吸附式制冷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体吸附式制冷可采用太阳能或余热等低品位热源作为驱动热源,不仅缓解电力的紧张供应和能源危机,而且能有效的利用大量的低品位热源。另外,吸附式制冷不采用氯氟烃类制冷剂,无CFCS问题,也无温室效应作用,是一种环境友好型制冷方式。

与蒸气压缩式制冷系统相比,吸附式制冷具有结构简单,一次性投资少,运行费用低,使用寿命长,无噪音,无环境污染,能有效利用低品位热源等一系列优点;与吸收式制冷系统相比,吸附式制冷系统不存在结晶和分馏问题,且能用于震动,倾颠或旋转等场合。

两床连续型吸附式制冷系统主要由两部分组成。第一部分包括两个吸附床(解吸床和吸附床),两床的功能相当于传统制冷中的压缩机。解吸态床向冷凝器排放高温高压的制冷剂蒸气,吸附床则吸附蒸发器中低温低压的蒸气,使制冷剂蒸气在解吸床中不断蒸发制冷。因此吸附式制冷系统设计的核心是吸附床,它的性能好坏直接影响了整个系统的功能。第二部分包括冷凝器,蒸发器及流量调节阀,冷却水系统和冷冻水系统,与普通的制冷系统相类似。从解吸态床解吸出来的高温高压的制冷剂蒸气在冷凝器中被冷凝后,经过流量调节阀,变成低温低压的液体,进入蒸发器蒸发制冷,被蒸发的制冷剂蒸气重新被吸附态床吸收。

1 吸附床设计的要求

a.传热性能好,和流体的传热迅速,同时能够有效地克服吸附剂低导热系数的影响,这样才能保证吸附床及时补充解吸过程所需要的解吸热并及时带走吸附过程所放出的吸附热,它是使吸附床具有高性能的必要条件。

b.传质迅速,吸附质扩散通道畅通,这样才能保证吸附床吸附过程的吸附速度和解吸过程的解吸速度,缩短循环周期,提高单位工质的制冷功率。

c.吸附床材料以及热媒流体本身的热容和床内填充吸附剂的热容之比也决定了吸附式制冷系统的性能。这主要是由于吸附床材料本身的加热和冷却,会造成大量的系统热量损失,严重影响了系统的性能。

上述三点都是非常重要的。而这三点常常是相互矛盾、相互制约的,要强化吸附床的传热,必然要加入一些必要的导热片或增加必要的传热通道,这样也就必然导致了吸附床金属热容比的增加;要强化吸附床的传热,就必须要提高吸附剂的导热系数,而这样却影响了吸附床内的传质。

2 结构

床身由上下两个吸附床复合而成,每个吸附床上表面是一个高效太阳能集热器,为避免它们之间的相互热作用,两个吸附床之间用绝热层隔开。该吸附床可用金属合金制造,这样有利于保持吸附床的真空度且增加传热面积。吸附床内壁设有一个 U型水槽,当下床吸附时,通以冷媒水冷却。当上下两床分别达到脱附/ 吸附饱和时,通过转动轴旋转180o,上下两床互换位置,仍然保持上床解吸,下床吸附,从而达到连续循环。(1)床内结构特点

传质通道采用蜂窝状分布,有利于吸附过程吸附剂对制冷剂的吸收。烧结成块状的吸附剂除了与太阳能集热器结合的那一面外,其它三面都有冷却水槽。当吸附床吸附制冷剂时,打开水槽阀门,通入冷却水,带走吸附热,这样一来可以加快吸附过程,从而缩短整个循环的时间。

一般来说,对制冷剂的要求是单位容积汽化潜热大、热稳定性好、无污染、不易燃、无毒、分子量小、压力范围为0.1~0.5Mpa,最好在263K到353K的温度范围内其蒸气压力接近于大气压。但是,完全满足上述条件的制冷剂是很难找到的,目前常用的制冷剂包括:水、甲醇、氨等。

在物理吸附制冷系统中,活性炭-甲醇是目前使用最为广泛的吸附剂工质对。主要原因是活性炭-甲醇的吸附解吸量较大,所需的解吸温度不高(100℃左右);吸附热不太高(约1800~2000kJ/kg);而且甲醇的蒸发潜热较高。与其它吸附工质对相比发现,活性炭-甲醇的COP最高15),由于所需的解吸温度较低,所以活性炭-甲醇系统更适应于太阳能制冷。王如竹和Vasiliev研究了活性炭纤维-甲醇的吸附性能,认为活性炭纤维比活性炭更适合于吸附制冷,其COP可以增加10%~20%,吸附、解吸循环量可以增加2~3倍14)。综上所述,活性炭纤维-甲醇是太阳能吸附制冷系统合适的选择对象。

三蒸发器的设计

吸附式制冷系统按所采用的工质对可分为真空系统与压力系统两类。若以甲醇与水作为制冷剂的系统作为制冷剂的系统为真空系统,而以氨为制冷的系统为压力系统。由于吸附式制冷系统的冷量输出不均匀,因此通常采用简介方式输出冷量。对于压力系统来说,蒸发器的设计方法与普通压缩式制冷系统的蒸发器设计相同,可采用满液式蒸发器。蒸发器的结构与尺寸根据系统的制冷量来确定。

位于蒸发器中的冷剂通过磁力泵泵入液盘中,液盘底部有许多滴液小孔,与冷媒排管设计相对应,滴下的冷剂与冷媒水管进行热交换,吸收管中水的热量蒸发,形成蒸发冷却。制冷剂蒸气通过蒸发器顶部的管道不断被吸附剂吸收,从而使制冷过程持续进行。吸附床吸附过程的流动阻力主要产生于吸附床道蒸发器的管道之间,因此流阻较小。

四冷凝器与冷却器的设计

吸附式制冷系统的冷凝器主要包括风冷和水冷两种类型。它的设计方法与常规的压缩式制冷系统的冷凝器设计方法相同。主要考虑系统的冷凝负荷、冷凝压力,使冷凝器的设计与吸附床的容量相匹配。同时又要考虑设备的经济性。在这个设计中,要特殊考虑的是吸附床解吸量的变化而引起的冷凝器冷凝负荷的变化。由于吸附床解吸过程中温度的变化以及非平衡吸附过程的存在,使得吸附床的解吸量时刻变化。通常在吸附床最初的一段解吸时间内,解吸量最大,这时冷凝器的冷凝负荷也紧大。因此在确定系统的冷凝负荷时,必须考虑最大解吸量时所需要的最大的冷凝负荷。

冷凝器的结构形式可以选用常用的壳管式换热器,换热系数可达1400~2900W/(m²•K)。也可以选用结构紧凑,传热高效的板式换热器,它的特点是:传热面积大,特别是比表面积大,达0.2m²/kg;另一方面,具有波纹型强化传热表面,可促进流体换热,换热系数可达2000~6000

六吸附式制冷系统的优化9)

吸附式制冷系统的优化是一个比较复杂的问题,即涉及系统设计,又涉及系统运行。前面已经对系统设计上的优化有了说明,下面主要讨论一下系统运行上的优化。

吸附式制冷系统的优化运动涉及到循环时间的优化、加热/冷却控制、理想工况的实现等。

循环时间是优化运行中一个非常重要的参数,吸附和解吸过程都是时间关联的动态过程过长的循环时间可确保吸附和解吸过程的充分进行,因而理论上来说系统COP可得到提高。但是,若是考虑热力系统的漏热(吸附床向环境漏热,环境向蒸发器的渗入热),则循环时间过长是不利的;另一方面,循环时间实际反映了吸附式制冷系统的能量密度,循环时间越长则对于某一设计制冷功率的吸附式制冷系统所要求的吸附剂质量越多。

吸附床内增强传热至关重要,定浓度冷却时间的缩短直接影响吸附制冷系统的单位质量吸附剂的制冷功率。

在以缩短循环时间为目的的吸附式制冷系统中,采用板翅式换热器,螺旋板式换热器作为吸附器将具有明显的优势。

在考虑吸附式制冷系统的实用化方面,须以实际运行经济性为目标函数,考虑COP、循环时间、金属材料耗量与吸附剂耗量、初投资、地域经济特点,吸附剂价格和吸附器价格等因素,运用技术经济的管道进行吸附式制冷系统的技术经济分析

吸附式冷水机组的优点:

经过严格的检验和性能试验,吸附式冷水机组具有以下优点;

1. 无运动部件,设计简单,运转安静;

2. 低运行成本,与常规的系统相比运行成本低约1/10;

3. 机组在真空状态下运行,操作、维护方便,安全可靠,操作、维护人员无需特殊培训;

4. 非正常停机对设备无危险,无危害,重新启动不会出现任何问题;

5. 即使在热水进口温度低时,制冷效果也高;

6. 无结晶和冻管危险;

7. 热水流量减少50﹪时,热水温差拉大,热水温差可至13℃,制冷量仍能保持在90℃以上;

8. 热水进口温度可以升至100℃;

9. 冷水出口温度可低至7℃;

10. 硅胶和水都是自然物质,绝对环保、安全;

11. 硅胶在设计使用寿命期间不老化,无需再生,其吸附能力不损失。

12. 无需冷剂泵

吸附式制冷的原理

吸附式冷水机组是一种以低温热水为驱动热源,以硅胶为吸附剂,以水为制冷剂,利用硅胶在加热时易解析、冷却时易吸附的特点,通过冷剂蒸汽在两个吸附床内不断的交替冷却吸附和加热解析,冷凝器不断的冷

相关文档
最新文档