积分中值定理(开区间)证明的几种方法

积分中值定理(开区间)证明的几种方法
积分中值定理(开区间)证明的几种方法

积分中值定理(开区间)的几种证明方法

定理:设f 在[,]a b 上连续,则(,)a b ξ?∈,使得

()()()b

a f x dx f

b a ξ=-?。

[证一]:由积分第一中值定理(P217),

[,]a b ξ?∈, 使得

()()()b a f x dx f b a ξ=-?。 于是

[()()]0.b a f x f dx ξ-=?

由于函数()()()F x f x f ξ=-在[,]a b 上连续,易证(可反证):

(这还是书上例2的结论)

(,)a b η?∈,使得()()()0F f f ηηξ=-=,即()()f f ηξ=。

[证二]:令()()x

a F x f t dt =?,则()F x 在[,]a

b 上满足拉格朗日中值定理的条件,故

(,)a b ξ?∈,使得()()()()F b F a F b a ξ'-=-,即结论成立。

(注:书上在后面讲的微积分基本定理)

[证三]:反证:假设不(,)a b ξ?∈,使得 ()()()b

a f x dx f

b a ξ=-?,由积分第一中值定理,

知ξ只能为a 或b ,不妨设为b ,即

1(,),()()()b a x a b f x f b f x dx b a

?∈≠=-?。 由于f 连续,故(,),x a b ?∈ ()()f x f b >(或()()f x f b <),

(这一点是不是用介值定理来说明)

这样

(上限x 改为b )()()()().x b a a

f x dx f b dx f b b a >=-?? (这个严格不等号不太显然要用书上例2结论来说明)

矛盾。

[证四]:设f 在[,]a b 上的最大值为M ,最小值为m 。若m M =,则f c ≡,ξ可任取。

若m M <,则1[,]x a b ?∈,有1()0M f x ->,故

[()]0b a M f x dx ->?,即 ()().b

a f x dx M

b a <-?

同理有

()().b

a m

b a f x dx -

ξ=-?。

注:以上方法有的能推广到定理9.8的证明,有的不能,再思考吧!

例 1 用单调有界定理证明区间套定理.

例 1 用单调有界定理证明区间套定理.即已知: 1 )单调有界定理成立; 2 )设为一区间套. 欲证:且惟一. [ 证] 证明思想:构造一个单调有界数列,使其极限即为所求的. 为此,可就近取数列(或).由于 因此为递增数列,且有上界(例如).由单调有界定理,存在,且 . 又因,而,故 ; 且因递减,必使.这就证得. 最后,用反证法证明如此的惟一.事实上,倘若另有一个,则由 , 导致与相矛盾.[ 证毕] 例 2 用区间套定理证明单调有界定理.即已知: 1 )区间套定理成立. 2 )设为一递增且有上界M的数列. 欲证:存在极限. [ 证]证明思想:设法构造一个区间套,使其公共点即为的极限. 为此令。记,并取 再记, 同理取 如此无限进行下去,得一区间套. 根据区间套定理,.下面用数列 极限定义证明: ,一方面,由于恒为的上界,因此

; 另一方面,由 ; 而由区间套的构造,任何不是的上界,故;再由为递增数列, 当时,必有.这样,当时,就有 , 即.[ 证毕] 例3 用确界定理证明区间套定理.即已知: 1 )确界定理成立(非空有上界的数集必有上确界); 2 )设为一区间套. 欲证:存在惟一的点. [ 证] 证明思想:给出某一数集,有上界,使得的上确界即为所求的. 为此,取,其上界存在(例如).由确界定理,存在. 首先,由为的一个上界,故.再由是的最小上 界,倘有某个,则不会是的上界,即,这与为区 间套相矛盾()。所以任何.这就证得 . 关于的惟一性,与例1中的证明相同.[ 证毕] 注本例在这里所作的证明比习题解答中的证明更加清楚. 例4 证明连续函数的局部有界性——若处连续,则和 ,使得. [ 证]据在连续的定义,满足 . 现取,相应存在,就有 .[ 证毕] 注类似可证连续函数的其余局部性质,例如四则连续性质、局部保号性质等等.例5 证明上一致连续的充要条件是:上连续,且 存在. [ 证] 先证充分性:令

积分中值定理的推广与应用

积分中值定理的推广与应用 系别数学系 专业数学与应用数学姓名韩凤 指导教师张润玲 职称副教授 日期2011年6月

国内图书分类号: 吕梁学院本科毕业论文(设计) 积分中值定理的推广与应用 姓名韩凤 系别数学系 专业数学与应用数学 申请学位学士学位 指导教师张润玲 职称副教授 日期2011年6月

摘要 在微积分学中积分中值定理与微分中值定理一样有着重要的地位.微积分的许多问题和不等式的证明都以它为依据,积分中值定理在证明有关中值问题时具有极其重要的作用.它是《数学分析》、《高等数学》课程中定积分部分的基本定理之一.众所周知积分中值定理包括积分第一中值定理与积分第二中值定理,而在数学分析课本上已有过这两个定理的详细证明,但这两个定理的推广与应用尚未提及.因此,在教学过程中,学在运用这一知识点解决有关的数学问题比较困难,常常不知如何下手,本文主要讲述的是积分第一中值定理的各种形式的推广以及通过以下几方面的列举例题,加以归纳总结,并充分体现积分中值定理在学习解题练习中的应用. 关键词:积分中值定理;推广;应用

ABSTRACT The integral median value theorem and differential median value theorem has the same important position in the questions and the proof of the inequality are all based on the integral theorem,the integral median theorem has played an important role in solving the problems about is one of the basic theorems in the definite integral part of“the mathematical analysis”and“the higher mathematics”.Well-known that the integral median theorem include the first median theorem for integrals and the second median theorem for integrals and the textbooks of the mathematical analysis have the detailed proof about the two theorems,but the popularization and application of the two theorems have not been addressed .Therefore,it is difficult when students use this knowledge to solve the related problems during the process of article mainly introduce various popularization of the first median theorem for integrals and giving some example through the following aspects,and giving some summary,strive to reflect the application of integral median value theorem in studying the way which can slove the ploblems. Keywords:Integral median value theorem; Promotion; Applications.

闭区间套定理的证明、推广及应用

重庆三峡学院数学分析课程论文 闭区间套定理的证明、推广及应用 院系数学与统计学院 专业数学与应用数学(师范) 姓名姜清亭 年级 2009级 学号 200906034129 指导教师刘学飞 2011年5月

闭区间套定理的证明、推广及应用 姜清亭 (重庆三峡学院 数学与统计学院 09级数本(1)班) 摘 要 闭区间套定理是数学分析中一个重要定理,可以应用到数学教学、科学研究及日常生活中。同时得到与之相应的若干定理,并使闭区间套定理得到推广。其中在数学教学中的应用最突出的地方是证明某些数学定理,如零点定理。 关键词 开区间套定理 闭区闭套定理 聚点定理证明 有界性定理证明 1 空间上的区间套定理 定理1 (闭区间套定理) 设有闭区间列{[],n n a b }若 1 [][][]1122,,....,....n n a b a b a b ??? 2 lim()0 n n n b a →∞ -= 则存在唯一数属于l 。。所有的闭区间(即 []1 ,n n n a b l ∞ == ) ,且lim lim n n n n a b l →∞ →∞ == 证明:由条件1可知,数列增加有上界1b ,数列{n b }单调减少有下界1a , 1221.........n n a a a b b b ≤≤≤≤≤≤根据公理,数列{n a }收敛,设lim n n a →∞ =l .由条件2 有 ()lim lim ()lim lim 0n n n n n n n n nx n n b b a a b a a l l →∞ →∞ →∞ →∞ =-+=-+=+=于是,lim lim n n n n a b l →∞ →∞ ==, 对任意取定的,n k N k +∈? ,有k n n k a a b b ≤≤ ,从而,lim lim k n n k n n a a l b b →∞ →∞ ≤==≤, 或k k a l b ≤≤,即l 属于所有的闭区间. 证明l 唯一性.假设还有一个' l 也属于所有的闭区间,从而 '',,,,n n n n n N l l a b l l b a +???∈∈-≤-?? 有有有条件2),有'l l =即l 是唯一的. 2 闭区间套定理的推广 定理2 (开区间套定理)若开区间列{() ,n n a b },若 1 [][][]1122,,....,....n n a b a b a b ??? 2 )(lim n n n a b -∞ →= n n a b 2lim -∞→=0 对每个闭区间[n n b a ,],有)()(n n b f a f <0,根据闭区间套定理知,存在唯一数l 属于所有

第二积分中值定理

第二积分中值定理 若函数()f x 在区间[,]a b 上连续,而()p x 是区间[,]a b 上的单调有界函数,则有点()c a c b ≤≤,使 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? 其中()lim ()x a p a p x + +→=【右极限】,()lim ()x b p b p x --→=【左极限】。特别,若()0p a +=,则 ()()d () ()d b b a c p x f x x p b f x x - =? ? ()a c b ≤≤ 证明前的说明:()p x 是单调有界函数,所以它是可积的,而()()p x f x 作为可积函数的乘积也是可积的。其次,在下面的证明中, ①不妨认为()0p a +=,否则,令()()()q x p x p a +=-,则()0q a +=,于是由 ()()d () ()d b b a c q x f x x q b f x x - =? ? 即 [()()]()d [()()]()d b b a c p x p a f x x p b p a f x x + - + -=-?? ,可得一般情形 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? ②不妨认为()p x 是单调增加函数,因为若()p x 是单调减小函数,就用[()]p x -替换()p x 。 证 首先划分区间[,]a b ,即 01211i i n n a x x x x x x x b --=<<< <<<<<= 而在每一个小区间1[,]i i x x -上,都存在点1(,)i i i x x ξ-∈,使 1 1()d ()()i i x i i i x f x x f x x ξ--=-? 【第一积分中值定理】 于是,1 1() ()d ()()()i i x i i i i i x p f x x p f x x ξξξ--=-? ,求和得 1 11 1 ()()d ()()()i i n n x i i i i i x i i p f x x p f x x ξξξ--=== -∑∑? (※) 现在,将左端做变换,即 1 11 1 ()()d ()()d ()d i i i i n n x b b i i x x x i i p f x x p f x x f x x --==?? =-??????∑∑ ? ?? ξξ 1 11 2 () ()d ()()()d i n b b i i a x i p f x x p p f x x ξξξ--=??=+ -??∑? ? 因为()p x 是单调增加函数且()()0p x p a +≥=,所以11()0,()()0i i p p p ξξξ-≥-≥;再用m 和

积分第二中值定理证明

这个定理的推导比较复杂,牵扯到积分上限函数:Φ(x) = ∫f(t)dt(上限为自变量x,下限为常数a)。以下用∫f(x)dx表示从a到b的定积分。 首先需要证明,若函数f(x)在[a,b]内可积分,则Φ(x)在此区间内为一连续函数。 证明:给x一任意增量Δx,当x+Δx在区间[a,b]内时,可以得到 Φ(x+Δx) = ∫f(t)dt = ∫f(t)dt + ∫f(t)dt = Φ(x) + ∫f(t)dt 即 Φ(x+Δx) - Φ(x) = ∫f(t)dt 应用积分中值定理,可以得到 Φ(x+Δx) - Φ(x) = μΔx 其中m<=μ<=M,m、M分别为f(x)在[x,x+Δx]上的最小值和最大值,则当Δx->0 时,Φ(x+Δx) - Φ(x)->0,即 lim Φ(x+Δx) - Φ(x) = 0(当Δx->0) 因此Φ(x)为连续函数 其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为 Φ'(x) = f(x) 证明:由以上结论可以得到,对于任意的ε>0,总存在一个δ>0,使|Δx|<δ时,对于一切的t属于[x,x+Δx],|f(t)-f(x)|<ε恒成立(根据函数连续的ε-δ定义得到),得f(x)-ε0时, Φ'(x) = lim [Φ(x+Δx) - Φ(x)]/Δx = lim μ = f(x) 命题得证。 由以上可得,Φ(x)就是f(x)的一个原函数。设F(x)为f(x)的任意一个原函数,得到 Φ(x)=F(x)+C 当x=a时,Φ(a)=0(由定义可以得到),此时 Φ(a)=0=F(a)+C 即C=-F(a) 得到 Φ(x)=F(x)-F(a) 则当x=b时,Φ(b)=∫f(x)dx,得到 Φ(b)=∫f(x)dx = F(b)-F(a)

浅析定理闭区间套的推广及简单应用

本科毕业论文 (设计) 如果写作的是论文就删设计,如果写作的是设计就删论文 题目数学课堂教学 系别数学系 专业数学与应用数学 指导教师(姓名居中) 评阅教师(姓名居中) 班级2003级1班 姓名(姓名居中) 学号(学号居中) 年月日

目录 摘要(四号黑体不加粗) (Ⅰ) Abstract(四号Times New Roman体加粗) (Ⅰ) 1引言(四号黑体不加粗) (1) 1.1(小四号黑体不加粗) (1) 1.1.1(小四号仿宋体加粗) (1) 2闭区间套定理在1R的推广 (2) 3闭区间套定理在一般度量空间上的推广 (4) 4闭区间套定理在n R上的推广 (5) 5闭区间套定理的应用举例 (6) 结束语 (8) 参考文献 (8) 致谢 (9) (注:①目录不加页码; ②中、英文摘要加页码,用罗马数字:Ⅰ,Ⅱ…; ③正文另行加页码,用阿拉伯数字:1,2,3,….)

摘要(四号黑体不加粗):在介绍了闭区间套定理的基础上,通过综合应用类比法、分析法、演绎推理法将闭区间套定理进行了推广,得到了严格开区间套定理和严格半开半闭区间套定理以及一般完备度量空间上的闭集套定理和常用完备度量空间上的闭集套定理,并给出了这些定理的证明.结合典型例题,分析、讨论了闭区间套定理及推广后的闭集套定理的实际应用,说明了闭区间套定理不仅具有重要的理论意义,而且还有很好的应用价值.(小四号仿宋体不加粗,“摘要”字数须300字以上)关键词(四号黑体不加粗):闭区间套定理;严格开区间套定理;推广;应用(小四号仿宋体不加粗,关键词的个数:3—5个) Abstract(四号Times New Roman体加粗):The theorem of nested closed interval was extended on the basis of its definition with synthetic application of analogy analysis and deductive reasoning, and got a series of theorems such as the theorem of strict open nested interval, the theorem of strict open and closed nested interval and the theorem of closed nested set on ordinary and popular metric space, which were also testified. The real application of the theorem of nested closed interval and the theorem of closed nested set after extension was discussed by analysis of some typical examples so as to demonstrate its important theoretical meaning and useful application.(小四号Times New Roman体不加粗) Key words(四号Times New Roman体加粗): theorem of nested closed interval; theorem of strict open nested interval; extension; application(小四号Times New Roman体不加粗,每个关键词开头字母均不大写,结尾处无标点符号)

(新)积分第一中值定理及其推广证明

2.1积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 ()()()(),()b b a a f x g x dx f g x dx a b ξξ=≤≤? ? 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 ()()()()mg x f x g x Mg x ≤≤ 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 ()()()b b a a f x g x dx g x dx μ=? ? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 2.2积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数, ()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 ()()()(),(,)b b a a f x g x dx f g x dx a b ξξ=∈? ?

推广的积分中值定理及其应用

推广的积分中值定理及其应用 摘要:定积分是微积分的重要组成部分,而积分中值定理是定积分的重要性质之一,所以积分中值定理在微积分中占了很重要的地位,本文系统的叙述了推广的积分中值定理包括:ξ必可以在开区间中取得,导函数的积分中值定理等多个方面,我们所学知识中积分中值定理与微分中值定理的中间点的存在区间是不统一的,但推广后的积分中值定理能够与微分中值定理的存在区间从形式上统一起来,使与其相关的理论得以联系和应用.同时,在本篇论文中以实例的形式列举了推广的积分中值定理在确定零点分布、证明积分不等式、求极限等方面的应用,显然,推广的积分中值定理的优点就在于此,它可以解决原积分中值定理无法解决的问题,这表明了积分中值定理在推广后更具有应用性. 关键词:积分中值定理;导函数;微分中值定理 Promotion of Integral Mean Value Theorem and Its Application Abstract:Definite integral is an important component of calculus, the mean value theorem is one of the important properties of the definite integral, so integral mean value theorem in calculus plays a very important position .This paper describes the system to promote the integral mean value theorem, including: ξwill be achieved in the open interval ,of the derivatives and other integral mean value theorem, we have the knowledge of the differential mean value theorem and the Intermediate Value Theorem Existence interval is not uniform, but after the promotion of integral mean value theorem and the Mean Value Theorem to the presence of range from the formal unity, so that contact can be associated with the theory and application. Meanwhile, in this paper an example to cite a form of integral mean value theorem in determining the zeros to prove inequality, such as the application of limit, obviously, to promote the advantages of integral mean value theorem in this, it Can solve the original integral mean value theorem can not solve the problem, suggesting that the integral mean value theorem in the promotion of a more applied after. Keywords: Integral mean value theorem, derivative, mean value theorem

区间套定理在数学教学中的应用及意义

区间套定理在数学教学中的应用及意义 一、问题的由来 数学思想方法是数学知识的本质,它为分析、处理和解决数学问题提供了指导方针和解题策略。然而,笔者在调研中发现无论是在教还是在学的活动中,教师和学生自觉运用数学的思想与方法去教学或解决数学问题的意识和能力都相当薄弱。这正如涂荣豹教授指出的:“在数学教学中注重知识的传授、记忆和模仿,忽视数学思想方法的渗透和教学的问题仍然比较普遍。”以至于在遇到一些重点教学内容和复杂的数学问题时往往缺少科学有效的解决办法,更难形成一类数学问题解决的思想方法。 案例1梯形中位线的性质定理是集位置关系和数量关系于一身的重要定理。然而在引导学生猜想梯形中位线性质的问题上,虽然在教学实践和相关文献中有许多方法,但绝大多数教师都因缺少恰当的数学思想方法的指导而没有较为明确的思维方向。许多教师不得不靠创设有较明显暗示的情境来引导学生思考,或者靠降低学生的思维层次让他们通过盲目地多次试验来找到解决问题的方法目。最近在全国性的一个学术活动上,上海某中学教师上的“梯形中位线”观摩课极具代表性。他在引导学生猜想梯形中位线的性质时是这样设计的:教师在黑板上画了8个全等的梯形(意为让学生逐一试验)后提出了供学生探讨的三个问题。问题一:在梯形中画出各边中点连线,并尝试分析画出的线段的情况?问题二:猜想梯形的中位线与梯形的各边有没有特殊的关系?问题三:怎样证明你的猜想?其结果,在降低了部分学生的思维层次和耗费了很多的时间后还有相当数量的学生仍没有发现结论。 案例2笔者曾对50位中学数学教师作了“用尽可能多的方法将一个正方形四等分”的能力测试,“结果能用6种以上(含6种)方法等分的教师仅占28.6%,而且这些方法几乎局限于被等分的部分是全等的图形”,其中仅有3人想出了图1的等分方法。尽管笔者作了“由图2和图3两种四等分方法你能推出第三种四等分方法吗?”的提示,仍有大部分人找不到这种等分方法。 由上述二案例不难看到,缺少数学思想方法指导的数学教学是低效的教学,即使我们通过大量的“试验”和“题海战术”获得的一些解题思路和方法也很难上升到方法论的层面,更难以形成具有宏观指导作用的数学思想。因此,用数学思想方法指导中小学数学教与学已成为提高中小学数学教学质量的一个十分重要而紧迫的课题。 二、区间套定理在中小学数学教学中的应用

高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

积分第一中值定理及其推广证明备课讲稿

2.1积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 ()()()(),()b b a a f x g x dx f g x dx a b ξξ=≤≤? ? 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 ()()()()mg x f x g x Mg x ≤≤ 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 ()()()b b a a f x g x dx g x dx μ=? ? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 2.2积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数,()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 ()()()(),(,)b b a a f x g x dx f g x dx a b ξξ=∈? ?

积分第二中值定理的证明

上一篇文章讲了积分第一中值定理的证明,并给出了积分第一中值定理更一般的形式,这篇主要讲积分第二中值定理的证明。 积分第二中值定理: ()f x 在区间[,]a b 上可积,()x ?在区间[,]a b 上单调,那么在[,] a b 上存在内点ξ,使得: ()()(0)()(0)()b b a a f x x dx a f x dx b f x dx ξξ ???=++-? ?? 特别的,当()x ?在区间[,]a b 两端连续时,有 ()()()()()()b b a a f x x dx a f x dx b f x dx ξ ξ ???=+? ? ? 积分第二中值定理是一个更为精确的分析工具,在证明这个定理之前,先介绍Abel 引理。 Abel 引理:数列{}n a 和{}n b ,对于任意的2 10 n n >>,有 2 2 22111 1 1111()()n n n n n n n n n n n n n n n n a b b b a a a b a b -++-==-= -+-∑∑ 实际上: 2 1111112221 1111111122222 1111111122111111111211111121()()()...() ()()...()()()...(n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n a b b a b b a b b a b b a b b a a b a a b a a a b a b b a a b a a b a --++-=-++++---++++---=-+-++-=-+-+-++-+=-+-+-++∑222222 2 22111 111111 )()()n n n n n n n n n n n n n n n n a b a a a b b a a a b a b ++++-=-+-+-+-∑ 下面给出Abel 引理的一个理解方式,便于记忆。众所周知,积分与求和,微分与差分有许多相似之处,一个是对连续函数而言,一

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

缠论本质及其区间套

缠论本质及其区间套操作 缠论之所以伟大,在于发现了股市是一个吻合于自然、社会等复杂系统普适的描述性的几何模型,即通过自同构性结构的自组和级别间的扩展自组递归函数。而缠论的应用,在于对这个天然而严密的数学系统的熟练和把握,也就是用动力和形态相结合的方法,找到这 个递归函数不同级别间的节点。 那么,什么又是递归函数呢? 在数学上,关于递归函数的定义如下:对于某一函数f(x),其定义域是集合A,那么若对于A集合中的某一个值X0,其函数值f(x0)由f(f(x0))决定,那么就称f(x)为递归函数。 在编程语言中,把直接或间接地调用自身的函数称为递归函数。函数的构建通常需要一个函数或者一个过程来完成。 一个含直接或间接调用本函数语句的函数被称之为递归函数,它必须满足以下两个条件:1)在每一次调用自己时,必须是(在某种意义上)更接近于解; 2)必须有一个终止处理或计算的准则。 那么我们再来看缠论中的递归函数的意义。 走势是以中枢为基本单元,通过级别联立构成立体的、层次分明的系统。 相邻级别间,遵循同一个递归的标准,即:本级别中枢为次级别三个走势类型的重叠。 级别的界定:通常我们所使用的1-5-30-60-日-周……级别界定方式,只是为了看盘方便而使用而已,并非是天然生长的级别。 那么,如何去选择初始分析级别(即通常所言的最低级别)?这是个令大多数缠论学习者迷惑的问题。 其实这个问题如果理解了上述的递归函数构建的终止(若递推叫起始)原则,就不存在了。为了直观的、容易的理解一些,还是来具体说说。 初始级别,即递归函数的起始点。 首先初始级别是取出来的。初始中枢,是所选最低级别三个线段重合部分。 线段只跟最低级别有关。如果你在某级别定义线段,那么就认定它是最低级别了,为避免混淆,我们称之为初始级别。线段,被人为认定为初始级别的次级别走势类型。 而分型,笔,都是线段构建的条件,分型只跟笔发生直接关系,笔只跟线段发生直接关系。比如你选择5F为初始级别,那么5F的线段,即认定为次级别走势类型,不管它是否 符合1F的实际走势类型。同理,比如你选择30F为初始级别,那么30F的线段,即认定为次级别走势类型,不管它是否符合5F的实际走势类型,而图上可以看到的1F基本就不用 考察了。即是说,当你选定了某个级别作为分析的初始级别以后,其次级别以下的波 动就可以全部忽略掉了。 而在实际应用中,通常为了兼顾精确与简便,选操作级别为初始级别,用次级别确定精度,高一级别观察中期方向,高二级别观察长期方向。 初始级别的选择,需要综合考虑几个条件:技术熟练度、投机性质、看盘时间、资金量、标的活跃度、方便性等。 精度的选择,除了跟操作级别相关联外,还需要考虑本期计划交易量,标的交易量可承受范围。 区间套是精度逐级确定的方法。区间套操作的终极意义是追踪节点。从高到低一级级背驰下去,一直追踪到某一单成交为止。这个概念就好比在某个区域搜索一个人,先去定哪个区,然后哪栋楼,然后哪间房,然后哪个座位。 方法1:运用了“区间套”逐步逼近的思想方法

六大定理互相证明总结

六大定理的相互证明总结 XXX 学号 数学科学学院 数学与应用数学专业 班级 指导老师 XXX 摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明. 关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理 1 确界定理 1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ] n b }适合下面两个条件: (1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b ) n a }所成的数列收敛于零,即()0lim =-∞ →n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞ →n n n a b ∴βα= 即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1] 证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界 {}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y . 由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,

对积分中值定理的一点思考

对于积分中值定理的一点思考 摘要 积分中值定理是高等数学中重要的一部分,中值定理是人们认识高等数学世界、解决数 学问题的重要武器,本文在数学分析教材中第一积分中值定理的条件下,证明了介值点ξ必可在开区间 ),(b a 内取得,并且给出几分中值定理及其推广的一些应用. 关键词 积分中值定理 积分中值定理应用 积分中值定理的推广 第一积分中值定理 极限 一 引言 推广的积分第一中值定理: 若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在[a, b]上至少存在一点ξ使得 ??=b a b a x d x g f x d x g x f )()()()()()(ξ (1) 推广的积分中值定理可改进如下: 定理1:若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在) ,(b a 上至少存在一点ξ使得??=b a b a x d x g f x d x g x f )()()()()()(ξ。 对其证明如下: 因为)(x f 在],[b a 上连续,故)(x f 在],[b a 上存在最大值和最小值,不妨分别设为M 和m,即M x f m ≤≤)(,则必存在x x x x b a 2 1 2 1 ],,[,<∈,使m f x =)(1 ,M f x =)(2 , 又因为 )(x g 在],[b a 上不变号,不妨设0)(≥x g ,则?≥b a dx x g 0)(, 且有)()()()(x Mg x g x f x mg ≤≤,又)(x f 和)(x g 都在],[b a 可积,则)()(x g x f 在] ,[b a 也可积,从而有 ???≤≤ b a b a b a dx x g M dx x g x f dx x g m )()()()( (2)

积分第一中值定理及其推广证明

积分第一中值定理及其推 广证明 Newly compiled on November 23, 2020

积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间 [,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数,()g x 在 [,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 成立。 推广的第一积分中值定理很重要,在这里给出两种证明方法。 证法1:由于函数()f x 在闭区间[,]a b 上是可积的,()g x 在[,]a b 上可积且不变号,令()()()x a F x f t g t dt =?,()()x a G x g t dt =?,很显然(),()F x G x 在[,]a b 上连续。并且

相关文档
最新文档