中考数学动点问题题型方法归纳
历年中考数学动点问题题型方法计划归纳

动点问题题型方法概括动向几何特色----问题背景是特别图形,考察问题也是特别图形,殊的关系;剖析过程中,特别要关注图形的特征(特别角、特别图形的性质、图形置。
)动点问题向来是中考热门,近几年考察研究运动中的特别性:等腰相像三角形、平行四边形、梯形、特别角或其三角函数、线段或面积的最值。
下边就此问题的常有题型作简单介绍,解题方法、重点给予点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线y3x6与坐标轴分别交于A、B4从O点出发,同时抵达A点,运动停止.点Q沿线段OA运动,速度点P沿路线O→B→A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之(3)当48时,求出点P的坐标,并直接写出以点O、P、Q为S5四个极点M的坐标.yBPxO Q A提示:第(2)问按点P到拐点B全部时间分段分类;2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC(1)求⊙O的直径;(2)若D是AB延伸线上一点,连结CD,当BD长为多少时,CD(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动从B点出发沿BC方向运动,设运动时间为t(s)(0 t 2),连结EF为直角三角形.注意:第(3)问按直角地点分类议论C CFEA AB AO B D O图(1)图(2)图(面积最小?并求出最小值及此时PQ的长.注意:发现并充足运用特别角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。
二、4、(2009特别四边形边上动点年吉林省)如下图,菱形ABCD的边长为6厘米,B始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A C以2厘米/秒的速度沿 A B C D的方向运动,当点Q运动到同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC方厘米(这里规定:点和线段是面积为O的三角形),解答以下问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时3)求y与x之间的函数关系式.D CPBA Q轴于点H.(1)求直线AC的分析式;(2)连结BM,如图 2,动点P从点A出发,沿折线ABC方向以 2点C匀速运动,设△PMB的面积为S(S 0),点P的运动时间为数关系式(要求写出自变量t的取值范围);3)在(2)的条件下,当t为什么值时,△MPB与△BCO互为余角,并线AC所夹锐角的正切值.yAHB yA H BMOx MCxO C图(1)2)问按点P到拐点B所用时间分段分类;注意:第(图(2)第(3)问发现∠MBC=90°,∠BCO与∠ABM互余,画出点P运∠MPB=∠ABM的两种状况,求出t值。
初中动点问题解题技巧(一)

初中动点问题解题技巧(一)初中动点问题解题技巧动点问题在初中数学中占据重要位置,解决此类问题需要一定的技巧和方法。
本文将详细介绍几种常见的解题技巧。
1. 确定问题中的动点•首先,读懂问题,明确题目中提到的动点是什么。
•将动点用字母表示,例如用字母a表示运动物体的位置。
•如果问题涉及多个动点,用不同字母代表每个动点,例如用a和b分别表示两个运动物体的位置。
2. 分析动点的运动规律•观察题目中对动点运动的描述,理解每个动点的运动规律。
•确定每个动点的速度或步长,根据问题给出的数据进行计算。
•注意运动方向,根据题意确定正方向和负方向。
3. 绘制动点的运动图•将问题中提到的初始位置用一个点表示在坐标系上,例如平面直角坐标系或数轴上。
•通过计算动点的运动规律,绘制动点随时间变化的轨迹。
•确定坐标系的刻度,标注出相关的数值。
4. 列表清晰的数据表•将题目中提到的相关数据列举清晰,包括初始位置、速度、时间等。
•可以使用表格或者列表来列出数据,以便更好地进行计算和推理。
5. 推导出解题思路•根据动点的运动规律和给定的条件,进行推导和分析,找出问题的关键信息。
•利用运动学相关知识,例如时间、速度和位移的关系,应用相关公式进行计算。
6. 解答问题并检查•根据推导的思路,解答问题并得到答案。
•需要注意题目是否要求解特定时刻的位置或时间,避免解答错误。
•解答完成后,要对结果进行检查,确保答案合理且符合题意。
以上是初中动点问题解题的一些常见技巧和方法,希望能对同学们的学习有所帮助。
通过熟练掌握这些技巧,你将能够更轻松地解决各种动点问题。
动点问题题型方法归纳

图(3)B图(1)B图(2)动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.2、⊙O 的直,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 二、特殊四边形边上动点图(1)图(2)4、如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒; (3)求y 与x 之间的函数关系式.O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 5、如图1,在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围); (3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.6、如图,在平面直角坐标系中,点A(3,0),B(33,2),C (0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒. (1)求∠ABC 的度数;(2)当t 为何值时,AB∥DF;(3)设四边形AEFD 的面积为S .求S 关于t 的函数关系式;7、已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且 ∠AOC=60°,点B 的坐标是,点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D.(1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B,C 三点的抛物线的解析式; (3)当3,a OD ==时,求t 的值及此时直线PQ 的解析式;(4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明.8、已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.9、如图,在平面直角坐标系xoy 中,10-与x B. 过点B 作x轴的平行线BC,交抛物线于点C,连结AC .现有两动点P,Q 分别从O,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC,PQ 相交于点D,过点D 作DE ∥OA,交CA 于点E,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t(单位:秒) (1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQF 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 三、直线上动点8、如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结A C B C A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(此题备用)(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.9、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
初三数学动点问题归类及解题技巧

初三数学动点问题归类及解题技巧初三数学学科是学生学习的重要科目之一,数学知识的掌握对学生的数学素养和综合能力提高有着非常重要的作用。
其中,解题技巧和问题分类是学生学习数学的关键点之一。
以下将从初三数学动点问题的归类和解题技巧展开讨论。
一、问题归类初三数学动点问题主要包括以下几种类型:1.几何问题:主要涉及到点、线、面等几何图形的性质和运动规律,如点的坐标、直线的方程、圆的性质等。
2.图像问题:主要是通过图像呈现的运动问题,要求学生根据图像进行分析和解答,比如速度图、位移图、加速度图等。
3.速度问题:主要是针对运动物体的速度和位移等概念展开的问题,要求学生掌握速度的定义和相关计算方法。
4.运动方程问题:主要是要求学生建立物体运动的数学模型,并求解相关问题,如撞击问题、相遇问题等。
5.加速度问题:主要是针对物体加速度的概念和计算方法进行考察,要求学生对加速度的定义和公式进行灵活运用。
6.综合问题:综合了以上几种类型的数学问题,要求学生在综合运用各种知识和方法的基础上解答问题。
以上这些类型的动点问题,对学生的数学能力和解题技巧有着很高的要求,需要学生通过不断的练习和思考,逐渐提高自己的解题能力。
二、解题技巧初三数学动点问题的解题技巧主要包括以下几点:1.充分理解问题:在解题前,要先充分理解问题的意思和要求,明确问题中涉及到的数学概念和知识点,了解问题的背景和条件。
2.建立数学模型:对于涉及到物体运动的问题,要根据问题的要求建立数学模型,明确物体的运动规律和相关参数,建立方程或不等式。
3.运用相关知识和公式:根据问题的情况,灵活运用速度、加速度、位移等物理量的定义和相关公式进行计算,注意在计算过程中要完整标明单位。
4.图像分析:对于图像问题,要细致分析图像的特点和变化规律,结合数学知识对图像进行解释和分析,从图像中得出相关信息。
5.综合能力:对于综合问题,要能够综合运用各种知识和方法,进行综合分析和推理,完成问题的解答。
中考动点问题的解题技巧

在中考数学中,动点问题是一个比较常见的题型。
这类问题通常需要学生结合图形的运动和变化,利用函数、方程等知识解决。
以下是一些解题技巧:
1.建立模型:首先需要明确题目中的已知条件和未知条件,并建立相应的数学模型。
对于动点问题,可以通过建立坐标系来描述点的位置和运动轨迹。
2.转化问题:动点问题往往涉及到数量关系和位置关系的变化,因此需要将问题转化为数学问题。
比如,可以建立方程或不等式来描述点的位置和运动轨迹。
3.寻找规律:动点问题中往往有一些规律性的东西,比如点的运动轨迹是按照一定规律变化的。
因此,需要认真观察、分析,找到这些规律,以便更好地解决问题。
4.分类讨论:在解决动点问题时,有时需要考虑到不同的情况,比如点的位置、运动速度、运动方向等。
因此,需要进行分类讨论,逐一解决不同情况下的数学问题。
5.综合分析:动点问题往往涉及到多个知识点,比如函数、方程、不等式等。
因此,在解决问题时,需要综合分析各个知识点之间的关系,以便更好地解决问题。
6.熟练掌握相关知识点:解决动点问题需要熟练掌握相关知识点,比如函数的性质、方程的解法、不等式的解法等。
因此,在平时的学习中,需要加强这些知识点的学习和训练。
7.注意细节:在解决动点问题时,需要注意细节,比如点的坐标、单位等。
如果这些细节处理不当,可能会导致解题错误。
总之,解决动点问题需要学生熟练掌握相关知识点,建立正确的数学模型,通过转化问题、寻找规律、分类讨论、综合分析等方法来解决。
同时,也需要注意细节处理。
中考常见动点问题解题方法(共29张PPT)

AE
10-2t
t
30o
2t
30o
B
F
D
C
(3)当t为何值时,△DEF为直角三角形?请说明理由.
1单位/s
解析:
2单位/s
②当∠DEF=90o时
30o
由(2)知EF∥AD
5
∴∠ADE=∠DEF=90o
∵∠A=90o-∠C=60o
1
∴AD= AE
2
1
2
即10-2t= t
A
E 10-2t
60o
t
2t
则t=4
10、阅读一切好书如同和过去最杰出的人谈话。01:48:2201:48:2201:488/23/2021 1:48:22 AM
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.8.2301:48:2201:48Aug-2123-Aug-21
最小值时,△APD中AP边上的高为 _________
3、如图,⊙O的半径为2,点A、B、C
在⊙O上,OA⊥OB, ∠AOC=60°,P是OB上
的一动点,则PA+PC的最小值是________
两个动点(一)
例、如图,∠AOB=45°,P是∠AOB内一
特点:已知一个定点位于平面内两相交直线之间,
点,PO=10,Q、R分别是OA、OB上的动点,
∵点D'和点D关于x轴对称,
∴点D'的坐标为(0,-2).
设直线CD'的解析式为y=kx+b,
∵直线CD'过点C(-3,2),D'(0,-2),
4
2 = -3 + ,
初中数学动点问题归类及解题技巧

初中数学动点问题归类及解题技巧
初中数学的动点问题是学习者必须掌握的重要知识,其中的解题技巧也非常重要。
因此,本文将对初中数学动点问题的归类及解题技巧进行介绍,以便学习者更好地掌握此类问题。
一、初中数学动点问题的归类
1、一元一次动点问题:即求出给定点之间的距离,或求出给定点的坐标,或求出给
定点斜率等问题。
2、一元二次动点问题:即求出两个给定点之间的距离,或求出两个给定点的切线方程,或求出两个给定点的中点等问题。
3、多元一次动点问题:即求出多个给定点之间的最短距离,或求出多个给定点的重
心坐标,或求出多个给定点的平均值等问题。
二、初中数学动点问题的解题技巧
1、分解法:首先要分解出给定问题,将复杂的问题分解成简单的子问题,从而更容
易解决。
2、组合法:将多个给定点组合在一起,归纳出新的特征,从而更容易解决问题。
3、等价法:将某个问题转换成其他等价的问题,以求出更容易解决的问题。
以上就是关于初中数学动点问题的归类及解题技巧的介绍。
学习者可以根据上述知识,通过分解法、组合法和等价法等方法,更好地掌握动点问题的解题技巧,从而更快更准确
地解决此类问题。
动点问题所有题型解题技巧

动点问题所有题型解题技巧摘要:1.动点问题概述2.动点问题分类与解题思路a.直线动点问题b.圆动点问题c.曲线动点问题3.解题技巧总结4.动点问题应用实例解析5.动点问题练习与解答正文:动点问题是指在数学中,涉及点到点之间运动的问题。
它具有一定的复杂性和挑战性,需要掌握一定的解题技巧。
本文将为大家介绍动点问题的解题技巧,以及如何应对不同类型的动点问题。
一、动点问题概述动点问题涉及几何、函数、方程等多个方面的知识。
一般来说,动点问题有以下几个特点:1.题目中存在一个或多个点在运动。
2.运动过程中,点与直线、曲线之间存在一定的关系。
3.求解问题时,需要运用数学知识进行分析。
二、动点问题分类与解题思路1.直线动点问题直线动点问题主要涉及点到直线的距离、角度等关系。
解题思路如下:(1)找出关键信息,如直线的方程、点的坐标等。
(2)根据题目条件,建立点到直线的距离或角度的方程。
(3)求解方程,得到点的坐标或位置。
2.圆动点问题圆动点问题主要涉及点到圆心、圆上的点等关系。
解题思路如下:(1)找出关键信息,如圆的方程、点的坐标等。
(2)根据题目条件,建立点到圆心距离、圆上的角度等方程。
(3)求解方程,得到点的坐标或位置。
3.曲线动点问题曲线动点问题涉及点到曲线的关系。
解题思路如下:(1)找出关键信息,如曲线的方程、点的坐标等。
(2)根据题目条件,建立点到曲线的关系方程。
(3)求解方程,得到点的坐标或位置。
三、解题技巧总结1.熟练掌握几何知识,如直线、圆的方程,以及点到直线、圆的距离公式。
2.灵活运用函数、方程的知识,建立动点问题的关系方程。
3.利用数学方法求解方程,如代数法、几何法等。
四、动点问题应用实例解析以下为一个动点问题的实例:已知直线l的方程为2x+3y-1=0,点P在直线l上,且满足PA=PB,其中A、B为圆O的两点,圆O的方程为x^2+y^2=4。
求点P的坐标。
解:根据题意,先求出点A、B的坐标,然后根据PA=PB建立方程,最后求解得到点P的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图(3)B图(1)B图(2)动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t 2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论 3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,图(1)图(2)(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
二、 特殊四边形边上动点4、(2009年吉林省)如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A C B →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题:(1)点P 、Q 从出发到相遇所用时间是 秒;(2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是 秒;(3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);MPB 与∠BCO 互为余角,并求此时直线OP 与直第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点P 运动过程中, ∠MPB=∠ABM 的两种情况,求出t 值。
利用OB ⊥AC,再求OP 与AC 夹角正切值.6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C (0,2).动点D 以每秒1个单位的速度从点0出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动.过点E 作EF 上AB ,交BC 于点F ,连结DA 、DF .设运动时间为t 秒. (1)求∠ABC 的度数;(2)当t 为何值时,AB ∥DF ; (3)设四边形AEFD 的面积为S . ①求S 关于t 的函数关系式;②若一抛物线y=x 2+mx 经过动点E ,当S<23时,求m 的取值范围(写出答案即可). 注意:发现特殊性,DE ∥OA 7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且∠AOC=60°,点B 的坐标是(0,83),点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D. (1)求∠AOB 的度数及线段OA 的长;(2)求经过A ,B ,C 三点的抛物线的解析式; (3)当43,33a OD ==时,求t 的值及此时直线PQ 的解析式; (4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明. 8、(08黄冈)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.BACDPOQxyBDCy BDCyyO x CN B P M A9、(09年黄冈市)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点A,与y 轴的交点为点B. 过点B 作x 轴的平行线BC,交抛物线于点C,连结AC .现有两动点P,Q 分别从O,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC,PQ 相交于点D,过点D 作DE ∥OA,交CA 于点E,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t(单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQF 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程. 提示:第(3)问用相似比的代换,得PF=OA (定值)。
第(4)问按哪两边相等分类讨论 ①PQ=PF,②PQ=FQ,③QF=PF.三、 直线上动点8、(2009年湖南长沙)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(03)C ,,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.提示:第(2)问发现特殊角∠CAB=30°,∠CBA=60°特殊图形四边形BNPM 为菱形;第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类;先画出与△ABC 相似的△BNQ ,再判断是否在对称轴上。
9、(2009眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线21y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C两点,且B 点坐标为 (1,0)。
⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。
⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。
提示:第(2)问按直角位置分类讨论后画出图形----①P 为直角顶点AE 为斜边时,以AE 为直径画圆与x 轴交点即为所求点P ,②A 为直角顶点时,过点A 作AE 垂线交x 轴于点P ,③E 为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。
10、(2009年兰州)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.注意:第(4)问按点P 分别在AB 、BC 、CD 边上分类讨论;求t 值时,灵活运用等腰三角形“三线合一”。