地质年代详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地质年代表(单位:百万年)

地质年代表

第一节地质年代

研究地球及地壳的发展演化历史是地质学的重要任务之一。在长达46亿年的漫长地质历史中,地球上经历了一系列的地质事件,如生物的大规模兴盛与灭绝、强烈的构造运动、岩浆活动、海陆变迁等。地球的发展演变历史正是由这些地质事件所构成的。所以,要研究地球或地壳的历史,其中最重要、最基础

地质年代(geologic time)就是指地球上各种地质事件发生的时代。它包含两方面含义:其一是指各地质事件发生的先后顺序,称为相对地质年代;其二是指各地质事件发生的距今年龄,由于主要是运用同位素技术,称为同位素地质年龄。这两方面结合,才构成对地质事件及地球、地壳演变时代的完整认识,地质年代表正是在此基础上建立起来的。

一、相对地质年代的确定

岩石是地质历史演化的产物,也是地质历史的记录者,无论是生物演变历史、构造运动历史、古地理变迁历史等都会在岩石中打下自己的烙印。因此,研究地质年代必须研究岩石中所包含的年代信息。确定岩石的相对地质年代的方法通常是依靠下述三条准则。

(一)地层层序律

地质历史上某一时代形成的层状岩石称为地层(stratum)。它主要包括沉积岩、火山岩以及由它们经受一定变质的浅变质岩。这种层状岩石最初一般是以逐层堆积或沉积的方式形成的,所以,地层形成时的原始产状一般是水平的或近于水平的,并且总是先形成的老地层在下面,后形成的新地层盖在上面,这种正常的地层叠置关系称为地层层序律。它是确定同一地区地层相对地质年代的基本方法。当地层因构造运动发生倾斜但未倒转时,地层层序律仍然适用,这时倾斜面以上的地层新,倾斜面以下的地层老。当地层经剧烈的构造运动,层序发生倒转时,上下关系则正好颠倒。

(二)化石层序律

地层层序律只能确定同一地区相互叠置在一起的地层的新老关系,要对比不同地区的地层之间的新老关系时就显得无能为力了,这时,地质学上常常利用保存在地层中的生物化石来确定。

地质历史上的生物称为古生物,化石(fossil)是保存在地层中的古代生物遗体和遗迹,它们一般被钙质、硅质等充填或交代(石化)。18~19世纪,古生物学家与地质学家通过对不同地质历史时期的古生物化石的详细研究,终于得出了对生物演化的规律性认识——生物演化律,即生物演化的总趋势是从简单到复杂,从低级到高级;以往出现过的生物类型,在以后的演化过程中绝不会重复出现。前一句反映了生物演化的阶段性,后一句反映了生物演化的不可逆性。这一规律用来确定地层的相对地质年代时就表现为:不同时代的地层中具有不同的古生物化石组合,相同时代的地层中具有相同或相似的古生物化石

这就是化石层序律或称生物群层序律。利用化石层序律不仅可以确定地层的先后顺序,而且还可以确定地层形成的大致时代。

(三)地质体之间的切割律

上述两条准则主要适用于确定沉积岩或层状岩石的相对新老关系,但对于呈块状产出的岩浆岩或变质岩则难以运用,因为它们不成层,也不含化石。但是,这些块状岩石常常与层状岩石之间以及它们相互之间存在着相互穿插、切割的关系,这时,它们之间的新老关系依地质体之间的切割律来判定,即较新的地质体总是切割或穿插较老的地质体,或者说切割者新、被切割者老。

二、同位素地质年龄的测定

相对地质年代只表示了地质事件或地层的先后顺序,即使是利用古生物化石组合的方法,也只能了解它们的大致时代。要更确切、更全面地了解地球的发展史,除了知道各种地质事件的先后顺序及大致时代外,必须定量地知道地质事件究竟发生在距今多少年的时候?延续的时间有多长?地质事件的剧烈程度或作用速率怎样?以及地球形成的确切年龄、地球或地壳发展演化的细节等等。所以,以年为单位来测定绝对地质年龄长期以来深受地质学界的重视。

早在19世纪,人们就已开始探索绝对年龄的计算方法。例如,有人曾根据沉积岩的厚度和沉积作用的大致速率来估算地球的年龄;还有人设想海水是由淡变成的,然后根据现代海洋中的总含盐量与流水每年从陆地带入海洋的盐量来估算地球的年龄等等。这些方法显然都是很原始的和不准确的,其结果当然也毫无意义。19世纪末,放射性同位素的发现,为测定岩石的绝对年龄提供了科学方法,这种方法主要是利用放射性同位素的蜕变规律,因此被称为同位素地质年龄测定法。

放射性元素在自然界中自动地放射出α(粒子)、β(电子)或γ(电磁辐射量子)射线,而蜕变成另一种新元素,并且各种放射性元素都有自己恒定的蜕变速度。同位素的衰变速度通常是用半衰期(T1/2)表示的。所谓半衰期,是指母体元素的原子数蜕变一半所需要的时间。例如,镭的半衰期为1622年,如果开始有10g镭,经过1622年后就只剩下5g;再经过1622年仅只有2.5g……依此类推。因此,自然界的矿物和岩石一经形成,其中所含有的放射性同位素就开始以恒定的速度蜕变,这就像天然的时钟一样,记录着它们自身形成的年龄。当知道了某一放射元素的蜕变速度(T1/2)后,那么含有这一元素的矿物晶体自形成以来所经历的时间(t),就可根据这种矿物晶体中所剩下的放射性元素(母体同位素)的总量(N)和蜕变产物(子体同位素)的总量(D)的

式中λ为蜕变常数,与蜕变速度(T1/2)有关。关系式为λ=0.639/T1/2,通常是在实验室中测定;N、D值可用质谱仪测出。

自然界放射性同位素种类很多,能够用来测定地质年代的必须具备以下条件:

①具有较长的半衰期,那些在几年或几十年内就蜕变殆尽的同位素是不能使用的;

②该同位素在岩石中有足够的含量,可以分离出来并加以测定:

③其子体同位素易于富集并保存下来。

表4.1 用于测定地质年代的放射性同位素

通常用来测定地质年代的放射性同位素见表4.1所列。从表中可看出,铷—锶法、铀(钍)—铅法(包括3种同位素)主要用以测定较古老岩石的地质年龄;钾—氩法的有效范围大,几乎可以适用于绝大部分地质时间,而且由于钾是常见元素,许多常见矿物中都富含钾,因而使钾—氩法的测定难度降低、精确度提高,所以钾-氩法应用最为广泛;14C法由于其同位素的半衰期短,它一般只适用于5万a以来的年龄测定。另外,近年来开发的钐-钕法和40Ar-39Ar法以其准确度提高、分辨率增强,显示了其优越性,可以用来补充上述方法的一些不足。

相关文档
最新文档