正n边形的尺规作图方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何三大问题如果不限制作图工具,便很容易解决.从历史上看,好些数学结果是为解决三大问题而得出的副产品,特别是开创了对圆锥曲线的研究,发现了一批著名的曲线,等等.不仅如此,三大问题还和近代的方程论、群论等数学分支发生了关系.
正五边形的画法]
(1)已知边长作正五边形的近似画法如下:
①作线段AB等于定长l,并分别以A,B为圆心,已知长l为半径画弧与AB的中垂线交于K.
②以K为圆心,取AB的2/3长度为半径向外侧取C点,使CK=2/3AB.
③以C为圆心,已知边长AB为半径画弧,分别与前两弧相交于M,N.
④顺次连接A,B,N,C,M各点即近似作得所要求的正五边形.
(2) 圆内接正五边形的画法如下:
①以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和AP.
②平分半径ON,得OK=KN.
③以K为圆心,KA为半径画弧与OM交于H, AH即为正五边形的边长.
④以AH为弦长,在圆周上截得A,B,C,D,E各点,顺次连接这些点即得正五边形.
(3).民间口诀画正五边形
口诀介绍:"九五顶五九,八五两边分."
作法:
画法:
1.画线段AB=20mm,
2.作线段AB的垂直平分线,垂足为G.
3.在l上连续截取GH,HD,使GH=5.9/5*10mm=19mm,
HD=5.9/5*10mm=11.8mm
4.过H作EC⊥CG,在EC上截取HC=HE=8/5*10mm=16mm,
5.连结DE,EA,EC,BC,CD,
五边形ABCDE就是边长为20mm的近似正五边形.
(4)
1.画一条水平线,通过此线上的任意点做一个圆。
2.将圆规的一腿放在圆与直线的其一交点上,通过上述圆的圆心画半圆,并
与之交两点。连接这两点做垂直线,与先前的水平线相交与(a)点.
3.张开圆规,以水平线与第一个圆的两个交点为圆心以相同半径在水平线上
下第一个圆外分别做两个交点,这样可以得到一条通过第一个圆圆心的正交线,与第一个圆相交的位于水平线上方的点称之为(b).这是正五边形的第一个角。
4.将圆规的一脚放在(a)点上,(a)(b)间距为半径做另一个圆,交水平线于
点(c)。
5.将圆规的一脚放在(b)点上,(b)(c)间距为半径做圆,交第一个圆于两点,
这是正五边形的第二、三两点。
6.将圆规的一脚分别放在二、三两点上,同样是(b)(c)间距为半径交第一个
圆于另外两点,这两点就是正五边形的最后两点。
7.连接相邻两点就构成了正五边形。
如果不是连接相邻两点(即对角线连接),就会得到一个五角星,在它的中间构成一个小的正五边形。或者延长每一边,得到一个大正五边形。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.
人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.
17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.
费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi 都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:
F0=3,F1=5,F2=17,
F3=257,F4=65 537
验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:
F5=641×6 700 417.
当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?
更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.
当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.
更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是
n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)
其中,p1,p2,…,ps是费马素数.
正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.
倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.
就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.
正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.
高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而3=F0.
备注一
一个正质数多边形可以用标尺作图的充分和必要条件是,该多边形的边数必定是一个费马质数。换句话说,只有正三边形、正五边形、正十七边形、正257边形和正63357边形可以用尺规作出来,其它的正质数多边形就不可以了。(除非我们再发现另一个费马质数。)
备注二
黎西罗给出了正257边形的尺规作法,写满了整整80页纸。盖尔梅斯给出了正63357边形的尺规作法,此手稿整整装满了一只手提箱,现存于德国哥廷根大学。这是有史以来最繁琐的尺规作图。
备注三