CMOS 数控振荡器设计

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CMOS 数控振荡器设计

1 引言

随着数字信号处理数字信号处理越来越广泛的应用,数字锁相环DPLL(Digital Phase Lock Loop)在现代集成电路设计中也越来越普遍,特别是在数字信号处理器DSP 和微处理器这类高性能数字电路应用中,数字锁相环更是一种必不可少的电路。与传统的模拟锁相环(Analog Phase-Locked Loop)相比,由于数字锁相环较少采用高阻值电阻、电容以及电感等非线性器件,可以采用与高速数字逻辑电路相兼容的制造工艺来设计和制造,也更加容易在数字系统中应用。

一个典型的数字锁相环结构,数控数控振荡器振荡器DCO(Digital-Controlled Oscillator)是其中最关键和核心的部分。数控振荡器DCO 输出了可变频率的振荡波形,决定了整个锁相环的噪声性能和功耗。数字时间转换器(Time - to - DigitalConverter)输出了参考时钟和反馈来的输出时钟之间的相位差,一个数字环形滤波器(Digital LoopFilter)代替了模拟环形滤波器来控制DCO,由与参考时钟的相位差来控制DCO 输出或高或低的振荡频率,输出振荡信号由负反馈送到数字时间转换器,使相位差减小,最终让输出信号频率与参考时钟频率一致,即达到相位锁定。整个DCO 因此不再需要含有电容或电感,同时也减少漏电流和电源噪音的问题。

图1 数字锁相环的基本结构

2 电路结构和原理

数控振荡器有多种实现结构,本文设计了一种完全采用静态CMOSCMOS 逻辑电路的DCO 结构,该DCO基于由CMOS 反相器构成的环形振荡器,其电路结构。

图2 电路结构图

,每一级环形振荡器均是5 个CMOS反相器串联,并构成闭环负反馈回路,每个反相器的输出也与下一级环形振荡器对应的反相器输出相连。根据巴克豪森准则:振荡器要产生振荡,那么环路增益必须大于等于一且总相移有360°。因此环路中进行反相的次数必须是奇数,三个以上的奇数个CMOS 反相器串联闭环回路,在一个微小的激励下都能够产生振荡。单级环形振荡器的振荡频率由反相器个数和其本征延迟决定,用n 表示反相器个数,tr 表示反相器上升沿延迟,tf 表示反相器下降沿延迟,频率可以用下式表示为:

反相器下降延迟t f 和上升延迟t r 根据下列公式定义,式中Rn、Rp 分别为图2(b)中反相器PMOS管M0、M1 和NMOS 管M2、M3 的等效电阻,Cout 为反相器输出电容。

设置电路中所有MOSFET的沟道长度都为90nm工艺设计规范的默认值0.1 μ m。因为在常温下N 沟道中的电子迁移率大约是P 沟道中的空穴迁移率的2~3 倍,因此设置PMOS 管的宽度Wp 是NMOS 管宽度Wn 的2 倍,使反相器中NMOS 管和PMOS 管的等效电阻近似相等,即Rn=Rp,也就使tr=tf。

下降延迟t r 和上升延迟t f 相等可以让环形振荡器产生对称性比较好的波形,提高振荡器的抗噪声性能。

1 引言

随着数字信号处理越来越广泛的应用,数字锁相环DPLL(Digital Phase Lock Loop)在现代集成电路设计中也越来越普遍,特别是在数字信号处理器DSP 和微处理器这类高性能数字电路应用中,数字锁相环更是一种必不可少的电路。与传统的模拟锁相环(Analog

Phase-Locked Loop)相比,由于数字锁相环较少采用高阻值电阻、电容以及电感等非线性器件,可以采用与高速数字逻辑电路相兼容的制造工艺来设计和制造,也更加容易在数字系统中应用。

一个典型的数字锁相环结构,数控振荡器DCO(Digital-Controlled Oscillator)是其中最关键和核心的部分。数控振荡器DCO 输出了可变频率的振荡波形,决定了整个锁相环的噪声性能和功耗。数字时间转换器(Time - to - DigitalConverter)输出了参考时钟和反馈来的输出时钟之间的相位差,一个数字环形滤波器(Digital LoopFilter)代替了模拟环形滤波器来控制DCO,由与参考时钟的相位差来控制DCO 输出或高或低的振荡频率,输出振荡信号由负反馈送到数字时间转换器,使相位差减小,最终让输出信号频率与参考时钟频率一致,即达到相位锁定。整个DCO 因此不再需要含有电容或电感,同时也减少漏电流和电源噪音的问题。

图1 数字锁相环的基本结构

2 电路结构和原理

数控振荡器有多种实现结构,本文设计了一种完全采用静态CMOS 逻辑电路的DCO结构,该DCO基于由CMOS 反相器构成的环形振荡器,其电路结构。

图2 电路结构图

,每一级环形振荡器均是5 个CMOS反相器串联,并构成闭环负反馈回路,每个反相器的输出也与下一级环形振荡器对应的反相器输出相连。根据巴克豪森准则:振荡器要产生振荡,那么环路增益必须大于等于一且总相移有360°。因此环路中进行反相的次数必须是奇数,三个以上的奇数个CMOS 反相器串联闭环回路,在一个微小的激励下都能够产生振荡。单级环形振荡器的振荡频率由反相器个数和其本征延迟决定,用n 表示反相器个数,tr 表示反相器上升沿延迟,tf 表示反相器下降沿延迟,频率可以用下式表示为:

反相器下降延迟t f 和上升延迟t r 根据下列公式定义,式中Rn、Rp 分别为图2(b)中反相器PMOS管M0、M1 和NMOS 管M2、M3 的等效电阻,Cout 为反相器输出电容。

设置电路中所有MOSFET的沟道长度都为90nm工艺设计规范的默认值0.1 μ m。因为在常温下N 沟道中的电子迁移率大约是P 沟道中的空穴迁移率的2~3 倍,因此设置PMOS 管的宽度Wp 是NMOS 管宽度Wn 的2 倍,使反相器中NMOS 管和PMOS 管的等效电阻近似相等,即Rn=Rp,也就使tr=tf。

下降延迟t r 和上升延迟t f 相等可以让环形振荡器产生对称性比较好的波形,提高振荡器的抗噪声性能。

每一级的5 个CMOS 反相器由一个高电平有效的输入信号控制,同时打开或者关闭,让DCO 中的环形振荡器逐级打开或者逐级关闭。当打开的环形振荡器级数越多,电路中的振荡电流越强,电路输出的振荡频率就越快。反之,当打开的环形振荡器级数越少,电路中的振荡电流减弱,但因为整个DCO中的环形振荡器总级数是一定的,因此整个DCO 中的等效电容并没有减少,所以输出的振荡频率就会下降。因此,该数控振荡器是通过控制打开的环形振荡器级数,数字化地控制振荡频率,在DPLL中需要一个前置的数字环形滤波器提供输入信号,控制各级振荡器的打开或关闭。

当所有环形振荡器都打开时,无论该DCO 中总共有多少级环形振荡器,DCO 输出的振荡波形的最大频率fmax 都为式(1)表示的单个环形振荡器振荡频率。输出的最小频率fmin 也就是当只有一级环形振荡器打开时的DCO 输出频率。由此分析,DCO 的增益可以如下式表示,

相关文档
最新文档