最新初中数学几何图形初步技巧及练习题附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学几何图形初步技巧及练习题附答案
一、选择题
1.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )
A .45︒
B .60︒
C .70︒
D .40︒
【答案】C
【解析】
【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小
【详解】
∵∠DOB 与∠DOA 的比是2:11
∴设∠DOB=2x ,则∠DOA=11x
∴∠AOB=9x
∵∠AOB=90°
∴x=10°
∴∠BOD=20°
∴∠COB=70°
故选:C
【点睛】
本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导
2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )
A .
B .
C.D.
【答案】D
【解析】
【分析】
根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.
【详解】
解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.
故选:D.
【点睛】
本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
3.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()
A.B.
C.D.
【答案】D
【解析】
【分析】
根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.
【详解】
解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.
故选:D.
【点睛】
本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.
4.下列立体图形中,侧面展开图是扇形的是()
A.B.
C.
D.
【答案】B
【解析】
根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.
5.下列各图经过折叠后不能围成一个正方体的是()
A.B.C.D.
【答案】D
【解析】
【分析】
由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.
【详解】
解:A、是正方体的展开图,不符合题意;
B、是正方体的展开图,不符合题意;
C、是正方体的展开图,不符合题意;
D、不是正方体的展开图,缺少一个底面,符合题意.
故选:D.
【点睛】
本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.
6.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()
A.线段比曲线短B.经过一点有无数条直线
C.经过两点,有且仅有一条直线D.两点之间,线段最短
【答案】D
【解析】
【分析】
如下图,只需要分析AB+BC<AC即可
【详解】
∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径
又∵两点之间线段最短
∴AC<AB+BC
故选:D
【点睛】
本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离
7.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()
A.黑B.除C.恶D.☆
【答案】B
【解析】
【分析】
正方体的空间图形,从相对面入手,分析及解答问题.
【详解】
解:将其折成正方体后,则“扫”的对面是除.
故选B.
【点睛】
本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.
8.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()
A.中B.考C.顺D.利
【答案】C
【解析】
试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“祝”与“考”是相对面,
“你”与“顺”是相对面,
“中”与“立”是相对面.
故选C.
考点:正方体展开图.
9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()
A.1 B.2 C.3 D.4
【答案】C
【解析】
试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=3.
∴EP+FP的最小值为3.
故选C.
考点:菱形的性质;轴对称-最短路线问题
10.下列说法,正确的是( )
A.经过一点有且只有一条直线
B.两条射线组成的图形叫做角
C.两条直线相交至少有两个交点
D.两点确定一条直线
【答案】D
【解析】
【分析】
根据直线的性质、角的定义、相交线的概念一一判断即可.
【详解】
A、经过两点有且只有一条直线,故错误;
B、有公共顶点的两条射线组成的图形叫做角,故错误;
C、两条直线相交有一个交点,故错误;
D、两点确定一条直线,故正确,
故选D.
【点睛】
本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键. 11.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()
A.1条B.2条C.3条D.4条
【答案】C
【解析】
解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.
12.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()
A.10°B.50°C.45°D.40°
【答案】A
【解析】
【分析】
先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
【详解】
∵DE∥AF,∠CED=50°,
∴∠CAF=∠CED=50°,
∵∠BAC=60°,
∴∠BAF=60°﹣50°=10°,
故选:A.
【点睛】
此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 13.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()
A .∠ABE =2∠CDE
B .∠ABE =3∠CDE
C .∠ABE =∠CDE +90°
D .∠AB
E +∠CDE =180°
【答案】A
【解析】
【分析】 延长BF 与CD 相交于M ,根据两直线平行,同位角相等可得∠M =∠CDE ,再根据两直线平行,内错角相等可得∠M =∠ABF ,从而求出∠CDE =∠ABF ,再根据角平分线的定义解答.
【详解】
解:延长BF 与CD 相交于M ,
∵BF ∥DE ,
∴∠M =∠CDE ,
∵AB ∥CD ,
∴∠M =∠ABF ,
∴∠CDE =∠ABF ,
∵BF 平分∠ABE ,
∴∠ABE =2∠ABF ,
∴∠ABE =2∠CDE .
故选:A .
【点睛】
本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.
14.如图,在Rt ABC V 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交
AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12
MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )
A .15
B .30
C .45
D .60 【答案】B
【解析】
【分析】
作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.
【详解】
作DE AB ⊥于E
由尺规作图可知,AD 是△ABC 的角平分线
∵90C ∠=︒,DE AB ⊥
∴4DE DC ==
∴△ABD 的面积1302
AB DE =
⨯⨯= 故答案为:B .
【点睛】 本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.
15.下列图形中,是圆锥的侧面展开图的为( )
A .
B .
C .
D .
【答案】B
【解析】
【分析】 根据圆锥的侧面展开图的特点作答.
【详解】
圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.
故选B .
【点睛】
考查了几何体的展开图,圆锥的侧面展开图是扇形.
16.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )
A .102+
B .26
C .5
D .26
【答案】B
【解析】
【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、
P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.
【详解】
如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´
A 交x 轴于点E ,则当A´、P 、
B 三点共线时,PA +PB 的值最小,
∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,
∴AE=BE=1,
∵P (0,3) ,
∴A A´
=4, ∴A´
E=5, ∴22221526A B BE A E ''+=+ 故选B.
【点睛】
本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线
PD的对称点,找出PA+PB的值最小时三角形ABC的位置.
17.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()
A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱
C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱
【答案】D
【解析】
【分析】
根据常见的几何体的展开图进行判断,即可得出结果.
【详解】
根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.
故选D.
【点睛】
本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()
A.20°B.35°C.55°D.70°
【答案】B
【解析】
【分析】
根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.
【详解】
∵DE∥BC,
∴∠1=∠ABC=70°,
∵BE平分∠ABC,

1
35
2
CBE ABC
∠=∠=︒,
故选:B.【点睛】
此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.
19.下列说法中正确的有()
(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°
(2)如果两个角是同一个角的补角,那么这两个角不一定相等
(3)一个锐角的余角比这个锐角的补角小90°
(4)如果两个角的度数分别是73°42′与16°18′,那么这两个角互余.
A.1个 B.2个 C.3个 D.4个
【答案】B
【解析】
【分析】
根据余角和补角的定义依次判断即可求解.
【详解】
(1)由互余的两个角的和为90°可知(1)错误;
(2)由同角的补角相等可知(2)错误;
(3)设这个角为x,则其余角为(90°﹣x),补角为(18 0°﹣x),则(180°﹣x)﹣(90°﹣x)=90°,由此可知(3)正确;
(4)由73°42+16°18′=90°可知(4)正确.
综上,正确的结论为(3)(4),共2个.
故选B.
【点睛】
本题考查了余角和补角的定义,熟练运用余角和补角的定义是解决问题的关键.
20.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()
A.2
B31
C3
D.23
【答案】C
【解析】
【分析】
作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.
【详解】
解:作B关于AC的对称点B',连接B′D,
∵∠ACB=90°,∠BAC=30°,
∴∠ABC=60°,
∵AB=AB',
∴△ABB'为等边三角形,
∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,
∴最小值为B'到AB的距离3
故选C.
【点睛】
本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.。

相关文档
最新文档