BOE = x°,因为OE平分∠BOD,所以∠BOD = 2∠BOE=2x°。
又因为∠AOD + ∠BOD = 180°,且∠AOD:∠BOE = 4:1,所以∠AOD = 4x°。
则4x+2x = 180,6x=180,x = 30。
所以∠BOD = 60°,∠COE=180°∠BOE = 150°。
因为OF平分∠COE,所以∠COF=(1)/(2)∠COE = 75°。
∠AOC=∠BOD = 60°,所以∠AOF=∠AOC+∠COF = 60°+75° = 135°。
2. 已知直线l_1∥ l_2,点A,B分别在l_1,l_2上,点P是l_1,l_2间一点,连接PA,PB。
(1) 如图1,若∠A = 50°,∠B = 70°,求∠APB的度数;(2) 如图2,点C在l_1上方,连接PC,AC,若∠PAC = 150°,∠PBC = 130°,求∠APC + ∠BPC的度数。
解析:(1) 过点P作PD∥ l_1,因为l_1∥ l_2,所以PD∥ l_2。
∠A = ∠APD = 50°(两直线平行,内错角相等),∠B = ∠BPD=70°。
所以∠APB=∠APD + ∠BPD = 50°+70° = 120°。
(2) 过点P作PE∥ l_1,过点C作CF∥ l_1。
因为l_1∥ l_2,所以PE∥ l_2,CF∥ l_2。
∠PAC + ∠APE = 180°,所以∠APE = 180° 150°=30°。
七年级下册数学压轴题集锦
七年级下册数学压轴题集锦(一)1、如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)2+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ; (3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN ⊥x轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA 的大小是否发生变化,若不变,求出其值.2、如图1,AB ∥EF ,∠2=2∠1(1)证明∠FEC =∠FCE ;图1(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM =∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。
图2B C B3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。
(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。
4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?5、已知∠A=∠C=90°.(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
BA B6、(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
最新七年级下册数学几何压轴题集锦
最新七年级下册数学几何压轴题集锦文章已经整理过,以下是修改后的文章:在矩形ABCD中,点E为BC边上的一动点,沿AE翻折,使△ABE与△AFE重合,射线AF与直线CD交于点G。
1.当BE:EC=3:1时,连结EG,若AB=6,BC=12,求锐角AEG的正弦值。
解析:首先,由题意可知,ABE和AFE是全等三角形,因此AE=EF=3,BE=9.由余弦定理可得:cosAEG = (AE² + EG² - AG²) / (2AE * EG) = (3² + 9² - 6²) / (2 * 3 * 9) = 5 / 18因此,正弦值为sinAEG = √(1 - cos²AEG) = √(1 - 25/324) = √(299/324) = 7/18.2.以B为原点,直线BC和直线AB分别为X轴、Y轴建立平面直角坐标系,AB=5,BC=8,当点E从原点出发沿X正半轴运动时,是否存在某一时刻使△AEG成等腰三角形?若存在,求出点E的坐标。
解析:由题意可知,AE=EF=3,因此AG=6.设点E的坐标为(x。
y),则有:y/x = 3/5又因为△AEG是等腰三角形,因此AG=EG,即:x-5)² + y² = 36联立以上两式,解得:x = 15/4,y = 9/4因此,当点E的坐标为(15/4.9/4)时,△___成等腰三角形。
如图,已知A(a。
4),B(0.b),C(m。
b),且(a-4)+b+3=0,SABC=14.1.求C点坐标。
解析:由(a-4)+b+3=0可得a+b=1,又因为SABC=14,因此有:1/2 * AB * AC * sin∠BAC = 14代入AB=√(a²+16),AC=√[(m-a)²+(b-4)²]和sin∠BAC=4/5,化简得:a-4)² + (m-a)² + (b-4)² = 100联立(a-4)+b+3=0和a+b=1,解得a=-2,b=3,代入上式可得:m-6)² + 1 = 100因此,m=8或m=-4.但由题意可知,C点的横坐标为正数,因此C(8.3)。
七年级数学版下册压轴题
七年级数学版下册压轴题第一题:分数的加减乘除运算题目要求:请计算以下数式的值,并将答案化简至最简形式。
1.(1/3) + (2/5)2.(4/7) - (1/5)3.(2/3) × (3/8)4.(5/6) ÷ (1/4)答案及解析1.(1/3) + (2/5)解法:首先最小公倍数为15,将分数的分母变为15,得到(5/15) + (6/15) = 11/15,所以答案为11/15。
2.(4/7) - (1/5)解法:首先最小公倍数为35,将分数的分母变为35,得到(20/35) - (7/35) = 13/35,所以答案为13/35。
3.(2/3) × (3/8)解法:将分数相乘得到(2×3)/(3×8) = 6/24,将6/24化简为最简形式,得到1/4,所以答案为1/4。
4.(5/6) ÷ (1/4)解法:将除法转化为乘法,得到(5/6) × (4/1)= (5×4)/(6×1) = 20/6,将20/6化简为最简形式,得到10/3,所以答案为10/3。
第二题:解一元一次方程题目要求:解下列一元一次方程。
1.2x - 3 = x + 42.3(x + 5) = 6x - 93.2(x + 3) - 4(x - 2) = 5(2x - 1)答案及解析1.2x - 3 = x + 4解法:将方程中的变量合并在一起,得到2x - x = 4 + 3,化简得到x = 7,所以方程的解为x = 7。
2.3(x + 5) = 6x - 9解法:先将方程中的括号展开,得到3x + 15 = 6x - 9,将变量合并在一起,得到3x - 6x = -9 - 15,化简得到-3x = -24,再将方程两边同时除以-3,得到x = 8,所以方程的解为x = 8。
3.2(x + 3) - 4(x - 2) = 5(2x - 1)解法:先将方程中的括号展开,得到2x + 6 - 4x + 8 = 10x - 5,将变量合并在一起,得到-2x + 14 = 10x - 5,将方程中的常数项合并在一起,得到-2x - 10x = -5 - 14,化简得到-12x = -19,再将方程两边同时除以-12,得到x =19/12,所以方程的解为x = 19/12。
七年级(下册)数学压轴题集锦
1、2a b m b a-+b+3=0=14.ABCA S如图,已知(0,),B (0,),C (,)且(4),o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;(3)E 在y 轴负半轴上运动时.连EC.点P 为AC 延长线上一点.EM 平分∠AEC.且PM ⊥EM,PN ⊥x 轴于N 点.PQ 平分∠APN.交x 轴于Q 点.则E 在运动过程中.MPQECA∠∠的大小是否发生变化.若不变.求出其值。
2、如图1.AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE;(2)如图2.M 为AC 上一点.N 为FE 延长线上一点.且∠FNM=∠FMN.则∠NMC 与∠CFM 有何数量关系.并证明。
图1 图2 3、(1)如图.△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D.若∠1=130°.∠B C B C2=110°.求∠A 的度数。
(2)如图.△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°.∠2=130°.求∠A 的度数。
4、如图.∠ABC+∠ADC=180°.OE 、OF 分别是角平分线.则判断OE 、OF 的位置关系为?5、已知∠A=∠C=90°.BCCFA(1)如图.∠ABC 的平分线与∠ADC 的平分线交于点E.试问BE 与DE 有何位置关系?说明你的理由。
(2)如图.试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图.若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E.试问BE 与DE 有何位置关系?说明你的理由。
6.(1)如图.点E 在AC 的延长线上.∠BAC 与∠DCE 的平分线交于点F.∠B=60°,∠F=56°,求∠BDC 的度数。
【初中数学】七年级下册压轴题专项练习(解析版)
一、解答题1.如图,用两个面积为200cm 2七年级下册数学压轴题专题练习(解析版)的小正方形拼成一个大的正方形.(1)则大正方形的边长是;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为360cm 2?2.如图,在9⨯9网格中,每个小正方形的边长均为1,正方形ABCD 的顶点都在网格的格点上.(1)求正方形ABCD 的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标.3.已知在4⨯4的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和-8.4.小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm 2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.5.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二、解答题6.如图,MN//GH,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若∠NAO=116︒,∠OBH=144︒.(1)∠AOB=︒;(2)如图2,点C、D是∠NAO、∠GBO角平分线上的两点,且∠CDB=35︒,求∠ACD的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若∠MAE=n∠OAE,∠HBF=n∠OBF,且∠AFB=60︒,求n的值.7.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE 上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.8.如图,已知直线AB//射线CD,∠CEB=100︒.P是射线EB上一动点,过点P作PQ//EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧,求∠PCG的度数;(2)若点P,F,G都在点E的右侧,∠EGC-∠ECG=30︒,求∠CPQ的度数;(3)在点P的运动过程中,是否存在这样的情形,使∠EGC:∠EFC=4:3?若存在,求出∠CPQ的度数;若不存在,请说明理由.9.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足a-30+(β﹣60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).10.问题情境:(1)如图1,AB//CD,∠PAB=128︒,∠PCD=119︒.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE//AB,请你接着完成解答.问题迁移:(2)如图3,AD//BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠PCE=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PF//AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系并证明.三、解答题11.已知:直线l 1∥l 2,A 为直线l 1上的一个定点,过点A 的直线交l 2于点B ,点C 在线段BA 的延长线上.D ,E 为直线l 2上的两个动点,点D 在点E 的左侧,连接AD ,AE ,满足∠AED =∠DAE .点M 在l 2上,且在点B 的左侧(2)射线AF 为∠CAD 的角平分线.①如图2,当点D 在点B 右侧时,用等式表示∠EAF 与∠ABD 之间的数量关系,并证明;②当点D 与点B 不重合,且∠ABM +∠EAF =150°时,直接写出∠EAF 的度数..(1)如图1,若∠BAD =25°,∠AED =50°,直接写出∠ABM 的度数;12.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,∠B =35︒,∠D =37︒,求∠BED 的度数.她是这样做的:过点E 作EF //AB ,则有∠BEF =∠B ,因为AB //CD ,所以EF //CD .①所以∠FED =∠D ,所以∠BEF +∠FED =∠B +∠D ,即∠BED =_;1.小颖求得∠BED的度数为__;2.上述思路中的①的理由是__;3.请你参考她的思考问题的方法,解决问题:已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE 平分∠ADC,且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=α,∠ADC=β,则∠BED的度数为;(用含有α,β的式子表示).(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).13.如图1,AB//CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.14.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且b//a,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的线.(2)已知,如图3,AB//CD,BE平分∠ABC,CF平分∠BCD.求证:BE//CF(写出每步的依据).15.如图所示,已知AM//BN,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C、D,且∠CBD=60︒(1)求∠A的度数.(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.四、解答题16.在ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE//AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB.①若∠BAC=100︒,∠C=30︒,则∠AFD=_____;若∠B=40︒,则∠AFD=_____;②试探究∠AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F.试探究∠AFD与B之间的数量关系,并说明理由.17.己知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l//PQ.点D在点C的左边且CD=3(1)直接写出的∆BCD面积 ;(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,试说明∠CEF=∠CFE;(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中∠H的值是否变化?若不变,求出其值;若变化,求出变化范围.∠ABC18.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:. 19.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反3向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的倍,求∠ABO2的度数.20.如果三角形的两个内角α与β满足2α+β=90︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC中,∠ACB=90︒,BD是ABC的角平分线,求证:△ABD是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC中,若∠A=100︒,∠B=70︒,∠C=10︒,则ABC是“准互余三角形”;②若ABC是“准互余三角形”,∠C>90︒,∠A=60︒,则∠B=20︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B,C为直线l上两点,点A在直线l外,且∠ABC=50︒.若P是直线l上一点,且△ABP是“准互余三角形”,请直接写出∠APB的度数.【参考答案】一、解答题1.(1);(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1)20;(2)无法裁出这样的长方形.【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为4x cm,宽为3x cm,根据题意列出方程,解方程比较4x与20的大小即可.【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,∴边长为:400=20cm;(2)根据题意设长方形长为4x cm,宽为3x cm,4x⋅3x=360由题:则x2=30x0∴x=30∴长为430430>20∴无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.2.(1)面积为29,边长为;(2),,,,图见解析.【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边长为29;(2)A (0,5),B (2,0),C (7,2),D (5,7),图见解析.【分析】(1)面积等于一个7⨯7大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标即可.【详解】解:(1)正方形的面积S正方形ABCD =72-4⨯⨯2⨯5=29,正方形边长为S =29;(2)建立如图平面直角坐标系,则A (0,5),B (2,0),C (7,2),D (5,7).12【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键.3.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD 的面积为10,正方形ABCD 的边长为10;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD 的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD 的面积为4×4-4×2×3×1=10则正方形ABCD 的边长为10;(2)如下图所示,正方形的面积为4×4-4×2×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点11∴正方形的边长为8∴弧与数轴的左边交点为-8,右边交点为8,实数8和-8在数轴上如图所示.【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.4.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm 2的正方形纸片的边长为a cm∴a 2=400又∵a >0∴a =20又∵要裁出的长方形面积为300cm 2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm )∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm ,则宽为2x cm∴6x 2=300∴x 2=50又∵x >0∴x =52∴长方形纸片的长为152又∵152()2=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片5.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1)400=20(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a =±20,∵3a 表示长度,∴a >0,∴a =20,∴这个长方形场地的周长为 2(3a +5a )=16a =1620(m ),∵80=16×5=16×25>1620,∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二、解答题6.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得∠NAC=58︒,再根据平行线的性质得到∠CEF=58︒;进一步求得∠DBF=18︒,∠DFB=17︒,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=∠OBH=144°,∠HBF=n∠OBF,得∠FBH=∠FKN=∠F+∠FAK,得【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;n⨯64︒,同理n+1n n⨯144︒,从而∠BKA=∠FBH=⨯144︒,又n+1n+1n n⨯144︒=60︒+⨯64︒,即可求n.n+1n+1(2)分别延长AC、CD交GH于点E、F,∵AC平分∠NAO且∠NAO=116︒,∴∠NAC=58︒,又∵MN//GH,∴∠CEF=58︒;∵OBH144,OBG 36∵BD 平分OBG ,∴DBF18,又∵CDB35,∴DFBCDB DBF 351817;∴ACD DFB AEF 175875;(3)设FB 交MN 于K ,∵NAO116,则MAO 64;∴MAEn 64n 1n n 144,BKA =FBH 144,n+1n 1∵OBH144,∴FBH 在△FAK 中,BKAFKA F ∴n n 1446460,n 1n 1n 6460,n 1∴n 3.经检验:n 3是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.7.(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC⊥AD .【分析】(1)要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD解析:(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC⊥AD .【分析】(1)要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD ,则当∠ACB =∠B 时,有AD 平分∠EAC ;(2)根据角平分线可得∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD ,则有∠ACB =∠B ;(3)由AC⊥BC ,有∠ACB =90°,则可求∠BAC =40°,由平行线的性质可得AC⊥AD .【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.8.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=2∠QCF+2∠FCE=2∠ECQ=40°;(2)∵AB∥CD111∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=2(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,1则∠ECG=x,∠PCF=∠PCD=∵∠ECD=80°,3 x,233∴x+x+x+x=80°,22解得x=16°,3∴∠CPQ=∠ECP=x+x+x=56°;2②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=2∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,1内错角相等.9.(1)30°;(2)∠DEF+2∠CDF =150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E 作直线EH ∥AB ,由角平分线的性质和平行解析:(1)30°;(2)∠DEF +2∠CDF =150°,理由见解析;(3)2【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E 作直线EH ∥AB ,由角平分线的性质和平行线的性质可求∠DEF =180°﹣30°﹣2x °=150°﹣2x °,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB =2∠Q +∠PCD ,∠CPM =2∠Q ,即可求解.【详解】解:(1)∵∵AB ∥CD ,∴∠AMN =∠MND =60°,∵∠AMN =∠B +∠BEM =60°,∴∠BEM =60°﹣30°=30°;(2)∠DEF +2∠CDF =150°.理由如下:过点E 作直线EH ∥AB ,1α-30+(β﹣60)2=0,∴α=30,β=60,∵DF 平分∠CDE ,∴设∠CDF =∠EDF =x °;∵EH ∥AB ,∴∠DEH =∠EDC =2x °,∴∠DEF =180°﹣30°﹣2x °=150°﹣2x °;∴∠DEF =150°﹣2∠CDF ,即∠DEF +2∠CDF =150°;(3)如图3,设MQ 与CD 交于点E ,∵MQ 平分∠BMT ,QC 平分∠DCP ,∴∠BMT =2∠PMQ ,∠DCP =2∠DCQ ,∵AB ∥CD ,∴∠BME =∠MEC ,∠BMP =∠PND ,∵∠MEC =∠Q +∠DCQ ,∴2∠MEC =2∠Q +2∠DCQ ,∴∠PMB =2∠Q +∠PCD ,∵∠PND =∠PCD +∠CPM =∠PMB ,∴∠CPM =2∠Q ,∴∠Q 与∠CPM 的比值为2,故答案为:2.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.1110.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC=解析:(1)见解析;(2)∠CPD =∠α+180︒-∠β,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),∠CPD =180︒-∠β-∠α;②当P 在BO 之间时(点P 不与点B ,O 重合),∠CPD =∠α-180︒+∠β.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作PF //AD 交CD 于F ,,推出AD //PF //BC ,根据平行线的性质得出BCP 180,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作PE //AB ,AB //CD ,∴PE //AB //CD ,APE PAB =180,∠CPE +∠PCD =180︒,∠PAB =128︒,∠PCD =119︒∴∠APE=52︒,∠CPE=61︒,∴∠APC=52︒+61︒=113︒;(2)∠CPD=∠α+180︒-∠β,理由如下:如图3,过P作PF//AD交CD于F,AD//BC,∴AD//PF//BC,∴∠ADP=∠DPF,∠BCP=∠CPF,∠BCP+∠PCE=180︒,∠PCE=∠β,∴∠BCP=180︒-∠β又∠ADP=∠αCPD DPF CPF=180;(3)①当P在BA延长线时(点P不与点A重合),∠CPD=180︒-∠β-∠α;理由:如图4,过P作PF//AD交CD于F,AD//BC,∴AD//PF//BC,∴∠ADP=∠DPF,∠BCP=∠CPF,∠BCP+∠PCE=180︒,∠PCE=∠β,∴∠BCP=180︒-∠β,又∠ADP=∠α,∴∠CPD=∠CPF-∠DPF=180︒-∠α-∠β;②当P在BO之间时(点P不与点B,O重合),∠CPD=∠α-180︒+∠β.理由:如图5,过P作PF//AD交CD于F,AD//BC,∴AD//PF//BC,∴∠ADP=∠DPF,∠BCP=∠CPF,∠BCP+∠PCE=180︒,∠PCE=∠β,∴∠BCP=180︒-∠β,又∠ADP=∠α∴∠CPD=∠DPF-∠CPF=∠α+∠β-180︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.三、解答题11.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1)125︒;(2)①∠ABD=2∠EAF,见解析;②30或110︒【分析】(1)由平行线的性质可得到:∠DEA=∠EAN,∠MBA=∠BAN,再利用角的等量代换换算即可;(2)①设∠EAF=α,∠AED=∠DAE=β,利用角平分线的定义和角的等量代换表示出∠ABD对比即可;②分类讨论点D在B的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在l1上有一点N在点A的右侧,如图所示:∵l1//l2∴∠DEA=∠EAN,∠MBA=∠BAN∴∠AED=∠DAE=∠EAN=50︒∴∠BAN=∠BAD+∠DAE+∠EAN=25︒+50︒+50︒=125︒∠BAM=125︒(2)①∠ABD=2∠EAF.证明:设∠EAF=α,∠AED=∠DAE=β.∴∠FAD=∠EAF+∠DAE=α+β.∵AF为∠CAD的角平分线,∴∠CAD=2∠FAD=2α+2β.∵l1l2,∴∠EAN=∠AED=β.∴∠CAN=∠CAD-∠DAE-∠EAN=2α+2β-β-β=2α.∴∠ABD=∠CAN=2α=2∠EAF.②当点D在点B右侧时,如图:由①得:∠ABD=2∠EAF又∵∠ABD+∠ABM=180︒∴∠ABM+2∠EAF=180︒∵∠ABM+∠EAF=150︒∴∠EAF=180︒-150︒=30︒当点D在点B左侧,E在B右侧时,如图:∵AF为∠CAD的角平分线1∴∠DAF=∠CAD2∵l1l 2∴∠AED=∠NAE,∠CAN=∠ABE∵∠DAE=∠AED=∠NAE11∴∠DAE=(∠DAE+∠NAE)=∠DAN2211∴∠EAF=∠DAF+∠DAE=(∠CAD+∠DAN)=(360︒-∠CAN)221=180︒-∠ABE2∵∠ABE+∠ABM=180︒11∴∠EAF=180︒-(180︒-∠ABM)=90︒+∠ABM22又∵∠EAF+∠ABM=150︒11∴∠EAF=90︒+⨯(150︒-∠EAF)=165︒-∠EAF22∴∠EAF=110︒当点D和F在点B左侧时,设在l2上有一点G在点B的右侧如图:11此时仍有∠DAE=∠DAN,∠DAF=∠CAD2211(360︒-∠CAN)=180︒-∠ABG22∴11=180︒-(180︒-∠ABM)=90︒+∠ABM22∠EAF=∠DAE+∠DAF=∴∠EAF=110︒综合所述:∠EAF=30︒或110︒【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.12.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B11解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)α+β;(2)2211180-α+β.22【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;11(2)根据BE平分∠ABC,DE平分∠ADC,求出∠ABE=α,∠CDE=β,过点E作2211EF∥AB,根据平行线的性质求出∠BEF=α,∠DEF=180︒-∠CDE=180︒-β,再利用22周角求出答案.【详解】1、过点E作EF//AB,则有∠BEF=∠B,因为AB//CD,所以EF//CD.①所以∠FED=∠D,所以∠BEF+∠FED=∠B+∠D,即∠BED=72;故答案为:72;2、过点E作EF//AB,则有∠BEF=∠B,因为AB//CD,所以EF∥CD(平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE平分∠ABC,DE平分∠ADC,1111∴∠ABE=∠ABC=α,∠CDE=∠ADC=β,2222过点E作EF∥AB,由1可得∠BED=∠BEF+∠FED=∠ABE+∠CDE,11∴∠BED=α+β,2211故答案为:α+β;22(2)∵BE平分∠ABC,DE平分∠ADC,1111∴∠ABE=∠ABC=α,∠CDE=∠ADC=β,22221过点E作EF∥AB,则∠ABE=∠BEF=α,2∵AB//CD,∴EF∥CD,∴∠CDE+∠DEF=180︒,1∴∠DEF=180︒-∠CDE=180︒-β,21111∴∠BED=360︒-∠DEF-∠BEF=360︒-(180︒-β)-α=180-α+β.2222【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.13.(1),见解析;(2);(3)60°【分析】(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;(2)如图2,1解析:(1)∠BAE+∠CDE=∠AED,见解析;(2)∠AFD=∠AED;(3)60°2【分析】(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=1 2∠BAE,∠CDF=2∠CDE,则∠AFD=2(∠BAE+∠CDE),加上(1)的结论得到111∠AFD=2∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用3等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算2出∠BAE的度数.【详解】解:(1)∠BAE+∠CDE=∠AED理由如下:作EF//AB,如图1,AB//CD,∴EF//CD.∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∠BAE、∠CDE的两条平分线交于点F,11∴∠BAF=∠BAE,∠CDF=∠CDE,221∴∠AFD=(∠BAE+∠CDE),2∠BAE+∠CDE=∠AED,1∴∠AFD=∠AED;2(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,11∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED-∠BAE)=2232∠AED-∠BAE,290︒-∠AGD=180︒-2∠AED,3∴90︒-2∠AED+∠BAE=180︒-2∠AED,2∴∠BAE=60︒.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.14.(1)①见解析;②垂;(2)见解析【分析】(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.(2)先根据解析:(1)①见解析;②垂;(2)见解析【分析】(1)①过P点折纸,使痕迹垂直直线a,然后过P点折纸使痕迹与前面的痕迹垂直,从而得到直线b;②步骤(b)中,折纸实际上是在寻找过点P的直线a的垂线.(2)先根据平行线的性质得到∠ABC=∠BCD,再利用角平分线的定义得到∠2=∠3,然后根据平行线的判定得到结论.【详解】(1)解:①如图2所示:②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的垂线.故答案为垂;(2)证明:BE平分∠ABC,CF平分∠BCD(已知),∴∠1=∠2,∠3=∠3(角平分线的定义),AB//CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∴2∠2=2∠3(等量代换),∴∠2=∠3(等式性质),∴BE//CF(内错角相等,两直线平行).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.15.(1);(2)不变化,,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解解析:(1)∠A=60;(2)不变化,∠APB=2∠ADB,理由见解析;(3)∠ABC=30【分析】(1)结合题意,根据角平分线的性质,得∠ABN;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得∠APB=∠PBN,∠ADB=∠DBN;结合角平分线性质,得∠APB=2∠ADB,即可完成求解;(3)根据平行线的性质,得∠ACB=∠CBN;结合∠ACB=∠ABD,推导得∠ABC=∠DBN;再结合(1)的结论计算,即可得到答案.【详解】(1)∵BC,BD分别评分∠ABP和∠PBN,11∴∠CBP=∠ABP,∠DBP=∠PBN,22∴∠ABN=2∠CBD又∵∠CBD=60,∴∠ABN=120∵AM//BN,∴∠A+∠ABN=180∴∠A=60;(2)∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN又∵BD平分∠PBN∴∠PBN=2∠DBN,∴∠APB=2∠ADB;∴∠APB与∠ADB之间的数量关系保持不变;(3)∵AD//BN,∴∠ACB=∠CBN又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∵∠ABC+∠CBN=∠ABD+∠DBN∴∠ABC=∠DBN由(1)可得∠CBD=60,∠ABN=1201∴∠ABC=⨯(120-60)=30.2【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.四、解答题16.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=1︒解析:(1)①115°,110°;②∠AFD=90+∠B,证明见解析;(2)21∠AFD=90︒-∠B,证明见解析.2【解析】【分析】1(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得2∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知1AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,21∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得211111∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三22222角形的内角和定理可求得∠AFD=110°;1②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得211∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,221111∠FMD=∠GAC;由此可得∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=222211(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得221∠AFD=90°+∠B;21(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得2111∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行2221线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM211111+∠FMD =∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角222221的性质可得∠AFD=∠FDM +∠FMD=90°-∠B.2【详解】(1)①∵AG平分∠BAC,∠BAC=100°,1∴∠CAG=∠BAC=50°;2∵DE//AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,1∴∠FDM=∠EDG=15°;2∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,11∴∠CAG=∠BAC,∠FDM=∠EDG,22∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;11111∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;22222∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;1②∠AFD=90°+∠B,理由如下:2∵AG平分∠BAC,DF平分∠EDB,11∴∠CAG=∠BAC,∠FDM=∠EDG,22∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;11111∴∠FDM +∠FMD=∠EDG +∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)22222 1=90°-∠B;211∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-∠B)=90°+∠B;221(2)∠AFD=90°-∠B,理由如下:2如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,11∴∠CAG=∠BAC,∠NDE=∠EDB,221∴∠FDM=∠NDE=∠EDB,2∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;1∴∠FDM=∠NDE=∠C,211111∴∠FDM +∠FMD =∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;222221∴∠AFD=∠FDM +∠FMD=90°-∠B.2【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.17.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】。
初一下册数学压轴题
初一下册数学压轴题一、下列关于三角形的说法中,正确的是:A. 三个内角之和大于180度B. 任意两边之和等于第三边C. 直角三角形中,斜边一定是最长边D. 等腰三角形的底角一定小于90度(答案:C、D)二、在平行线的性质中,下列说法错误的是:A. 两直线平行,同位角相等B. 两直线平行,内错角相等C. 两直线平行,同旁内角互补D. 两直线平行,它们之间的任意一条横截线都与这两条直线垂直(答案:D)三、对于不等式ax + b > 0,当a < 0时,下列关于x的解集说法正确的是:A. x的解集为全体实数B. x的解集为空集C. x的解集为x < -b/aD. x的解集为x > -b/a(答案:C)四、在坐标系中,点A(3, -2)关于x轴对称的点B的坐标是:A. (-3, 2)B. (3, 2)C. (-3, -2)D. (2, 3)(答案:B)五、下列关于多边形的说法中,错误的是:A. 三角形的内角和为180度B. 四边形的外角和为360度C. 五边形的对角线数量为5条D. n边形的内角和为(n-2) * 180度(答案:C)六、在二元一次方程组中,若方程组{x + y = 5, 2x - y = m}的解满足x > y,则m的取值范围是:A. m < 5B. m > 5C. m < 15D. m > 15(答案:B)七、下列关于实数的说法中,正确的是:A. 实数包括有理数和无理数,其中有理数包括整数和分数B. 实数都可以表示为两个整数的比C. 无理数就是开方开不尽的数D. 实数轴上的点与有理数一一对应(答案:A)八、在数据的统计与分析中,下列说法错误的是:A. 中位数是将一组数据从小到大排列后,位于中间位置的数B. 众数是一组数据中出现次数最多的数C. 平均数可以反映数据的集中程度,但受极端值影响较大D. 方差用于衡量数据的波动大小,方差越大,数据越稳定(答案:D)。
(完整版)七年级下册数学压轴题
人教版2018年七年级数学期末复习专题--压轴题培优1.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.2.如图,已知两条射线OM∥CN,动线段AB的两个端点A.B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.3.已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E、F两点),∠A.∠APC与∠C之间有什么确定的相等关系?试证明你的结论.(3)如图③,当点P在线段FE的延长线上运动时,(2)中的结论还成立吗?如果成立,说明理由;如果不成立,试探究它们之间新的相等关系并证明.4.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.5.已知BC∥OA,∠B=∠A=100°.试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、
2
a b m b a-+b+3=0=14.ABC
A S
如图,已知(0,),B (0,),C (,)且(4),
o y =DC FD ADO ⊥∠∠∠(1)求C 点坐标
(2)作DE ,交轴于E 点,EF 为AED 的平分线,且DFE 90。
求证:平分;
(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,
MPQ
ECA ∠∠的大小是否发生变化,若不变,求出其值。
2、如图1,AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE;
(2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。
图1 图2
B C B C
3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。
(2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠A 的度数。
4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为?
A
B
C
A
C
F
E
A
5、已知∠A=∠C=90°.
(1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
(2)如图,试问∠ABC 的平分线BE 与∠ADC 的外角平分线DF 有何位置关系?说明你的理由。
(3)如图,若∠ABC 的外角平分线与∠ADC 的外角平分线交于点E ,试问BE 与DE 有何位置关系?说明你的理由。
6.(1)如图,点E 在AC 的延长线上,∠BAC 与∠DCE 的平分线交于点F ,∠B=60°,∠F=56°,求∠BDC 的度数。
(2)如图,点E 在CD 的延长线上,∠BAD 与∠ADE 的平分线交于点F ,试问∠F 、∠B 和∠C 之间有何数量关系?为什么?
A
E
E
A
D
B
B
7.已知∠ABC 与∠ADC 的平分线交于点E 。
(1)如图,试探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。
(2)如图,是探究∠E 、∠A 与∠C 之间的数量关系,并说明理由。
8.(1)如图,点E 是AB 上方一点,MF 平分∠AME ,若点G 恰好在MF 的反向延长线上,且NE 平分∠CNG ,2∠E 与∠G 互余,求∠AME 的大小。
(2)如图,在(1)的条件下,若点P 是EM 上一动点,PQ 平分∠MPN ,NH 平分∠PNC ,交AB 于点H ,PJ//NH ,当点P 在线段EM 上运动时,∠JPQ 的度数是否改变?若不变,求出其值;若改变,请说明你的理由。
B
C
B
C
A
C
D
9.如图,已知MA//NB ,CA 平分∠BAE ,CB 平分∠ABN ,点D 是射线AM 上一动点,连DC ,当D 点在射线AM (不包括A 点)上滑动时,∠ADC+∠ACD+∠ABC 的度数是否发生变化?若不变,说明理由,并求出度数。
10.如图,AB//CD ,PA 平分∠BAC ,PC 平分∠ACD ,过点P 作PM 、PE 交CD 于M ,交AB 于E ,则(1)∠1+∠2+∠3+∠4不变;(2)∠3+∠4-∠1-∠2不变,选择正确的并给予证明。
11.如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;
(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
设从出发起运动了x 秒。
①请用含x 的代数式分别表示P,Q 两点的坐标; ②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标,若不存在,说明理由?
N
A
D
x
x
12.如图,在平面直角坐标系中,∠ABO=2∠BAO,P为x轴正半轴上一动点,BC 平分∠ABP,PC平分∠APF,OD平分∠POE。
(1)求∠BAO的度数;
(2)求证:∠C=15°+1
2
∠OAP;
(3)P在运动中,∠C+∠D的值是否变化,若发生变化,说明理由,若不变求其值。
13.如图,A为x轴负半轴上一点,C(0,-2),D(-3,-2)。
(1)求△BCD的面积;
(2)若AC⊥BC,作∠CBA的平分线交CO于P,交CA于Q,判断∠CPQ与∠CQP 的大小关系,并说明你的结论。
(3)若∠ADC=∠DAC,点B在x轴正半轴上任意运动,∠ACB的平分线CE交DA
的延长线于点E,在B点的运动过程中,∠E
∠ABC
的值是否变化?若不变,求出其值;若变化,说明理由。
x
x
x
14.如图,已知点A (-3,2),B (2,0),点C 在x 轴上,将△ABC 沿x 轴折叠,使点A 落在点D 处。
(1)写出D 点的坐标并求AD 的长;
(2)EF 平分∠AED ,若∠ACF-∠AEF=15º,求∠EFB 的度数。
15.(1)在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD 。
①直接写出图中相等的线段、平行的线段; ②已知A (-3,0)、B (-2,-2),点C 在y 轴的正半轴上,点D 在第一象限内,且S ∆ACD =5,求点C 、D 的坐标;
(2)在平面直角坐标系中,如图,已知一定点M (1,0),两个动点E (a ,2a+1)、F (b ,-2b+3),请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM 。
若存在,求以点O 、M 、E 、F 为顶点的四边形的面积,若不存在,请说明理由。
x
16.如图,在直角坐标系中,已知B (b ,0),C (0,a ),且|b +3|+(2c-8)²=0. (1)求B 、C 的坐标;
(2)如图,AB//CD ,Q 是CD 上一动点,CP 平分∠DCB ,BQ 与CP 交于点P ,求∠DQB+∠QBC
∠QPC
的值。
17.如图,A 、B 两点同时从原点O 出发,点A 以每秒m 个单位长度沿x 轴的负方向运动,点B 以每秒n 个单位长度沿y 轴的正方向运动。
(1)若|x+2y-5|+|2x-y|=0,试分别求出1秒钟后A 、B 两点的坐标。
(2)如图,设∠BAO 的邻补角和∠ABO 的邻补角平分线相交于点P ,问:点A 、B 在运动的过程中,∠P 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由。
(3)如图,延长BA 至E ,在∠ABO 的内部作射线BF 交x 轴于点C ,若∠EAC 、∠FCA 、∠ABC 的平分线相交于点G ,过点G 作BE 的垂线,垂足为H ,试问∠AGH 和∠BGC 的大小关系如何?请写出你的结论并说明理由。
18、如图,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+b )²+|a-b+4|=0,过C 作CB ⊥x 轴于B 。
(1)求三角形ABC 的面积。
(2)若过B 作BD//AC 交y 轴于D ,且AE 、DE 分别平分∠CAB ,∠ODB ,如图,求∠AED 的度数。
(3)在y 轴上是否存在点P ,使得∆ABC 和∆ACP 的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由。
19.已知:在△ABC 和△XYZ 中,∠Y+∠Z=95°,将△XYZ 如图摆放,使得∠X 的两条边分别经过点B 和点C 。
(1)将△XYZ 如图1摆放时,则∠ABX+∠ACX= 度;
(2)将△XYZ 如图2摆放时,请求出∠ABX+∠ACX 的度数,并说明理由;
(3)能否将△XYZ 摆放到某个位置时,使得BX 、CX 同时平分∠ABC 和∠ACB ?请写出你的结论。
Z
Y
Z。