四边形经典测试题及答案解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵四边形ABED的面积为6,
∴ ,解得x1=3,x2=﹣4(舍去),
∴EF=x﹣1=2,
在Rt△BEF中, ,
∴ .
故选B.
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.
【详解】
解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,
∴BC=AD,
设AB=2x,则BC=x.
如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.
∵BE∥AC,CE∥BD,
∴四边形BOCE是平行四边形,
∵四边形ABCD是矩形,
∴OB=OC,
∴四边形BOCE是菱形.
12.如图,在平行四边形ABCD中,将 沿AC折叠后,点D恰好落在DC的延长线上的点E处.若 ,AB=3,则 的周长为()
A.12B.15C.18D.2
【答案】C
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
3.如图,四边形 是菱形, , ,则 的长度为()
A. B. C.4D.2
【答案】A
【解析】
【分析】
由菱形的性质,得到AC⊥BD,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO,即可求出AC的长度.
【详解】
解,如图,
∵四边形 是菱形,
∴AC⊥BD,AO=CO,BO=DO,
∵ ,
∴BO=1,
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
在Rt△OBC中, ,
∴BC=2,
∴ ;
∴ ;
故选:A.
【点睛】
本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC的长度.
4.如图,若 的顶点 , , 的坐标分别为 , , ,则顶点 的坐标为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.
∵四边形ABCD为正方形,
∴BA=AD,∠BAD=90°,
∵DE⊥AM于点E,BF⊥AM于点F,
∴∠AFB=90°,∠DEA=90°,
∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,
∴∠ABF=∠EAD,
在△ABF和△DEA中
∴△ABF≌△DEA(AAS),
∴BF=AE;
设AE=x,则BF=x,DE=AF=1,
四边形经典测试题及答案解析
一、选择题
1.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为( )
A.33°B.34°C.35°D.36°
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
【详解】
解:如图,当PC⊥BD时, 有最小值,
在矩形ABCD中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,
由勾股定理,得
,
∴ ,
在△BCD中,由三角形的面积公式,得
,
即 ,
解得: ,
∴ 的最小值是: ;
故选:D.
【点睛】
本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P的位置,得到PC最短.
【详解】
解:∵四边形OABC是平行四边形,
∴OC∥AB,OA∥BC,
∴点B的纵坐标为3,
∵点O向右平移1个单位,向上平移3个单位得到点C,
∴点A向右平移1个单位,向上平移3个单位得到点B,
∴点B的坐标为:(5,3);
故选:B.
【点睛】
本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.
5.如图,在平行四边形 中, , 平分 交 于点 ,且 ,则 的长为()
A.4B.3C. D.2
【答案】A
【解析】
【分析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB即可得出答案.
【详解】
∵CE平分∠BCD交AD边于点E,
∴∠ECD=∠ECB,
∵在平行四边形ABCD中,AD∥BC,AB=CD,
故选:B.
【点睛】
本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.
14.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是()
A. B. C. D.
【答案】D
【解析】
【分析】
分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.
10.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为( )
A. B. C. D.
【答案】D
【解析】
【分析】
连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.
【详解】
解:连接AD
∵AB=AC,D为BC的中点,BC=12,
【详解】
解:A.正六边形每个内角为120°,能够整除360°,不合题意;
B.正三角形每个内角为60°,能够整除360°,不合题意;
C.正方形每个内角为90°,能够整除360°,不合题意;
【详解】
解:∵四边形ABCD是平行四边形
∴AB=CD,AD=BC,BO=DO= BD,AO=CO,AB∥CD
∵BD=2AD
∴BO=DO=AD=BC,且点E是OC中点
∴BE⊥AC,
∴①正确
∵E、F、分别是OC、OD中点
∴EF∥DC,CD=2EF
∵G是AB中点,BE⊥AC
∴AB=2BG=2GE,且CD=AB,CD∥AB
【解析】
【分析】
首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到 •x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.
【详解】
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
2.如图,在矩形 中, , ,若 是 上的一个动点,则 的最小值是()
A.16B.15.2C.15D.14.8
【答案】D
【解析】
【分析】
根据题意,当PC⊥BD时, 有最小值,由勾股定理求出BD的长度,由三角形的面积公式求出PC的长度,即可求出最小值.
A.△ABD≌△ECDB.连接BE,四边形ABEC为平行四边形
C.DA=DED.CE=CD
【答案】D
【解析】
【分析】
根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.
【详解】
∵CE∥AB,
∴∠B=∠DCE,∠BAD=∠E,
在△ABD和△ECD中,
∴△ABD≌△ECD(AAS),
∴DA=DE,AB=CE,
∵AD=DE,BD=CD,
∴四边形ABEC为平行四边形,
故选:D.
【点睛】
此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD≌△ECD.
8.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()
A. B. C. D.
【答案】B
【解析】
【分析】
过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF= x,CF=x.再由锐角三角函数定义作答即可.
∴OE与BC垂直平分,
∴EF= AD= x,OE∥AB,
∴四边形AOEB是平行四边形,
∴OE=AB=2x,
∴CF= OE=x.
∴tan∠EDC= = = .
故选:B.
【点睛】
本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.
13.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为( )
A.40B.24C.20D.15
【答案】B
【解析】
【分析】
根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.
∴AD⊥BC,BD=DC=6,
在Rt△ADB中,由勾股定理得:AD= ,
∵S△ADB= ×AD×BD= ×AB×DE,
∴DE= ,
故选D.
【点睛】
本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.
11.如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是( )
【详解】
由折叠可得,∠ACD=∠ACE=90°,
∴∠BAC=90°,
又∵∠B=60°,
∴∠ACB=30°,
∴BC=2AB=6,
∴AD=6,
由折叠可得,∠E=∠D=∠B=60°,
∴∠DAE=60°,
∴△ADE是等边三角形,
∴△ADE的周长为6×3=18,
故选:C.
【点睛】
此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
【详解】
∵AB=AD,点O是BD的中点,
∴AC⊥BD,∠BAO=∠DAO,
∵∠ABD=∠CDB,
∴AB∥CD,
∴∠BAC=∠ACD,
∴∠DAC=∠ACD,
∴AD=CD,
∴AB=CD,
∴四边形ABCD是菱形,
∵AB=5,BO BD=4,
∴AO=3,
∴AC=2A百度文库=6,
∴四边形ABCD的面积 6×8=24,
∴BG=EF=GE,EF∥CD∥AB
∴四边形BGFE是平行四边形,
∴②④正确,
∵四边形BGFE是平行四边形,
∴BG=EF,GF=BE,且GE=GE
∴△BGE≌△FEG(SSS)
∴③正确
故选D.
【点睛】
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,直角三角形的性质,三角形的中位线及等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.
∴此菱形的周长为:5×4=20.
故选:B.
【点睛】
此题考查菱形的性质,利用勾股定理求出菱形的边长是解题的关键.
7.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是( )
A. B. C. D.
【答案】B
∴∠DEC=∠ECB,
∠DEC=∠DCE,
∴DE=DC,
∵AD=2AB,
∴AD=2CD,
∴AE=DE=AB.
∵ ,
∴AB=4,
故选:A.
【点睛】
此题考查了平行四边形的性质,得出∠DEC=∠DCE是解题关键.
6.若菱形的对角线分别为6和8,则这个菱形的周长为()
A.10B.20C.40D.48
【答案】B
【解析】
【分析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
【详解】
如图所示,
根据题意得AO= ×8=4,BO= ×6=3,
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,
∴△AOB是直角三角形,
∴AB= =5,
9.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG≌△GBE;④EG=EF,其中正确的个数是( )
A.1B.2C.3D.4
【答案】D
【解析】
【分析】
由平行四边形的性质可得AB=CD,AD=BC,BO=DO= BD,AO=CO,AB∥CD,即可得BO=DO=AD=BC,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.
∴ ,解得x1=3,x2=﹣4(舍去),
∴EF=x﹣1=2,
在Rt△BEF中, ,
∴ .
故选B.
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.
【详解】
解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,
∴BC=AD,
设AB=2x,则BC=x.
如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.
∵BE∥AC,CE∥BD,
∴四边形BOCE是平行四边形,
∵四边形ABCD是矩形,
∴OB=OC,
∴四边形BOCE是菱形.
12.如图,在平行四边形ABCD中,将 沿AC折叠后,点D恰好落在DC的延长线上的点E处.若 ,AB=3,则 的周长为()
A.12B.15C.18D.2
【答案】C
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
3.如图,四边形 是菱形, , ,则 的长度为()
A. B. C.4D.2
【答案】A
【解析】
【分析】
由菱形的性质,得到AC⊥BD,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO,即可求出AC的长度.
【详解】
解,如图,
∵四边形 是菱形,
∴AC⊥BD,AO=CO,BO=DO,
∵ ,
∴BO=1,
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
在Rt△OBC中, ,
∴BC=2,
∴ ;
∴ ;
故选:A.
【点睛】
本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC的长度.
4.如图,若 的顶点 , , 的坐标分别为 , , ,则顶点 的坐标为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.
∵四边形ABCD为正方形,
∴BA=AD,∠BAD=90°,
∵DE⊥AM于点E,BF⊥AM于点F,
∴∠AFB=90°,∠DEA=90°,
∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,
∴∠ABF=∠EAD,
在△ABF和△DEA中
∴△ABF≌△DEA(AAS),
∴BF=AE;
设AE=x,则BF=x,DE=AF=1,
四边形经典测试题及答案解析
一、选择题
1.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为( )
A.33°B.34°C.35°D.36°
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
【详解】
解:如图,当PC⊥BD时, 有最小值,
在矩形ABCD中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,
由勾股定理,得
,
∴ ,
在△BCD中,由三角形的面积公式,得
,
即 ,
解得: ,
∴ 的最小值是: ;
故选:D.
【点睛】
本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P的位置,得到PC最短.
【详解】
解:∵四边形OABC是平行四边形,
∴OC∥AB,OA∥BC,
∴点B的纵坐标为3,
∵点O向右平移1个单位,向上平移3个单位得到点C,
∴点A向右平移1个单位,向上平移3个单位得到点B,
∴点B的坐标为:(5,3);
故选:B.
【点睛】
本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.
5.如图,在平行四边形 中, , 平分 交 于点 ,且 ,则 的长为()
A.4B.3C. D.2
【答案】A
【解析】
【分析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB即可得出答案.
【详解】
∵CE平分∠BCD交AD边于点E,
∴∠ECD=∠ECB,
∵在平行四边形ABCD中,AD∥BC,AB=CD,
故选:B.
【点睛】
本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.
14.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是()
A. B. C. D.
【答案】D
【解析】
【分析】
分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.
10.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为( )
A. B. C. D.
【答案】D
【解析】
【分析】
连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.
【详解】
解:连接AD
∵AB=AC,D为BC的中点,BC=12,
【详解】
解:A.正六边形每个内角为120°,能够整除360°,不合题意;
B.正三角形每个内角为60°,能够整除360°,不合题意;
C.正方形每个内角为90°,能够整除360°,不合题意;
【详解】
解:∵四边形ABCD是平行四边形
∴AB=CD,AD=BC,BO=DO= BD,AO=CO,AB∥CD
∵BD=2AD
∴BO=DO=AD=BC,且点E是OC中点
∴BE⊥AC,
∴①正确
∵E、F、分别是OC、OD中点
∴EF∥DC,CD=2EF
∵G是AB中点,BE⊥AC
∴AB=2BG=2GE,且CD=AB,CD∥AB
【解析】
【分析】
首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到 •x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.
【详解】
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
2.如图,在矩形 中, , ,若 是 上的一个动点,则 的最小值是()
A.16B.15.2C.15D.14.8
【答案】D
【解析】
【分析】
根据题意,当PC⊥BD时, 有最小值,由勾股定理求出BD的长度,由三角形的面积公式求出PC的长度,即可求出最小值.
A.△ABD≌△ECDB.连接BE,四边形ABEC为平行四边形
C.DA=DED.CE=CD
【答案】D
【解析】
【分析】
根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.
【详解】
∵CE∥AB,
∴∠B=∠DCE,∠BAD=∠E,
在△ABD和△ECD中,
∴△ABD≌△ECD(AAS),
∴DA=DE,AB=CE,
∵AD=DE,BD=CD,
∴四边形ABEC为平行四边形,
故选:D.
【点睛】
此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD≌△ECD.
8.如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC=2:1,且BE∥AC,CE∥DB,连接DE,则tan∠EDC=()
A. B. C. D.
【答案】B
【解析】
【分析】
过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF= x,CF=x.再由锐角三角函数定义作答即可.
∴OE与BC垂直平分,
∴EF= AD= x,OE∥AB,
∴四边形AOEB是平行四边形,
∴OE=AB=2x,
∴CF= OE=x.
∴tan∠EDC= = = .
故选:B.
【点睛】
本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.
13.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为( )
A.40B.24C.20D.15
【答案】B
【解析】
【分析】
根据等腰三角形的性质得到AC⊥BD,∠BAO=∠DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.
∴AD⊥BC,BD=DC=6,
在Rt△ADB中,由勾股定理得:AD= ,
∵S△ADB= ×AD×BD= ×AB×DE,
∴DE= ,
故选D.
【点睛】
本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.
11.如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是( )
【详解】
由折叠可得,∠ACD=∠ACE=90°,
∴∠BAC=90°,
又∵∠B=60°,
∴∠ACB=30°,
∴BC=2AB=6,
∴AD=6,
由折叠可得,∠E=∠D=∠B=60°,
∴∠DAE=60°,
∴△ADE是等边三角形,
∴△ADE的周长为6×3=18,
故选:C.
【点睛】
此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
【详解】
∵AB=AD,点O是BD的中点,
∴AC⊥BD,∠BAO=∠DAO,
∵∠ABD=∠CDB,
∴AB∥CD,
∴∠BAC=∠ACD,
∴∠DAC=∠ACD,
∴AD=CD,
∴AB=CD,
∴四边形ABCD是菱形,
∵AB=5,BO BD=4,
∴AO=3,
∴AC=2A百度文库=6,
∴四边形ABCD的面积 6×8=24,
∴BG=EF=GE,EF∥CD∥AB
∴四边形BGFE是平行四边形,
∴②④正确,
∵四边形BGFE是平行四边形,
∴BG=EF,GF=BE,且GE=GE
∴△BGE≌△FEG(SSS)
∴③正确
故选D.
【点睛】
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,直角三角形的性质,三角形的中位线及等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.
∴此菱形的周长为:5×4=20.
故选:B.
【点睛】
此题考查菱形的性质,利用勾股定理求出菱形的边长是解题的关键.
7.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是( )
A. B. C. D.
【答案】B
∴∠DEC=∠ECB,
∠DEC=∠DCE,
∴DE=DC,
∵AD=2AB,
∴AD=2CD,
∴AE=DE=AB.
∵ ,
∴AB=4,
故选:A.
【点睛】
此题考查了平行四边形的性质,得出∠DEC=∠DCE是解题关键.
6.若菱形的对角线分别为6和8,则这个菱形的周长为()
A.10B.20C.40D.48
【答案】B
【解析】
【分析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
【详解】
如图所示,
根据题意得AO= ×8=4,BO= ×6=3,
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,
∴△AOB是直角三角形,
∴AB= =5,
9.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG≌△GBE;④EG=EF,其中正确的个数是( )
A.1B.2C.3D.4
【答案】D
【解析】
【分析】
由平行四边形的性质可得AB=CD,AD=BC,BO=DO= BD,AO=CO,AB∥CD,即可得BO=DO=AD=BC,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.