最新平行四边形性质提高练习及答案

合集下载

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案1. 判断题:平行四边形的对角线是否一定相等?- 答案:错误。

只有矩形和正方形的对角线相等。

2. 选择题:下列哪个选项不是平行四边形的性质?- A. 对边相等- B. 对角相等- C. 对角线互相平分- D. 邻角互补- 答案:B。

平行四边形的对角不一定相等,这是矩形和正方形的特殊性质。

3. 计算题:如果一个平行四边形的一边长为10厘米,且相邻的两边夹角为60度,求对边的长度。

- 答案:由于平行四边形的邻角互补,所以另一个角也是60度。

这意味着平行四边形是一个菱形。

在菱形中,所有边长相等,所以对边的长度也是10厘米。

4. 证明题:证明平行四边形的对角线互相平分。

- 答案:设平行四边形为ABCD,对角线AC和BD相交于点E。

由于AB平行于CD,根据平行线的性质,∠BAC=∠DCA,同理∠ABC=∠BCD。

因此,△ABC和△CDA是相似三角形。

根据相似三角形的性质,我们可以得出AE/EC = BE/ED。

同理,我们可以证明AE/EC = BD/DC。

因此,AE = EC且BE = ED,证明了对角线互相平分。

5. 应用题:一个平行四边形的面积是64平方厘米,已知一边长为8厘米,求另一边的长度。

- 答案:平行四边形的面积公式是底乘以高。

设另一边的长度为x厘米,高为h厘米。

根据面积公式,8h = 64,解得h = 8厘米。

由于平行四边形的对边相等,另一边的长度也是8厘米。

练习题答案解析通过这些练习题,学生可以检验自己对平行四边形性质的理解,并通过计算和证明题来加深对平行四边形几何特性的认识。

这些题目覆盖了平行四边形的基本性质、面积计算以及证明题,有助于培养学生的逻辑推理能力和空间想象能力。

希望这些练习题和答案能够帮助学生更好地掌握平行四边形的相关知识。

在解决实际问题时,学生应该灵活运用所学知识,结合图形的特点进行分析和计算。

平行四边形性质专项练习30题(有答案)ok

平行四边形性质专项练习30题(有答案)ok

平行线的性质专项练习30题(有答案)1.如图,▱ABCD中,AB=9cm,对角线AC、BD相交于点O,若△COD的周长为20cm,且AC比BD长6cm,试求对角线AC、BD的长.2.如图,在▱ABCD中,AE⊥BC,E是垂足,如果∠B=50°,那么∠D、∠C、∠1与∠2分别等于多少度?3.如图,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)请找出图中的一对全等三角形,并说明理由.(2)若AB=25,AD=39,AE=15,试求EF的长.4.如图,平行四边形ABCD的对角线AC、BD相交于点O,若平行四边形ABCD的周长是24cm,△AOD的周长比△AOB的周长大4cm,求AB、AD的长.5.如图,▱ABCD中,∠BAD的平分线AE交DC于点E.(1)试说明AD=DE;(2)若AB:CB=3:2,CE=5cm,求▱ABCD的周长.6.如图,▱ABCD中,G是CD上一点,BG交AD延长线于E,且AF=CG,∠DGE=98°.(1)求证:DF=BG;(2)试求∠AFD的度数.7.如图,已知四边形ABCD是平行四边形,P、Q是对角线BD上的两个点,且AP∥QC.求证:BP=DQ.8.如图,在▱ABCD中,点E、F分别在BC、CD边上,BF=DE,AG⊥BF,AH⊥DE,垂足分别为G、H.求证:AG=AH.9.如图,在▱ABCD中,∠BAC=68°,∠ACB=36°,求∠D和∠BCD的度数.10.如图,在平行四边形ABCD中,BD=CD,∠A=70°,CE⊥BD于E,计算∠BCE.11.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OC的长及▱ABCD的面积.12.如图,已知在▱ABCD中,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为点E、F.(1)求∠EAF的度数;(2)如果AB=6,求线段AE的长.13.如图,已知在▱ABCD中,过AC中点的直线交CD,AB于点E,F.求证:DE=BF.14.如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长.15.如图,平行四边形ABCD中,对角线AC,BD交于O点,过O点作直线EF,交AD,BC于E、F,(1)试说明OE=OF(2)四边形ABFE的面积与四边形FCDE的面积间有何关系?试说明你的结论.16.已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.17.如图,在▱ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论.18.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,求△DEF的面积.19.如图,▱ABCD中,BG平分∠ABC,CE平分∠BCD.求证:AE=DG.20.如图,在平行四边形ABCD中,∠ABC、∠BCD的平分线相交于点O,BO延长线交CD延长线于点E,求证:OB=OE.21.如图,在▱ABCD中,BE平分∠ABC交AD于点E,连接CE,且CE平分∠DCB,试说明.22.已知:如图,A是△EFC边EF上一点,四边形ABCD是平行四边形,且∠EAD=∠BAF.求证:△CEF是等腰三角形.23.如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.试说明:CD=CE.24.将▱ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处(如图).(1)求证:△ABE≌△AGF.(2)连接AC,若▱ABCD的面积等于16,,AC•EF=y,试求y与x之间的函数关系式.25.如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;(3)在(2)的条件下,求四边形ABED的面积.26.如图所示,在平行四边形ABCD中,∠ABC的角平分线分别交AC,AD于E,F点,EG⊥BC,若BA=6,AC=8,AD=10.(1)求FD的长;(2)求△BEC的面积.27.已知如图,四边形ABCD为平行四边形,AD=a,AC为对角线,BM∥AC,过点D作DE∥CM,交AC的延长线于F,交BM的延长线于E.(1)求证:△ADF≌△BCM;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).28.如图所示,已知E是▱ABCD边DC延长线上一点,且CE=DC,连接AE分别交BC、BD于点F、点G.求证:△AFB≌△EFC.29.如图,在▱ABCD中,∠B、∠C的平分线相交于点O,BO与CD的延长线交于点E.试比较BO与EO的大小,并说明理由.30.如图,在▱ABCD的形外分别作等边△ABF和等边△BCE,连接DF、FE、ED.(1)求证:△AFD≌△CDE;(2)△DEF是等边三角形吗?试证明你的结论.参考答案:1.∵△COD的周长为20cm,∴OC+OD=20﹣CD=20﹣AB=20﹣9=11,∵AC﹣BD=6,∴2OC﹣20D=6,∴OC=7,OD=4,∴AC=2OC=14,BD=2OD=82.在平行四边形ABCD中,∠D=∠B=50°,∠BAD=∠C,(2分)∵AB∥DC∴∠C=180°﹣∠B=130°,(4分)∵AE⊥BC∴∠1=90°﹣∠B=40°,(5分)∠2=∠BAD﹣∠1=∠C﹣∠1=130°﹣∠1=90°.(6分)故答案为:∠D=50°,∠C=130°,∠1=40°,∠2=90°3.(1)写出图中的一对全等三角形,如△ADE≌△CBF,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,又∵∠AED=∠CFB=90°,∴△ADE≌△CBF;(2)在Rt△ABE中,根据勾股定理得BE=20,同理得DE=36.∵△ADE≌△CBF,∴BF=DE,∴EF=BF﹣BE=36﹣20=16.4.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OD=OB,∴2AB+2AD=24cm,∴AB+AD=12cm ①,∵△AOD的周长比△AOB的周长大4cm,∴(OA+OD+AD)﹣(OA+OB+AB)=4cm,∴AD﹣AB=4cm ②,①+②得:AD=8cm,①﹣②得:AB=4cm.答:AB=4cm,AD=8cm.5.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DEA=∠DAE,∴AD=DE.(2)解:设AB=3kcm,CB=2kcm,∵AD=DE,DC=AB,∴AB﹣AD=CE=5cm,∴3k﹣2k=5,k=5,∴AB=DC=15cm,AD=BC=10cm,∴平行四边形ABCD的周长是:AB+BC+CD+AD=15cm+10cm+15cm+10cm=50cm.6.1)证明:∵▱ABCD,∴∠A=∠C,AD=CB.又AF=CG,∴△ADF≌△CBG.(SAS)∴DF=BG.(2)解:由△ADF≌△CBG得∠AFD=∠CGB=∠DGE=98°7.∵AP∥CQ,∴∠APD=∠CQB,∴∠APB=∠CQD,∵四边形ABCD是平行四边形,∴AB=CD,∴AB∥CD,∴∠ABP=∠CDQ,在△ABP和△CDQ 中,,∴△ABP≌△CDQ,∴BP=DQ.8.连接AE、AF,设△AED的AD边上的高为h,∵S△ADE=AD•h,S□ABCD=AD•h,∴S△ADE =S□ABCD,同理:S△ABF =S□ABCD,∴S△ADE=S△ABF,∵AG⊥BF,AH⊥DE,∴S△ADE =DE•AH,S△ABF =BF•AG,∴DE•AH=BF•AG,∵BF=DE,∴AG=AH.9.∵四边形ABCD为平行四边形,∴∠D=∠B=180°﹣∠BAC﹣∠ACB=180°﹣68°﹣36°=76°,∠BCD=180°﹣∠D=180°﹣76°=104°.10.在平行四边形ABCD中,∠A=∠BCD=70°,∵BD=CD,∴∠CBD=∠BCD=70°,∵CE⊥BD,∠BCE+∠CBE=90°,∴∠BCE=90°﹣70°=20°.11.∵AC⊥BC,∴∠ACB=90°,∵四边形ABCD是平行四边形,∴AD=BC=8,AB=CD=10,OA=OC=AC,∵AB=10,BC=8,由勾股定理得:AC==6,∴OC=3,∴平行四边形ABCD的面积是BC×AC=8×6=48.答:OA的长是3,▱ABCD的面积是4812.(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,于是由∠B=60°,得∠C=120°,∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°,在四边形AECF中,∠EAF+∠AEC+∠C+∠AFC=360°,∴∠EAF=60°.(2)在Rt△ABE中,∠AEB=90°,AB=6,由∠B=60°,得∠BAE=30°,∴,由勾股定理,得,即得13.∵四边形ABCD 是平行四边形,∴DC=AB,DC∥AB,∴∠ECA=∠BAC,∠CEO=∠AFO,∵OA=OC,∴△AOF≌△COE,∴CE=AF,∵DC=AB,∴DE=BF14.(1)证明:延长DC交BE于点M,∵BE∥AC,AB∥DC,∴四边形ABMC是平行四边形,∴CM=AB=DC,C为DM的中点,BE∥AC,则CF为△DME的中位线,DF=FE;(2)由(1)得CF是△DME的中位线,故ME=2CF,又∵AC=2CF,四边形ABMC是平行四边形,∴AC=ME,∴BE=2BM=2ME=2AC,又∵AC⊥DC,∴在Rt△ADC中利用勾股定理得AC=AD•sin∠ADC=,∴BE=15.(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,AD‖BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF,∴OE=OF;(2)S四边形ABEF=Ss四边形FCDE.理由如下:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∠ABC=∠CAD,△AOE≌△COF ∴△ABC≌△CDA(全等三角形的面积相等).又∵△AOE≌△COF,∴S三角形AOE=S三角形COF,∴S四边形ABEF=S四边形CDEF.16.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∠F=∠E.∵AD∥BC,AE∥CF,∴∠FHA=∠CGE,∴△AFH≌△CEG(AAS),∴EG=FH.17.由题意得:BE=DF,BE∥DF.理由如下:连接DE、BF.∵ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.18.∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=,∵AB∥CD,∴∠B=∠ECH,在△BFE和△CHE中,∴△BFE≌△CHE,∴EF=EH=,CH=BF=1,∵S△DHF =DH•FH=4,∴S△DEF =S△DHF =2.19.∵四边形ABCD为平行四边形∴AD∥BC,AB=DC(1分)∴∠2=∠6,∠3=∠5(2分)∵BG平分∠ABC,CE平分∠BCD ∴∠1=∠2,∠3=∠4∴∠1=∠6,∠4=∠5(4分)∴AB=AG,DC=DE(6分)∴AG=DE(7分)∴AG﹣EG=DE﹣EG即AE=DG(8分)20.∵AB∥DC,∴∠ABE=∠CEB,又∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠CEB,∴CB=CE,∴△BCE是等腰三角形,又∵CO平分∠BCE,∴∠BCO=∠ECO,∴OB=OE.21.在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EBC,∠DEC=∠ECB,∵BE平分∠ABC交AD于点E,且CE平分∠DCB,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠ABE=∠AEB,∠ECD=∠DEC,即AB=AE,CD=ED,又AB=CD,∴可得点E为AD的中点.即AB=BC22.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴∠EAD=∠F,∠BAF=∠E,∵∠EAD=∠BAF,∠F=∠E,∴CE=CF,∴△CEF是等腰三角形.23.∵DE是∠ADC的角平分线,∴∠1=∠2,在平行四边形ABCD中,AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CD=CE.24.1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠BCD,又根据题意得:AG=CD,∠EAG=∠BCD,∴AB=AG,∠BAD=∠EAG,∴∠BAE=∠GAF,(1分)又∵AB∥CD,AE∥GF,AD∥BC,∴∠BEA=∠EAF=∠GFA,∴△ABE≌△AGF(AAS);(2)解:连接CF,由(1)得:EC=AE=AF,而AF∥EC,∴四边形AECF是平行四边形,∴▱AECF是菱形,∴y=AC•EF=2×菱形AECF的面积,又∵▱ABCD的面积等于16,∴S△ABC=8,∵,=,∴△AEC的面积等于8x,∴菱形AECF 的面积等于16x , ∴y=32x .25.(1)证明:延长DC 交BE 于点M , ∵BE ∥AC ,AB ∥DC ,∴四边形ABMC 是平行四边形,∴CM=AB=DC ,C 为DM 的中点,BE ∥AC , ∴CF 为△DME 的中位线, ∴DF=FE ; (2)解:由(1)得CF 是△DME 的中位线,故ME=2CF , 又∵AC=2CF ,四边形ABMC 是平行四边形, ∴BE=2BM=2ME=2AC , 又∵AC ⊥DC ,∴在Rt △ADC 中,AC=AD •sin ∠ADC=,∴BE=.(3)解:可将四边形ABED 的面积分为两部分,梯形ABMD 和△DME , 在Rt △ADC 中:DC==,∵CF 是△DME 的中位线, ∴CM=DC=,∵四边形ABMC 是平行四边形, ∴AB=MC=,BM=AC=,∴梯形ABMD面积为:=; 由AC ⊥DC 和BE ∥AC 可证得△DME 是直角三角形, 其面积为:,∴四边形ABED 的面积为+.26.(1)∵平行四边形ABCD ,∴BC=AD=10,AB=CD=6,AD ∥BC ,在△ABC 中,BA=6,AC=8,BC=10,由勾股定理的逆定理得BA 2+AC 2=BC 2,∴△ABC 为Rt △,∠BAC=90°, ∵AD ∥BC ,∴∠CBF=∠AFB ,∠DAE=∠BCE , 又∵BF 平分∠ABC , ∴∠ABF=∠CBF , ∴∠ABF=∠AFB ,∴AF=AB=6(等角对等边), ∴FD=AD ﹣AF=10﹣6=4.(2)由(1)知△AEF ∽△CEB , ∴AF :BC=AE :EC , ∴AF :(AF+BC )=AE :(AE+EC )即6:(6+10)=AE :8, ∴AE=3∵E 是∠ABC 的平分线BF 上的点,EG ⊥BC ,EA ⊥AB , ∴EG=AE=3, S △BEC =×10×3=15.27.1)证明:在平行四边形ABCD 中,则AD=BC , ∵AC ∥BM ,∴∠AFD=∠E , 又CM ∥DE ,∴∠BMC=∠E , ∴∠BMC=∠AFD , 同理∠FAD=∠MBC ,则在△ADF 与△BCM 中.,∴△ADF ≌△BCM . (2)解:在△ACD 中, ∵AC ⊥CD ,∠ADC=60°, ∴CD=AD=a , 则AC=a ,AF=a , 又由(1)可得BE=a ,S ABED =S △ADF +S ABEF =•AF •CD+(AF+BE )•CD=×a ×a+(a+a )×a=a 2.28.平行四边形ABCD 中:AB ∥CD , 且AB=CD ,∠BAE=∠CEA , ∵CE=AB ,∠AFB=∠EFC , ∴△AFB ≌△EFC . 29.BO=EO .理由如下:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴∠ABC+∠BCD=180°,∵∠B、∠C的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠DCB,∴∠OBC+∠OCB=∠ABC+∠DCB=(∠ABC+∠DCB)=90°,∴CO⊥BE,∴∠EOC=∠COB=90°,∵∠ECO=∠BCO,OC=OC,∴△COB≌△COE,∴△COB≌△COE(ASA),∴BO=EO.30.(1)证明:∵四边形ABCD是平行四边形,△FAB和△EBC都是等边三角形,∴AD=BC=EC,AF=AB=DC,∠BAD=∠DCB,∠FAB=∠BCE=60°,∴∠BAD+60°=∠DCB+60°,∴∠FAD=∠DCE,在△AFD和△CDE中∵,∴△AFD≌△CDE(SAS);(2)△DEF是等边三角形,证明:设∠DCB=x,则∠ABC=180°﹣x,∠DCE=60°+x,∠EBF=360°﹣120°﹣(180°﹣x)=60°+x∴∠DCE=∠EBF,FB=AB=DC,BE=EC,在△FBE和△DCE中∵,∴△FBE≌△DCE(SAS),∴EF=FD=ED,即:△DEF是等边三角形.平行线的性质----11。

八年级数学下册平行四边形的性质练习题

八年级数学下册平行四边形的性质练习题

八年级数学下册平行四边形的性质练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.在平行四边形ABCD 中,AB =3,BC =4,则平行四边形ABCD 的周长等于 _____.2.如图,等腰△ABC 中,△BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.3.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.4.如图,已知DG △BC ,AC △BC ,CD △AB ,EF △AB ,则DG 与AC 间的距离是线段________的长,CD 与EF 间的距离是线段________的长.5.如图,平行四边形的中心在原点,AD BC ∥,D (3,2),C (1,﹣2),则A 点的坐标为________,B 点的坐标为________.6.如图,在平面直角坐标系中,点()1,2A -,4OC =,将平行四边形OABC 绕点O 旋转90°后,点B 的对应点B '坐标是______.7.如图,菱形ABCD 中,∠ABD=30°,AC=4,则BD的长为_______.8.如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A(0,3),B(−1,0),若直线y=−2x+4恰好平分平行四边形ABCD的面积,则点D的坐标是______.二、单选题9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.1cm2B.2cm2C.0.5cm2D.1.5cm210.已知三角形的三边长分别为2、x、8,则x的值可能是()A.4B.6C.9D.1011.已知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有()A .1个B .2个C .3个D .4个12.已知某点阵的第△△△个图如图所示,按此规律第( )个点阵图中,点的个数为2022个.A .1009B .2018C .2022D .2048三、解答题13.如图,PBD △和PAC △都是直角三角形,90DBP CAP ∠=∠=︒.(1)如图1,PA ,PB 与直线MN 重合,若45BDP ∠=︒,30ACP ∠=︒,求DPC ∠的度数;(2)如图2,若45BDP ∠=︒,30ACP ∠=︒,PBD △保持不动,PAC △绕点P 逆时针旋转一周.在旋转过程中,当PC BD ∥时,求APN ∠的度数;(3)如图3,()90180BPA a α∠=︒<<︒,点E 、F 分别是线段BD 、AC 上一动点,当PEF 周长最小时,直接写出EPF ∠的度数(用含α的代数式表示).14.在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.15.如图,已知,AF DE AE FD ==,点B 、C 在AD 上,AB CD =,BF CE =.(1)图中共有__________对全等三角形;分别是__________;(2)我会说明__________≌△__________.(写出证明过程)参考答案:1.14【分析】由平行四边形的对边相等即可求得其周长.【详解】解:△四边形ABCD是平行四边形,△AB=CD,BC=AD,△平行四边形的周长为=2(AB+BC)=2×(3+4)=14,故答案为:14.【点睛】本题考查平行四边形的性质,熟知平行四边形的对边相等是解答的关键.22.【分析】如图,作AH△BC于H.证明四边形ABDE是平行四边形即可解决问题.【详解】解:如图,作AH△BC于H.由题意得:△EAD=△BAC=120°,△EAC=△C=30°,△AE△BC,△△ADH=△B+△BAD,△B=△BAD=30°,△△ADH=60°,BD=AD=AE=2cm,△AHcm),△BD=AE,BD△AE,△四边形ABDE是平行四边形,△SABCD=BD•AH cm2).2.故答案为【点睛】本题考查旋转变换,等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.3.6【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:△△ABC 是等腰三角形,底边BC =3△AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意; 所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.4. CG DE【分析】根据平行线间的距离等于平行线间任意一条垂线段的长度即可解题.【详解】解:由题可知:DG△AC,CD△EF,△DG 与AC 间的距离是线段CG ,CD 与EF 间的距离是线段DE.【点睛】本题考查了平行线之间的距离,属于简单题,找到平行线之间的垂线段是解题关键.5. (﹣1,2) (﹣3,﹣2)【分析】根据“关于原点对称的点横坐标互为相反数,纵坐标也互为相反数”即可解答.【详解】解:因为平行四边形是中心对称图形,而平行四边形的中心在原点,则A 点的坐标为(﹣1,2),B 点的坐标为(﹣3,﹣2).故答案为:(﹣1,2),(﹣3,﹣2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握关于原点对称的点横坐标互为相反数,纵坐标也互为相反数是解题的关键.6.()2,3-或()2,3-【分析】根据旋转可得: BM = B 1M 1 = B 2M 2 = 3,△AOA 1 =△AOA 2 = 90°,可得B 1和B 2的坐标,即是B '的坐标.【详解】解:△A (-1,2), OC = 4,△ C (4,0),B (3,2),M (0,2), BM = 3,AB//x轴,BM= 3.将平行四边形OABC绕点O分别顺时针、逆时针旋转90°后,由旋转得:OM=OM1=OM2=2,△AOA1=△AOA2=90°BM=B1M1=B2M2=3,A1B1△x轴,A2B2△x轴,△B1和B2的坐标分别为:(-2,3),(2,-3),△B'即是图中的B1和B2,坐标就是,B' (-2,3),(2,-3),故答案为:(-2,3)或(2,-3).【点睛】本题考查了平行四边形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.7.【分析】根据菱形的性质可得△ABO=30°,AO=12AC=2,根据含30°角的直角三角形的性质及勾股定理即可求得BO的长,从而得到结果.【详解】如图:在菱形ABCD中,AC、BD是对角线,设相交于O点,△ABD=30°,AC=4,△AC△BD,AO=12AC=2,△AB=2AO=4,△BO,22BD BO∴==⨯=故答案为:【点睛】本题考查的是菱形的性质,解答本题的关键是熟练掌握菱形的对角线互相垂直平分,对角线平分对角.8.(72,3)【分析】连接BD,设D(m,3),BD的中点为T.求出点T的坐标,利用的待定系数法,可得结论.【详解】解:连接BD,设D(m,3),BD的中点为T.△B(−1,0),△T(12m-,32),△直线y=−2x+4平分平行四边形ABCD的面积,△直线y=−2x+4经过点T,△32=−2×12m-+4,△m=72,△D(72,3),故答案为:(72,3).【点睛】本题考查中心对称,平行四边形的性质,一次函数的性质等知识,解题关键是理解题意,灵活运用所学知识解决问题.9.A【分析】根据三角形中线的性质可得S△EBC=12S△ABC,1124BEF BEC ABCS S S==,结合已知条件即可求解.【详解】解:△点D ,E 分别为边BC , AD 中点, 111,,222ABD ABC BED ABD CED ABD SS S S S S ∴===, 12BED DEC BEC ABC S S S S ∴+==,△F 是EC 的中点, 12BEF BEC S S =, 14BEF ABCS S ∴=, △ABC 的面积等于4cm 2,△S △BEF =1cm 2,即阴影部分的面积为1cm 2,故选:A .【点睛】本题主要考查了三角形的中线的性质,掌握三角形的中线的性质是解题的关键.10.C【分析】根据三角形任意两边的和大于第三边,进而得出答案.【详解】解:三角形三边长分别为2,8,x ,8282x ∴-<<+,即:610x <<,只有9符合,故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是正确把握三角形三边关系定理.11.C【详解】分析:由已知条件可知,顺次连接A 、B 、C 三点可得△ABC ,在分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图,由此即可得到本题答案了.详解:△点A 、B 、C 不在同一条直线上时,△顺次连接A 、B 、C 三点可得△ABC ,△分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图所示:△当A 、B 、C 三点不在同一条直线上,则以这三点为顶点的平行四边形共有3个.故选C.点睛:知道以三角形的每一条边为一条对角线都可以画出一个以该三角形的三个顶点为顶点的平行四边形,是解答本题的关键.12.A【分析】仔细观察图形变化,找到图形变化的规律,利用规律求解.【详解】解:第1个图里有6个点,6=4+2;第2个图有8个点,8=4+2×2;第3个有10个点,10=4+3×2;…则第n 个图中点的个数为4+2n ,令4+2n =2022, 解得n =1009.故选:A .【点睛】本题主要考查图形的变化规律,解题的关键是根据图形得出每往后一个图形,点的个数相应增加2个.13.(1)75DPC ∠=︒(2)30APN ∠=︒或150︒(3)2180α-︒【分析】(1)先算出9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,然后根据平角的定义,求出75DPC ∠=︒即可;(2)分点C 在MN 上方和点C 在MN 下方两种情况进行讨论,根据平行线的性质,求出结果即可;(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,根据三角形外角的性质和垂直平分线的性质,求出EPF ∠的度数即可.(1)解:△90DBP CAP ∠=∠=︒,45BDP ∠=︒,30ACP ∠=︒,△9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,△PA ,PB 与直线MN 重合,△18075DPC DPB CPA ∠=︒-∠-∠=︒.(2)当点C 在MN 上方时,如图所示:PC BD ∥,45BDP ∠=︒,△45CDP BDP ∠=∠=︒,△45DPB ∠=︒,60CPA ∠=︒,△18030APN BPD CPD CPA ∠=︒-∠-∠-∠=︒;当点C 在MN 下方时,如图所示:△PC BD ∥,90DBP ∠=︒,△90BPC DBP ∠=∠=︒,18090CPN BPC ∴∠=︒-∠=︒,△6090150APN APC CPN ∠=∠+∠=︒+︒=︒;综上分析可知,30APN ∠=︒或150︒.(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,如图所示:△90DBP CAP ∠=∠=︒,△DB GP ⊥,CA PH ⊥,△DB 垂直平分PG ,CA 垂直平分PH ,△EG =EP ,FP =FH ,△EGP EPG ∠=∠,PHF HPF ∠=∠,△△MPG 是△PGH 的外角,△MPG EGP PHF EPG FPH ∠=∠+∠=∠+∠,180MPG α∠=︒-,△180EPG FPH MPG α∠+∠=∠=︒-,△()EPF APB EPG FPH ∠=∠-∠+∠()180αα=-︒-2180α=-︒【点睛】本题主要考查了平行线的性质,垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余,根据题意作出图形,并进行分类讨论,是解题的关键.14.(1)证明见详解(2)证明见详解【分析】(1)△证明ADG AEG ≌△即可;△连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)△的结论和(1)中证明一样,证明ADG AEG ≌△即可;△的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:△证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =△证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BOBE GC GD CF ∴===∴BO GD GO FC ⋅=⋅(2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅【点睛】本题考查了以矩形与平行四边形为桥梁,涉及全等三角形的证明,相似三角形的证明,正确作出辅助线并由此得到相应的全等三角形和相似三角形是解题的关键.15.(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)AED DFA ≌,证明见解析.【分析】根据已知条件,结合三角形全等的判定定理,推理即可得到正确答案.【详解】解:(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)我会说明AED DFA ≌.证明:在AED 和DFA 中,△,,,DE AF DA AD AE DF =⎧⎪=⎨⎪=⎩△()AED DFA SSS ≌.【点睛】本题考查三角形全等的判定定理,根据定理内容找到全等条件是解题关键.。

(完整版)平行四边形的性质习题(有答案)

(完整版)平行四边形的性质习题(有答案)

平行四边形的性质测试题一、选择题(每题 3 分共 30 分)1.下边的性质中,平行四边形不必定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和为 360°2.在中,∠ A:∠ B:∠ C:∠ D 的值能够是()A .1:2:3:4B .1:2:1:2C .1:1:2:2 D.1: 2:2:13.平行四边形的对角线和它的边能够构成全等三角形()A.3对B.4 对 C .5对D. 6 对A D 4.以下图,在中,对角线 AC、BD交于点 O,?以下式子中一O 定建立的是()B CA.AC⊥ BD B . OA=OC C. AC=BD D .AO=OD5.以下图,在中, AD=5,AB=3,AE均分∠ BAD交BC A D边于点 E,则线段 BE、 EC的长度分别为()BE C A .2和3 B.3和2 C .4和1 D .1和46.的两条对角线订交于点 O,已知 AB=8cm,BC=6cm,△AOB的周长是 18cm,那么△ AOD的周长是()A .14cmB .15cmC .16cmD .17cm7.平行四边形的一边等于14,它的对角线可能的取值是()A .8cm和 16cmB .10cm和 16cmC . 12cm和 16cmD . 20cm和 22cm 8.如图,在中,以下各式不必定正确的选项是()A.∠ 1+∠ 2=180° B .∠ 2+∠ 3=180C.∠ 3+∠ 4=180°D.∠ 2+∠4=180°9.如图,在中,∠ ACD=70°,AE⊥ BD于点E,则∠ ABE等于()A、20°B、25° C 、 30° D 、35°10.如图,在△ MBN中, BM=6,点 A、C、D 分别在 MB、NB、MN上,四边形 ABCD为平行四边形,∠NDC=∠ MDA,那么的周长是()二、填空题(每题 3 分共 18 分)11.在中,∠ A:∠ B=4:5,则∠ C=______.12.在中, AB:BC=1:2,周长为 18cm,则 AB=______cm,AD=_______cm.13.在中,∠A=30°,则∠ B=______,∠C=______,∠D=________.14.如图,已知:点 O是的对角线的交点, ?AC=?48mm,?BD=18mm,AD=16mm,那么△ OBC的周长等于 _______mm.15.如图,在中,E、F是对角线BD上两点,要使△ ADF≌△ CBE,还需增添一个条件是 ________.16.如图,在中,EF∥ AD,MN∥ AB,那么图中共有_______?个平行四边形.三、解答题17.已知:如图,在中,E、F是对角线AC?上的两点,AE=CF.BE与DF的大小有什么关系,并说明原因。

平行四边形综合提高练习题

平行四边形综合提高练习题

FEDCBA平行四边形综合提高一 利用平行四边形的性质进行角度、线段的计算1、如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60o,则∠B =_______;若BC =4cm ,AB =3cm ,则AF =___________,□ABCD 的面积为_________. 2 已知ABCD 的周长为32cm,对角线AC 、BD 交于点O ,△AOB 的周长比△BOC 的周长多4cm ,求这个四边形的各边长。

二、利用平行四边形的性质证线段相等3、如图,在□ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .那么OE 与OF 是否相等?为什么?三 直接利用平行四边形的判定和性质4、如图在ABCD 中,E 、F 分别是AD 、BC 的中点,AF 与EB 交于点G ,CE 与DF 交于点H ,试说明四边形EGFH 的形状。

5、如图,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于点F ,求证:四边形AECF 为平行四边形。

四 构造平行四边形解题6、如图2-33所示.Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,BG 平分∠ABC ,EF ∥BC 且交AC 于F . 求证:AE=CF .BDBD7、已知,如图,AD 为△ABC 的中线,E 为AC 上一点,连结BE 交AD 于点F ,且AE=FE ,求证:BF=AC[能力提高]1、如图2-39所示.在平行四边形ABCD 中,△ABE 和△BCF 都是等边三角形. 求证:△DEF 是等边三角形.2、如图2-32所示.在ABCD 中,AE ⊥BC ,CF ⊥AD ,DN=BM .求证:EF 与MN 互相平分.3、 如图2-34所示.ABCD 中,DE ⊥AB 于E ,BM=MC=DC .求证:∠EMC=3∠BEM .4 如图2-35所示.矩形ABCD 中,CE ⊥BD 于E ,AF 平分∠BAD 交EC 延长线于F .求证:CA=CF .[创新思维]1、以△ABC 的三条边为边在BC 的同侧作等边△ABP 、等边△ACQ 、等边△BCR , 求证:四边形PAQR 为平行四边形。

(完整版)平行四边形的性质练习题及答案

(完整版)平行四边形的性质练习题及答案

平行四边形的性质、课中强化(10分钟训练)1•如图3,在平行四边形 ABCD 中,下列各式不一定正确的是( )A. / 1 + Z 2=180 °B. / 2+ / 3=180 °C. / 3+Z 4=180的周长为( )3. 如图5,」ABCD 中,EF 过对角线的交点 O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形 BCFE 的周长为 ____________________ .4. 如图6,已知在平行四边形 ABCD 中,AB=4 cm , AD=7 cm , / ABC 的平分线交 AD 于点E ,5. 如图7,在平行四边形 ABCD 中,点E 、F 在对角线6. 如图 8,在 ABCD 中,AE 丄BC 于 E,AF 丄 CD 于 F,BE=2 cm,DF=3 cm, / EAF=60° ,试求 CF 的长.D. /2+ /4=180O , OE 丄AC 交AD 于丘,则厶DCEA.4 cmB.6 cmC.8 cmD.10 cm交CD 的延长线于点 F ,贝U DF= _____________cm.BD 上,且 BE=DF ,求证:AE=CF.图32•如图4,二ABCD 的周长为图5图6图7图8三、课后巩固(30分钟训练)1•二ABCD中,/A比/ B大20。

,则/ C的度数为()A.60 °B.80 °C.100 °D.120 2•以A、B、C三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作(A.0个或3个B.2个C.3个D.4个3•如图9 所示,在—ABCD 中,对角线AC、BD交于点0,下列式子中一定成立的是()A.AC 丄BDB.OA=OCC.AC=BDD.AO=OD4•如图10,平行四边形ABCD中,对角线AC、BD相交于点O ,将厶AOD平移至△ BEC的位置,则图中与OA相等的其他线段有()A.1条B.2条C.3条D.4条5•如图11,在平行四边形ABCD中,EF // AB , GH // AD , EF与GH交于点O,则该图中的平行四边形的个数共有()6•如图12,平行四边形ABCD中,AE丄BD , CF丄BD,垂足分别为E、F,求证:/ BAE= / DCF.7、如图13所示,已知平行四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ ABE CDF.A.7个B.8个C.9个D.11 个图12图138•如图14,已知四边形ABCD是平行四边形,/ BCD的平分线CF交边AB于F,/ ADC的平分线DG交边AB于G.⑴求证:AF=GB ;(2)请你在已知条件的基础上再添加一个条件,使得△EFG是等腰直角三角形,并说明理由•19.1.2平行四边形的判定二、课中强化(10分钟训练)1•如图3,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.AE=CFC.Z ADE= / CBFD. / AED= / CFB,使四边形AECF是平行四边形.4. 如图6,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:__________________5. 如图,在,ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平行四边形.2.如图4,AB 喪DC ,DC=EF=10 ,DE=CF=8,则图中的平行四边形有,理由分别是图4 图53.如图5,E、F是平行四边形ABCD对角线BD上的两点,B.DE=BF图14三、课后巩固(30分钟训练)1•以不在同一直线上的三个点为顶点作平行四边形最多能作( )是平行四边形的是()4•已知四边形 ABCD 的对角线 AC 、BD 相交于点② OA=OC :③ AB=CD ;④/ BAD= / DCB :⑤ AD // BC.(1)从以上5个条件中任意选取 2个条件,能推出四边形 ABCD 是平行四边形的有(用序 号表示): _____________________________ :(2)对由以上5个条件中任意选取 2个条件,不能推出四边形 请选取一种情形举出反例说明平行四边形?6•如图,E 、F 是四边形ABCD 的对角线 AC 上的两点,AF=CE , DF=BE , DF // BE. 求证:⑴△AFD ◎△ CEB;(2)四边形ABCD 是平行四边形•A.4个B.3个C.2个D.1个2•下面给出了四边形 ABCD 中/A 、/ B 、/ C 、/ D 的度数之比,其中能判定四边形 ABCDA.1 : 2 : 3 : 4B. 2 : 2 : 3 : 3C. 2 : 3 : 3 : 2D. 2 : 3 : 2 : 33•九根火柴棒排成如右图形状,图中 ____ 个平行四边形 ,你判断的根据是O ,给出下列 5个条件:①AB // CD ;5•若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线 ABCD 是平行四边形的,,另17•如图,已知DC // AB,且DC= — AB , E为AB的中点.2(1) 求证:△ AED ◎△ EBC ;(2) 观察图形,在不添加辅助线的情况下,除△EBC夕卜,请再写出两个与△ AED的面积相等的三角形(直接写出结果,不要求证明): ___________________________8•如图,已知二ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平行四边形9•如图,已知■ ABCD中,E、F分别是AB、CD的中点•求证:(1) △ AFD ◎△ CEB;(2) 四边形AECF是平行四边形•二、课中强化(10 分钟训练)1 答案:D2. 解析:因为四边形ABCD 是平行四边形,所以OA=OC. 又0E丄AC , 所以EA=EC.贝U △ DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD. 在平行四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3•解析:0E=0F=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm).答案:8 cm4•解析:由平行四边形的性质AB // DC,知/ ABE= / F,结合角平分线的性质/ ABE= / EBC,得/ EBC= / F,再根据等角对等边得到BC=CF=7 ,再由AB=CD=4 , AD=BC=7 得到DF=DE=AD-AE=3.答案:35•答案:证明:•••四边形ABCD是平行四边形,••• AB // CD , AB=CD.•••/ ABE= / CDF.AB CD,在厶ABE和厶CDF中,ABE CDF ,BE DF .•△ ABE ◎△ CDF.• AE=CF.6. 解:•••/ EAF=60°AE 丄BC,AF 丄CD, C=120°. B=60°「./ BAE=30° .• AB=2BE=4(cm). • CD=4(cm). • CF=1(cm).三、课后巩固(30 分钟训练)1 答案:C2. 解析:分两种情况,A、B、C三点共线时,可作0个当点A、B、C不在同一直线上时,可作3 个. 答案:A3. 解析:平行四边形对角线互相平分,所以OA=OC. 答案:B4. 解析:由平行四边形的对角线互相平分知OA=OC;再由平移的性质:经过平移,对应线段平行且相等可得OA=BE.答案:B5•解析:本题借助于平行四边形的定义,按照从左到右,从小到大的顺序,可找到下列的平行四边形:DEOH,.HOFC,. DEFC, EAGO,OGBF,EABF,■ DAGH,■ HGBC,二ABCD.答案:C6•答案:证明:•••四边形ABCD是平行四边形,••• AB // CD , AB=CD. /-Z ABE= / CDF •/ AE 丄BD , CF 丄BD ,「./ AEB= / CFD=90 .•••△ABE ◎△ CDF. /.Z BAE= Z DCF.7、答案:证明:•••四边形ABCD是平行四边形,• AB=CD, Z B= Z D.在厶ABE和厶CDF中,AB CD,B D, •/△ ABE 也厶CDF.BE DF.8•答案:(1)证明:•••四边形ABCD是平行四边形,• AB // CD. AGD= Z CDG.vZ ADG= Z CDG,/•/ ADG= Z AGD. • AD=AG •同理,BC=BF.又•••四边形ABCD 是平行四边形,• AD=BC,AG=BF. • AG-GF=BF-GF ,即AF=GB.(2)解:添加条件EF=EG.理由如下:1 1由(1)证明易知Z AGD= Z ADG= Z ADC , Z BFC= Z BCF= Z BCD.2 2•/ AD // BC,/•/ ADC+ Z BCD=180 ./Z AGD+ Z BFC=90 ./Z GEF=90 .又v EF=EG ,•△ EFG为等腰直角三角形.二、课中强化(10分钟训练)1. 解析:当E、F满足AE=CF时,由平行四边形的对角线相等知OB=OD,OA=OC , 故OE=OF.可知四边形DEBF是平行四边形.当E、F满足Z ADE= Z CBF 时,因为AD // BC,所以Z DAE= Z BCF.又AD=BC,可证出厶ADE ◎△ CBF,所以DE=BF , Z DEA= Z BFC.故Z DEF= Z BFE.因此DE // BF,可知四边形DEBF是平行四边形.类似地可说明D也可以.答案:B2. 解析:因为AB^DC,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD是平行四边形;DC=EF , DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF是平行四边形•答案:四边形ABCD ,四边形CDEF 一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形3•解析:根据平行四边形的定义和判定方法可填BE=DF ;Z BAE= / CDF等.答案:BE=DF或Z BAE= Z CDF等任何一个均可4•解析:根据平行四边形的判定定理,知可填①AD // BC,② AB=CD,③Z A+ Z B=180,④Z C+ Z D=180 等•答案:不唯一,以上几个均可•1 15•答案:证明:T ABCD, A A B£C D.T M、N 是中点,「. BM=—AB,DN= CD. /• B M£DN.2 2A四边形BMDN也是平行四边形•三、课后巩固(30分钟训练)1•解析:要求最多能作几个,只要连结起三个顶点后构成三角形,分别以其中一边作为对角线,另两边作为平行四边形的邻边作图,即可得出三种答案:B2•解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD是平行四边形需满足Z A= Z C,Z B= Z D,因此Z A与Z C,Z B与Z D所占的份数分别相等•答案:D3•答案:有3两组对边分别相等的四边形是平行四边形4•解析:本题是条件开放性试题,要使四边形ABCD是平行四边形,从边、角、对角线上考虑共有5种判定方法,因此只需将任意两个条件组合加以评砼卸?答案:(1)①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD是平行四边形•如图,AB=CD且AD // BC,而四边形ABCD不是平行四边形•5•解析:由平行四边形对角线互相平分,能否画平行四边形,应以任两条的一半和第三边为三边,看是否能构成三角形即可20,16或20,14为对角线,另一条为一边可画平行四边形6•答案:证明:(1)•/ DF // BE ,•••/ AFD= / CEB.又••• AF=CE , DF=BE AFD CEB.(2)由(1)△ AFD CEB 知AD=BC,/ DAF= / BCE ,• AD // BC. •四边形ABCD是平行四边形.1 17. 答案:证明:(1) •/ E 为AB 的中点,• AE=EB= —AB. •••DC= — AB , DC // AB ,2 2• AE DC , EB DC. •四边形AECD和四边形EBCD都是平行四边形.• AD=EC , ED=BC. 又v AE=BE , •△AED ◎△ EBC.(2) △ ACD , △ ACE , △ CDE(写出其中两个三角形即可)8. 答案:证明:在—ABCD 中,AD=BC,AD // BC, DAC= / BCA.又•••/ DEA= / BFC=90 , • Rt△ ADE 也Rt △ CBF.A DE=BF.同理,可证DF=BE. •四边形DEBF为平行四边形.9.答案:证明:(1)在L d ABCD 中,AD=CB,AB=CD, / D= / B. •/ E、F 分别是AB、CD 的中点,• DF=2CD,BE=2A B.• DF=BE. •△ AFD心CE B.⑵在二ABCD 中,AB=CD,AB // CD.由(1)得BE=DF, • AE=CF.•四边形AECF是平行四边形。

平行四边形性质提高练习及答案

平行四边形性质提高练习及答案

平行四边形性质提高练习及答案1如图,□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F ,连接EC .(1)求证:OE=OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求□ABCD 的周长.2.在面积为15的□ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB=5,BC=6,求CE+CF 的值3如图,□ABCD 中,点E 、F 分别在AD 、AB 上,依次连接EB 、EC 、FC 、FD ,图中阴影部分的面积分别为S 1、S 2、S 3、S 4,已知S 1=2、S 2=12、S 3=3,求S 4的值4如图,□ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,求ABCD 的面积.5.如图,在?ABCD 中,E 、F 分别为边AD 、BC 的中点,对角线AC 分别交BE ,DF 于点G 、H .求证:AG=CH .6如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF与CE 相交于点Q ,若S △APD=15cm2,S △BQC=25cm2,求阴影部分的面积.7如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.8在□ABCD 中,∠ADC 的平分线交直线BC 于点E 、交AB 的延长线于点F ,连接AC .(1)如图1,若∠ADC=90°,G 是EF 的中点,连接AG 、CG .①求证:BE=BF .②请判断△AGC 的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB 绕点F 顺时针旋转60°至FG ,连接AG 、CG .那么△AGC 又是怎样的形状.(直接写出结论不必证明)答案1如图,□ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求□ABCD的周长.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出?ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,∠FDO=∠EBO OD=OB ∠FOD=∠EOB ,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴?ABCD的周长=2(BC+AB)=20.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.2在面积为15的□ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,求CE+CF 的值2平行四边形的性质和面积,勾股定理。

北师大版八年级数学下册 《平行四边形及其性质》巩固练习(提高) 含答案解析

北师大版八年级数学下册 《平行四边形及其性质》巩固练习(提高)  含答案解析

【巩固练习】一.选择题1.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).A.8cm和16cmB.10cm和16cmC.8cm和14cmD.8cm和12cm2.以不共线的三点A、B、C为顶点的平行四边形共有( )个.A.1B.2C.3D.无数3.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).A.5B.6C.8D.124. 国家级历史文化名城--金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等5.(2015•应城市二模)如图,口ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm6.(2016春·无锡期末)如图,在平行四边形ABCD中,点E,F分别在AD和BC上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A.4B.5C.6D.7二.填空题7.(2015春•监利县期末)已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为.8. 如图,在Y ABCD中,E是BA延长线上一点,AB=AE,连结EC交AD于点F,若CF平分∠BCD,AB=3,则BC的长为.9. 在Y ABCD中, ∠A的平分线分BC成4cm和3cm的两条线段, 则Y ABCD的周长为_______________.10.(2016·甘肃模拟)如图,P是平行四边形ABCD内一点,且S△PAB=5,S△PAD=2,则阴影部分的面积为_________.11. 如图,在周长为20cm的Y ABCD中,AB≠AD,AC、BD 相交于点O,OE⊥BD交AD于E,则△ABE的周长为________.12.如图,在Y ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.4三.解答题13.(2015•老河口市模拟)如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD,AB于E,F.(1)作∠BCD的角平分线CF(尺规作图,保留痕迹,不写作法);(2)求证:AE=CF.14. 如图,过平行四边形ABCD 内任一点P 作各边的平行线分别交AB 、BC 、CD 、DA 于E 、F 、G 、H .求证:S 平行四边形ABCD -S 平行四边形AEPH =2S △AFG .15. 如图,四边形ABCD 是平行四边形,△A′BD 与△ABD 关于BD 所在的直线对称,A′B 与DC 相交于点E ,连接AA′.(1)请直接写出图中所有的等腰三角形(不另加字母);(2)求证:A′E=CE .【答案与解析】一.选择题1.【答案】B ;【解析】设对角线长为22a b ,,需满足12a b +>,只有B 选项符合题意.2.【答案】C ;【解析】分别以AB ,BC ,AC 为对角线作平行四边形.3.【答案】D ;【解析】过C 点作CF 垂直于BD 的延长线,CF 就是两短边间的距离,如图所示,∠C =30°,CF =11241222CD =⨯=.4.【答案】C ;【解析】∵AB ∥EF ∥DC ,BC ∥GH ∥AD∴GH 、BD 、EF 把一个平行四边形分割成四个小平行四边形,∴一条对角线可以把一个平行四变形的面积一分为二,据此可从图中获得S 黄=S 蓝,S 绿=S 红,S (紫+黄+绿)=S (橙+红+蓝),根据等量相减原理知S 紫=S 橙,∴A 、B 、D 说法正确,再考查S 红与S 蓝显然不相等.故选C ..5.【答案】C ;【解析】解:∵四边形ABCD 是平行四边形,∴AB=DC ,AD=BC ,OA=OC ,∵口ABCD 的周长为20cm ,∴AD+DC=10cm ,又∵OE ⊥AC ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=10cm ;故选:C . 6.【答案】D ;【解析】设平行四边形ABCD 的面积是S ,则S △CBE =S △CDF =12S 由图可知,△CDF 面积+△CBE 面积+(S 1+S 4+S 3)-S 2=平行四边形ABCD 的面积,∴S= S △CBE +S △CDF +2+ S 4+3-12,即S=12S+12S+2+ S 4+3-12, 解得S 4=7. 二.填空题7.【答案】2cm 或8cm ;【解析】解:当M 在b 下方时,距离为5﹣3=2cm ;当M 在a 、b 之间时,距离为5+3=8cm .故答案为:2cm 或8cm.8.【答案】6;【解析】易证△AEF ≌△DCF ,所以AF =DF ,由CF 平分∠BCD ,AD ∥BC 可证AB =DC =DF=3,所以BC =AD =6.9.【答案】20cm 或22cm ;【解析】由题意,AB 可能是4,也可能是3,故周长为20cm 或22cm .10.【答案】3;【解析】12PAB PCD ABCD ACD S S S S ∆+==Y △△,ACD PCD PAB S S S ∆-=△△, 则PAC ACD PCD PAD PAB PAD S S S S S S ∆∆∆∆∆=--=-△=5-2=3.11.【答案】10cm ;【解析】因为BO =DO ,OE⊥BD,所以BE =DE ,△ABE 的周长为AB +AE +DE =120102⨯=. 12.【答案】7;【解析】可证△ABE 与△CEF 均为等腰三角形,AB =BE =6,CE =CF =9-6=3,由勾股定理算得AG =EG =2,所以EF =AF -AE =5-4=1,△CEF 的周长为7.二.解答题13.【解析】解:(1)如图;①以B 为圆心,以任意长为半径化弧,分别与AB ,BC 的交于点M ,N ,②分别以M ,N 为圆心,大于MN 为半径画弧,两弧交于点P ,③作射线BP ,交CD 于点F ,则BF 即为所求.(2)∵四边形ABCD 是平行四边形,∴AD=BC ,∠D=∠B ,∠DAB=∠DCB ,又∵AE 平分∠BAD ,CF 平分∠BCD , ∴,,∴∠DAE=∠BCF ,在△DAE 和△BCF 中,,∴△DAE ≌△BCF (ASA ),∴AE=CF .14.【解析】 证明:S △AFG =S 平行四边形-(S △AGD +S △GFC +S △ABF ),=S 平行四边形-12(S 平行四边形AEPH +S 平行四边形HPGD +S 平行四边形FPGC +S 平行四边形BEPF +S 平行四边形AEPH ), =S 平行四边形A B C D −12(2S 平行四边形A E P H +S 平行四边形H P G D +S 平行四边形F P G C +S 平行四边形B E P F ),=S 平行四边形A B C D −12(S 平行四边形A E P H +S 平行四边形A B C D ), =12(S 平行四边形ABCD -S 平行四边形AEPH ),∴S 平行四边形ABCD -S 平行四边形AEPH =2S △AFG .15.【解析】(1)解:等腰三角形有△DA′A,△A′BA,△EDB .(2)证明:∵平行四边形ABCD ,∴∠C=∠DAB ,AD=BC ,∵A′BD 与△ABD 关于BD 所在的直线对称, ∴△A′DB≌△ADB ,∴AD=A′D,∠DA′B=∠DAB ,∴A′D=BC,∠C=∠DA′B,在△A′DE 和△CEB 中===C DA ECEB A ED A D BC∠∠'∠∠''⎧⎪⎨⎪⎩,∴△A′DE≌△CEB ,∴A′E=CE.。

平行四边形的性质() 分层作业(解析版)

 平行四边形的性质() 分层作业(解析版)

人教版初中数学八年级下册18.1.2平行四边形的性质(2)同步练习夯实基础篇一、单选题:1.下列说法不正确的是()A .平行四边形两组对边分别平行B .平行四边形的对角线互相平分C .平行四边形的对角互补,邻角相等D .平行四边形的两组对边分别相等【答案】C【分析】根据平行四边形的性质依次分析判断即可.【详解】解:A .平行四边形两组对边分别平行,原说法正确,故该项不符合题意;B .平行四边形的对角线互相平分,原说法正确,故该项不符合题意;C .平行四边形的对角相等,邻角互补,原说法不正确,故该项符合题意;D .平行四边形的两组对边分别相等,原说法正确,故该项不符合题意;故选:C .【点睛】此题考查了平行四边形的性质:平行四边形两组对边分别平行且相等,平行四边形的对角相等,邻角互补,平行四边形的对角线互相平分,熟记性质是解题的关键.2.如图,ABCD Y 的周长为30cm ,ABC 的周长为27cm ,则对角线AC 的长为()A .27cmB .17cmC .12cmD .10cm【答案】C 【分析】因为平行四边形对边相等,所以平行四边形的周长为相邻两边之和的2倍,即 230AB BC ,则15AB BC ,而ABC 的周长27AB BC AC ,即可求出AC 的长.【详解】∵ABCD Y 的周长是30cm ,∴ 230AB BC ∴15AB BC ,∵ABC 的周长是27cm ,∴27AB BC AC ,∴ 27271512cm AC AB BC .故选:C .【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.3.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AB AC .若4AB ,6AC ,则BD 的长是()A .10B .8C .12D .14【点睛】本题主要考查了平行四边形的性质和勾股定理,属于基本题型,熟练掌握上述知识是关键.Y中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是4.ABCD()A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7△的周长比ABEBCD的周长大8,则BE的长有可能为()A.2B.3C.4D.5【分析】依据平行四边形的性质以及线段垂直平分线的性质,即可得到BO 的长,再根据BE BO ,即可得出结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC AB CD ,,O 是BD 的中点,又∵OE BD ,∴OE 垂直平分BD ,∴BE DE ,∴AE BE AE DE AD ,∵BCD △的周长比ABE 的周长大8,∴ 8BC CD BD AB AE BE ,即 8BC CD BD AB AD ,∴8BD ,则4BO ,又∵Rt BOE 中,BE BO ,∴4BE ,观察四个选项,BE 的长可能为5,故选:D .【点睛】此题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长等知识,解答本题的关键是判断出OE 是线段BD 的垂直平分线.6.如图,已知平行四边形ABCD 的面积为48,E 为AB 的中点,连接DE ,则ODE 的面积为()A .8B .6C .4D .3已知点A(4,0),E(3,1),则点C的坐标为()A. 2,3B. 1,2C. 2,2D. 3,2【答案】C【分析】由平行四边形的性质得AE=CE,即点E是AC的中点,设C(a,b),利用中点坐标公式,进而求解C点坐标.【详解】解:设C(a,b),∵四边形ABCO为平行四边形,8.在平行四边形中一边长为8cm,它的一条对角线的长12cm,那么它的另一条对角线m的长度的取值范围______.【点睛】本题考查了平行四边形的性质和三角形三边关系定理,关键是把已知数和未知数设法放在一个三角形中,题目比较好,难度适中.9.如图,在ABCD Y 中,点O 是对角线AC BD 、的交点,AC 垂直于BC ,且6cm,8cm AC AD ,则OB ______cm .的周长大1,则ABCD Y 的周长等于__________.【答案】10【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△ADO 的周长比△ABO 的周长大1,则AD 比AB 大1,所以可以求出AD ,进而求出周长.【详解】解:∵四边形ABCD 为平行四边形,∴BO =DO ,AB =CD ,AD =BC ,∵△ADO 的周长比△ABO 的周长大1,∴AD ﹣AB =1,∵AB =2,∴AD =3,∴AB +AD =5,∴平行四边形的周长为 22510AD AB .故答案为:10.【点睛】本题考查了平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.11.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE BC ,垂足为E ,4AB ,6AC ,10BD ,则AE 的长为______.于点M,N,若∠MDO=∠MOD,BN=2.则MN的长为________.又∵MDO MOD ,∴2O M D M ,∴2ON ,∴224MN OM ON ,故答案为:4.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,证明MDO NBO ≌是解答本题的关键.13.如图,ABCD Y 中,4AB ,5BC ,60ABC ,对角线AC ,BD 交于点O ,过点O 作OE AD ,则OE 等于______.连接CE ,若CED △的周长为6,则四边形ABCD 的周长为___________.【答案】12【分析】由平行四边形的性质得出DC AB ,AD BC ,由线段垂直平分线的性质得出AE CE ,得出CDE 的周长AD DC ,即可得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴DC AB ,AD BC ,∵AC 的垂直平分线交AD 于点E ,∴AE CE ,∴CDE 的周长6DE CE DC DE AE DC AD DC ,∴四边形ABCD 的周长2612 ;故答案为:12.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.三、解答题:15.在▱ABCD 中,AC 、BD 交于点O .过点O 作OE ⊥BD 交BC 于点E ,连接DE .若∠CDE =∠CBD =15°.求∠ABC 的度数.【答案】45【分析】由线段垂直平分线的性质得出BE =ED ,得出15CBD BDE ,求出30ABD ,则可得出答案.【详解】解:∵四边形ABCD 是平行四边形,∴OB =OD ,∵OE ⊥BD ,∴BE =ED ,∴15CBD BDE ,∵15CDE ,∴30BDC ,∵四边形ABCD 是平行四边形,∴AB CD ,∴30ABD BDC ,∴301545ABC ABD CBD .【点睛】本题主要考查了线段垂直平分线的性质及平行四边形的性质,熟练掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.16.如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F ,求证:AC ,EF 互相平分.【答案】证明见解析【分析】证出AEO CFO ≌,得出OE =OF 即可得证.【详解】证明:∵四边形ABCD 是平行四边形,∴AO =CO .∵AE ⊥BD ,CF ⊥BD ,∴∠AEO =∠CFO =90°.在△AEO 和△CFO 中,AEO CFO EOA FOC OA OC,∴△AEO ≌△CFO (AAS ),∴OE =OF ,AC ,EF 互相平分.【点睛】本题考查了平行四边形的性质,全等三角形的性质与判定,证明△AEO ≌△CFO 是解题的关键.17.已知:如图,在ABCD Y 中,过AC 的中点O 的直线分别交CB ,AD 的延长线于点E ,F .求证:BE DF .【答案】证明见解析.【分析】证明 AOF COE ASA ≌,可得:AF CE ,再利用AD BC ,即可证明BE DF .【详解】证明:∵四边形ABCD 是平行四边形,∴AO OC,AD BC ,DAO BCO ,在AOF 和COE 中,DAO BCO AO OC FOA COE∴ AOF COE ASA ≌,∴AF CE ,∵AD BC ,∴ AF AD CE BC ,即BE DF .【点睛】本题考查平行四边形的性质,全等三角形的判定定理及性质,解题的关键是掌握平行四边形的性质,全等三角形的判定定理及性质,证明 AOF COE ASA ≌.18.如图,ABCD Y 的对角线AC 和BD 相交于点O ,EF 过点O 且与边BC ,AD 分别相交于点E 和点F .(1)求证:OE OF ;(2)若4BC ,3AB ,2OF ,求四边形CDFE 的周长.【答案】(1)见解析(2)四边形CDFE 的周长为11【分析】(1)由四边形ABCD 是平行四边形,可得OA OC ,AD BC ∥,继而可证得 ASA AOE COF ≌△△,则可证得结论;(2)由全等三角形的性质及平行四边形的性质可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA OC ,AD BC ∥,∴OAF OCE,∵在OAF △和OCE △中OAF OCE OA OC AOF COE,∴ ASA AOE COF ≌△△,∴OF OE .(2)解:∵AOF COE ≌△△,∴AF CE ,∵四边形ABCD 是平行四边形,∴AD BC ,AB CD ,∵4BC ,3AB ,2OE OF ,∴CDFE EF DF CE CDC 四边形2OE DF AF CD2OE AD CD44311 .【点睛】本题主要考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.能力提升篇一、单选题:1.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AE BC ,垂足为E .2,4AB AC BD ,则AE 的长为()A B .32C D .72.如图,在▭ABCD 中,对角线AC 、BD 相交于点O ,线段EF 经过点O ,AH ⊥BC 于点H .若AH =2,BC =3,则图中阴影部分的面积为()A .1.5B .2C .3D .4.5①OE OF ;②图中共有4对全等三角形;③若4AB ,6AC ,则214BD ;④ABC ABFE S S 四边形 ;其中正确的结论有()A.①④B.①②④C.①③④D.①②③的边OA在x轴上,对角线OB,AC相交于点E,已知A点坐标为(6,0),4.如图,OABC点E 的坐标为 4.5,2,则OABC 的周长为______.掌握平行四边形的性质,勾股定理是解题的关键.5.如图,在ABCD Y 中,32AO ,30ACB ,AC AB ,点E 在AC 上,1CE ,点P 是BC 边上的一动点,连接PE PA 、,则PE PA 的最小值是________.∵点A 与点F 关于直线BC 对称,∴CA CF ,30ACB FCB ,则∴ACF △是等边三角形,∵在ABCD Y 中,32AO ,∴23CF AC AO ,∴30CEG ,∴1122CG CE ,2213122EG,∴52FG FC CG ,∴2235722EF,∴PE PA 的最小值是7.故答案为:7.【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,含30度的直角三角形的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.6.如图,在▱ABCD 中,45DBC DE BC ,于E BF CD ,于F DE ,、BF 交于H BF AD ,,的延长线交于G ,给出下列结论:①2DB BE ;②A BHE ;③AB BH ;④若BG 平分DBC ,则21BE EC ;其中正确的结论有______.(填序号)【答案】①②③④【分析】①由题意可知BDE △是等腰直角三角形,故此可得到2BD BE ;②由HBE CBF HEB CFB ,证明即可;③先证明BHE DEC △≌△,从而得到BH DC ,然后由平行四边形的性质可知AB BH ;④连接CH ,证CEH △是等腰直角三角形,DH CH ,设EH EC a ,得出22DH CH EC a ,进而得出21BE DE EC .【详解】解:DH BC ∵,90DEB ,AB CD∵,,③正确;AB BH7.如图所示,ABCD Y 的对角线AC 与BD 相交于点O ,AE BC ,垂足为点E ,AB ,2AC ,4BD .(1)求证:AB AC ;(2)求AE 的长.(1)如图1,若BD AB 的长;(2)如图2,过点C 作CE ⊥BD 于点E ,连接AE ,过点A 作AF ⊥AE 交BD 于点F ,求证:OF =CE +OE .∴∠FAC =∠OCG ,∠AFO =∠OGC ,∵OA =OC ,∴ AFO CGO AAS ,∴OF=OG,∵AB⊥AC,AF⊥AE,∴∠BAC=∠FAE=90°,∴∠BAC-∠FAO=∠FAE-∠FAO,∴∠BAF=∠CAE,∵CE⊥BD,∴∠CED=∠CEF=90°,∴∠AEC=∠AEF+∠CEF=90°+∠AEF,∵∠AFB是AFE的一个外角,∴∠AFB=∠FAE+∠AEF=90°+∠AEF,∴∠AEC=∠AFB,∵AB=AC,∴∠AFE=∠AEF=45°,∴∠AFE=∠CGO=45°,∴CEG是等腰直角三角形,∴CE=EG,∵OG=OE+EG,∴OF=OE+CE.【点睛】本题主要考查平行四边形的性质、三角形的全等、等腰三角形的性质以及勾股定理,掌握相关知识并灵活应用是解题的关键.。

(完整版)平行四边形的性质练习题及答案-1

(完整版)平行四边形的性质练习题及答案-1

平行四边形的性质一、课中强化(10分钟训练)1.如图3,在平行四边形ABCD中,下列各式不一定正确的是( )A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°图3 图4 图52.如图4,ABCD的周长为16 cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm3.如图5,ABCD中,EF过对角线的交点O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形BCFE的周长为__________________.4.如图6,已知在平行四边形ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=_____________ cm.图6 图75.如图7,在平行四边形ABCD中,点E、F在对角线BD上,且BE=DF,求证:AE=CF.6.如图8,在ABCD中,AE⊥BC于E,AF⊥CD于F,BE=2 cm,DF=3 cm,∠EAF=60°,试求CF的长.图8二、课后巩固(30分钟训练)1.ABCD中,∠A比∠B大20°,则∠C的度数为( )A.60°B.80°C.100°D.120°2.以A、B、C三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作( )A.0个或3个B.2个C.3个D.4个3.如图9所示,在ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是( )A.AC⊥BDB.OA=OCC.AC=BDD.AO=OD图9 图10 图11 4.如图10,平行四边形ABCD中,对角线AC、BD相交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( )A.1条B.2条C.3条D.4条5.如图11,在平行四边形ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )A.7个B.8个C.9个D.11个6.如图12,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF.图127、如图13所示,已知平行四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ABE≌△CDF.图138.如图14,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG是等腰直角三角形,并说明理由.图1419.1.2 平行四边形的判定一、课中强化(10分钟训练)1.如图3,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB2.如图4,AB DC,DC=EF=10,DE=CF=8,则图中的平行四边形有_________________,理由分别是_________________、____________________.图4 图5 图6 3.如图5,E、F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.4.如图6,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:______ ________.5.如图,在ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN 也是平行四边形.二、课后巩固(30分钟训练)1.以不在同一直线上的三个点为顶点作平行四边形最多能作( )A.4个B.3个C.2个D.1个2.下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶3∶2D.2∶3∶2∶33.九根火柴棒排成如右图形状,图中_____个平行四边形,你判断的根据是________________.4.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC. (1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有(用序号表示):_____________________________;(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.5.若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线,另一条为一边,是否可以画平行四边形?6.如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE. 求证:(1)△AFD ≌△CEB;(2)四边形ABCD 是平行四边形.7.如图,已知DC ∥AB ,且DC=21AB ,E 为AB 的中点.(1)求证:△AED ≌△EBC ;(2)观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形(直接写出结果,不要求证明):______________________________.8.如图,已知ABCD中DE⊥AC,BF⊥AC,证明四边形DEBF为平行四边形.9.如图,已知ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.二、课中强化(10分钟训练)1答案:D2.解析:因为四边形ABCD是平行四边形,所以OA=OC.又OE ⊥AC ,所以EA=EC.则△DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD.在平行四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3.解析:OE=OF=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm). 答案:8 cm4.解析:由平行四边形的性质AB ∥DC,知∠ABE=∠F ,结合角平分线的性质∠ABE=∠EBC ,得 ∠EBC=∠F ,再根据等角对等边得到BC=CF=7, 再由AB=CD=4,AD=BC=7得到DF=DE=AD-AE=3. 答案:35.答案:证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD. ∴∠ABE=∠CDF.在△ABE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF BE CDF ABE CD AB∴△ABE ≌△CDF. ∴AE=CF.6.解:∵∠EAF=60°,AE ⊥BC,AF ⊥CD,∴∠C=120°.∴∠B=60°.∴∠BAE=30°. ∴AB=2BE=4(cm).∴CD=4(cm).∴CF=1(cm). 三、课后巩固(30分钟训练) 1答案:C2.解析:分两种情况,A 、B 、C 三点共线时,可作0个,当点A 、B 、C 不在同一直线上时,可作3个.答案:A3.解析:平行四边形对角线互相平分,所以OA=OC.答案:B4.解析:由平行四边形的对角线互相平分知OA=OC ;再由平移的性质:经过平移,对应线段平行且相等可得OA=BE.答案:B 5.解析:本题借助于平行四边形的定义,按照从左到右,从小到大的顺序,可找到下列的平行四边形:DEOH ,HOFC ,DEFC ,EAGO ,OGBF ,EABF ,DAGH ,HGBC ,ABCD.答案:C 6.答案:证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD,AB=CD.∴∠ABE=∠CDF ∵AE ⊥BD,CF ⊥BD,∴∠AEB=∠CFD=90°.∴△ABE ≌△CDF.∴∠BAE=∠DCF. 7、答案:证明:∵四边形ABCD 是平行四边形, ∴AB=CD,∠B=∠D. 在△ABE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF BE D B CD AB ∴△ABE ≌△CDF. 8.答案:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD.∴∠AGD=∠CDG . ∵∠ADG=∠CDG ,∴∠ADG=∠AGD.∴AD=AG .同理,BC=BF.又∵四边形ABCD 是平行四边形,∴AD=BC,AG=BF.∴AG-GF=BF-GF , 即AF=GB.(2)解:添加条件EF=EG .理由如下: 由(1)证明易知∠AGD=∠ADG=21∠ADC ,∠BFC=∠BCF=21∠BCD. ∵AD ∥BC ,∴∠ADC+∠BCD=180°.∴∠AGD+∠BFC=90°.∴∠GEF=90°. 又∵EF=EG ,∴△EFG 为等腰直角三角形.二、课中强化(10分钟训练)1.解析:当E 、F 满足AE=CF 时,由平行四边形的对角线相等知OB=OD,OA=OC ,故OE=OF.可知四边形DEBF 是平行四边形.当E 、F 满足∠ADE=∠CBF 时,因为AD ∥BC ,所以∠DAE=∠BCF. 又AD=BC ,可证出△ADE ≌△CBF ,所以DE=BF ,∠DEA=∠BFC. 故∠DEF=∠BFE.因此DE ∥BF ,可知四边形DEBF 是平行四边形.类似地可说明D 也可以. 答案:B2.解析:因为AB DC ,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD 是平行四边形;DC=EF ,DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF 是平行四边形.答案:四边形ABCD ,四边形CDEF 一组对边平行且相等的四边形是平行四边形 两组对边分别相等的四边形是平行四边形3.解析:根据平行四边形的定义和判定方法可填BE=DF ;∠BAE=∠CDF 等. 答案:BE=DF 或∠BAE=∠CDF 等任何一个均可4.解析:根据平行四边形的判定定理,知可填①AD ∥BC,②AB=CD,③∠A+∠B=180°,④∠C+∠D=180°等.答案:不唯一,以上几个均可.5.答案:证明:∵ABCD,∴AB CD.∵M 、N 是中点,∴BM=21AB,DN=21CD.∴BM DN. ∴四边形BMDN 也是平行四边形.三、课后巩固(30分钟训练)1.解析:要求最多能作几个,只要连结起三个顶点后构成三角形,分别以其中一边作为对角线,另两边作为平行四边形的邻边作图,即可得出三种.答案:B2.解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD 是平行四边形需满足∠A=∠C ,∠B=∠D ,因此∠A 与∠C ,∠B 与∠D 所占的份数分别相等.答案:D3.答案:有3 两组对边分别相等的四边形是平行四边形4.解析:本题是条件开放性试题,要使四边形ABCD 是平行四边形,从边、角、对角线上考虑共有5种判定方法,因此只需将任意两个条件组合加以 评砼卸? 答案:(1)①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD 是平行四边形.如图,AB=CD 且AD ∥BC ,而四边形ABCD 不是平行四边形.5.解析:由平行四边形对角线互相平分,能否画平行四边形,应以任两条的一半和第三边为三边,看是否能构成三角形即可.20,16或20,14为对角线,另一条为一边可画平行四边形.6.答案:证明:(1)∵DF ∥BE ,∴∠AFD=∠CEB.又∵AF=CE ,DF=BE ,∴△AFD ≌△CEB.(2)由(1)△AFD ≌△CEB 知AD=BC ,∠DAF=∠BCE ,∴AD ∥BC.∴四边形ABCD 是平行四边形.7.答案:证明:(1)∵E 为AB 的中点,∴AE=EB=21AB.∵DC=21AB ,DC ∥AB , ∴AE DC ,EB DC.∴四边形AECD 和四边形EBCD 都是平行四边形. ∴AD=EC ,ED=BC.又∵AE=BE ,∴△AED ≌△EBC.(2)△ACD ,△ACE ,△CDE(写出其中两个三角形即可)8.答案:证明:在ABCD 中,AD=BC,AD ∥BC,∴∠DAC=∠BCA.又∵∠DEA=∠BFC=90°,∴Rt △ADE ≌Rt △CBF.∴DE=BF.同理,可证DF=BE.∴四边形DEBF 为平行四边形.9.答案:证明:(1)在ABCD 中,AD=CB,AB=CD,∠D=∠B.∵E 、F 分别是AB 、CD 的中点,∴DF=21CD,BE=21AB.∴DF=BE.∴△AFD ≌△CEB. (2)在ABCD 中,AB=CD,AB ∥CD.由(1)得BE=DF,∴AE=CF.∴四边形AECF 是平行四边形.。

平行四边形的性质专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】

平行四边形的性质专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【北师大版】专题6.1平行四边形的性质专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•南海区校级月考)下面性质中,平行四边形不一定具备的是()A.邻角互补B.邻边相等C.对边平行D.对角线互相平分2.(2022春•隆安县期中)在▱ABCD中,∠B=60°,那么下列各式中成立的是()A.∠A+∠C=180°B.∠D=60°C.∠A=100°D.∠B+∠D=180°3.(2022春•曹妃甸区期末)平行四边形相邻两角中,其中一个角的度数y与另一个角的度数x之间的关系是()A.y=x B.y=90﹣x C.y=180﹣x D.y=180+x4.(2022春•淇滨区校级期末)如图,已知▱ABCD中,对角线AC,BD相交于点O,AD=3,AC=8,BD =4,那么BC的长度为()A.6B.5C.4D.35.(2022春•辉县市期末)在▱ABCD中,AC,BD交于点O,△OAB的周长等于5.5cm,BD=4cm,AB+CD =5cm,则AC的长为()A.3cm B.2.5cm C.2cm D.1.5cm6.(2022春•宁都县期末)将平行四边形ABCD放在平面直角坐标系中,顶点A,B,C的坐标分别是(0,0),(4,0),(5,2),则顶点D的坐标是()A.(4,3)B.(1,3)C.(1,2)D.(4,2)7.(2021秋•平阳县校级月考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22B.18C.22或20D.18或228.(2021秋•宁阳县期末)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A.B.4C.D.89.(2022秋•永嘉县校级月考)在平行四边形ABCD中,五块阴影部分的面积分别为S1,S2,S3,S4,S5,如图所示,则下列选项中的关系正确的是()A.S1+S2+S3=S4+S5B.S2+S3=S1+S4+S5C.S3+S4=S1+S2+S5D.S2+S4=S1+S3+S510.(2022春•鼓楼区校级期中)在平面直角坐标系中,▱OABC的边OC落在x轴的正半轴上,点C(4,0),B(6,2),直线y=2x+1以每秒3个单位的速度向下平移,经过多少秒该直线可将▱OABC的面积平分()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022春•姑苏区校级月考)平行四边形ABCD中,∠B:∠C=3:2,则∠C=°.12.(2022秋•任城区校级月考)▱ABCD中,∠A=45°,BC=,则AB与CD之间的距离是;若AB=3,四边形ABCD的面积是,△ABD的面积是.13.(2022•襄汾县一模)如图,在▱ABCD中,点E在AD上,EC平分∠BED,若∠EBC=30°,BE=10,则四边形ABCD的面积为.14.(2022春•遂溪县期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,若AC=10,BD=6,BC=4,则平行四边形ABCD的面积为.15.(2022秋•九龙坡区校级月考)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若▱ABCD的面积为16,且AH:HD=1:3.则图中阴影部分的面积为.16.(2022•景德镇模拟)在▱ABCD中,AB=4,∠ABC,∠BCD的平分线BE,CF分别与直线AD交于点E,F,当点A,D,E,F相邻两点间的距离相等时,BC的长为.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•自贡期末)如图,在▱ABCD中,AF∥CE;求证:BE=DF.18.(2022春•新化县期末)如图,在▱ABCD中,对角线AC与BD相交于点O,AC=10,BD=14,CD=5.2,求△AOB的周长.19.(2022春•望城区期末)如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.(1)求∠ADC的度数;(2)求AB的长.20.(2022春•社旗县月考)如图,在平行四边形ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O.有以下三个条件:①AE=CF;②EO=OF;③O为BD中点.从中选取一个作为题设,余下的两个作为结论,组成一个正确的命题,并加以证明.21.(2021春•玉林期中)如图,在▱ABCD中,点E是CD的中点,点F是BC边上的一点,且EF⊥AE.求证:AE平分∠DAF.李华同学读题后有一个想法,延长FE,AD交于点M,要证AE平分∠DAF,只需证△AMF是等腰三角形即可.请你参考李华的想法,完成此题的证明.22.(2021春•拱墅区校级期中)如图,平行四边形ABCD中,AP,BP分别平分∠DAB和∠CBA,交于DC 边上点P,AD=5.(1)求线段AB的长.(2)若BP=6;求△ABP的周长.23.(2021秋•东平县期末)如图①,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.(1)求证:BE=DF;(2)若图中的条件都不变,将EF转动到图②的位置,那么上述结论是否成立?说明理由.24.(2022春•成华区校级期中)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为点E,CE=CD,点F为CE的中点,点G是CD上的一点,连接DF、EG、AG.(1)若CF=4,AE=6,求BE的长;(2)若∠CEG=∠AGE,那么:①判断线段AG和EG的数量关系,并说明理由;②求证:∠1=∠2.。

初中数学平行四边形性质练习题及答案

初中数学平行四边形性质练习题及答案

初中数学平行四边形性质练习题及答案练习题一:1. 证明平行四边形的对角线互相平分。

2. 若平行四边形的一条对角线被平分,那么这个平行四边形是什么形状?3. 怎样判定一个四边形是平行四边形?答案一:1. 证明:设平行四边形ABCD的对角线AC和BD相交于点O。

要证明对角线AC和BD互相平分,只需证明AO=CO和BO=DO。

首先,由平行四边形的性质可知,AB∥CD,AD∥BC。

根据平行线性质,AO=CO(对应角相等)同理,BO=DO所以,平行四边形的对角线互相平分。

2. 若平行四边形的一条对角线被平分,那么这个平行四边形是矩形。

证明:设平行四边形ABCD的对角线AC被平分于点O。

要证明ABCD是矩形,只需证明∠A=∠B=∠C=∠D=90°。

由平行四边形的性质可知,AB∥CD,AD∥BC。

由对角线互相平分的性质可知,AO=CO,BO=DO。

因此,∠AOC=∠COA,∠BOC=∠COD。

又∠AOC+∠BOC=180°(补角定理)所以,∠AOC=90°(相等补角)。

同理,∠COA=90°,∠BOC=90°,∠COD=90°。

所以,ABCD是矩形。

3. 判定平行四边形的方法:方法一:判定对边平行若四边形ABCD满足AB∥CD及AD∥BC,则四边形ABCD是平行四边形。

方法二:判定对角线互相平分若四边形的对角线互相平分,则四边形是平行四边形。

方法三:判定边长及对角线长度关系若平行四边形ABCD的对角线AC和BD相等,则四边形ABCD是平行四边形。

练习题二:1. 证明平行四边形的相邻角互补。

2. 若平行四边形的一组相邻角是补角,那么这个平行四边形是什么形状?3. 如何判断一个四边形是菱形?答案二:1. 证明:设平行四边形ABCD的两组相邻角为∠A和∠B,∠B和∠C,∠C和∠D,∠D和∠A。

要证明平行四边形的相邻角互补,只需证明∠A+∠B=180°,∠B+∠C=180°,∠C+∠D=180°,∠D+∠A=180°。

(完整版)平行四边形提高题练习

(完整版)平行四边形提高题练习

平行四边形练习一、选择题1,一块均匀的不等边三角形的铁板,它的重心在( )A.三角形的三条角平分线的交点B.三角形的三条高线的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点2,如图1,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对3,平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm4,在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A.AC =BD ,AB =CD ,AB ∥CDB.AD //BC ,∠A =∠CC.AO =BO =CO =DO ,AC ⊥BDD.AO =CO ,BO =DO ,AB =BC5,如图2,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( )A.平行四边形 B 、矩形 C 、菱形 D. 正方形6,如图3,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定7,矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 28,如图4,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( )A.123mB.20mC.22mD.24m9,如图5,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( )A .3B .23C .5D .2510,如图6,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( )图6 图4 F EDC B A 图5 图3 AD C B HE FG 图2O A B D C 图1A.36 mB.48 mC.96 mD.60 m二、填空题(每题3分,共30分)11,如图7, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12,如图8,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13,如图9,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14,已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2.15,如图10,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16,如图11,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.17,如图12,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___.18,将一张长方形的纸对折,如图13所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.三、解答题(共40分)19,如图1,4,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D ,折痕分别交边AB 、BC 于点F 、E ,若AD =2,BC =8.求BE 的长.…… 第一次对折 第二次对折 第三次对折图13图11A 1B 1C 1D 1 D A B C D A B C EF 图12 D C BA 图7 图9 图8K NM Q C BF E D C B A 图14图10 E D C B A20,在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有___组;(2)请在图15的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的饿两条直线有什么规律?21,如图16,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G .(1)线段AF 与GB 相等吗?(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图是一副七巧板,若已知S △BIC =1,请你根据七巧板制作过程的认识,解决下列问题: A B C D A B C D D CB A 图15 A BCDEF 图17图16 O F D B E C A· 图18(1)求一只蚂蚁从点A 沿A →B →C →H →E 所走的路线的总长。

八年级数学平行四边形性质提高试题及答案(北师大)

八年级数学平行四边形性质提高试题及答案(北师大)

平行四边形的性质练习班级:___________________________姓名:___________________________一、选择题1。

在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A 。

1∶2∶3∶4B.1∶2∶2∶1 C 。

1∶1∶2∶2 D 。

2∶1∶2∶12.平行四边行的两条对角线把它分成全等三角形的对数是( )A 。

2B 。

4C 。

6 D.83.在□ABCD 中,∠A 、∠B 的度数之比为5∶4,则∠C 等于( )A 。

60° B.80° C.100° D 。

120°4。

□ABCD 的周长为36 cm ,AB =75BC ,则较长边的长为( ) A.15 cm B.7。

5 cm C.21 cm D.10.5 cm5.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A 。

8。

3B.9。

6 C 。

12.6 D 。

13。

6二、填空题6.已知□ABCD 中,∠B =70°,则∠A =______,∠C =______,∠D =______。

7.在□ABCD 中,AB =3,BC =4,则□ABCD 的周长等于_______.8。

平行四边形的周长等于56 cm ,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.9.在□ABCD 中,∠A +∠C =270°,则∠B =______,∠C =______。

10。

和直线l 距离为8 cm 的直线有______条.三、解答题11.平行四边形的周长为36 cm,一组邻边之差为4 cm,求平行四边形各边的长.12.如图,在□ABCD中,AB=AC,若□ABCD的周长为38 cm,△ABC的周长比□ABCD的周长少10 cm,求□ABCD的一组邻边的长.13。

如图,在□ABCD中,对角线AC,BD相交于点O,MN是过O点的直线,交BC于M,交AD于N,BM=2,AN=2.8,求BC和AD的长。

(完整版)平行四边形练习题及答案(DOC).doc

(完整版)平行四边形练习题及答案(DOC).doc

20.1平行四边形的判定一、选择题1 .四边形ABCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A . 3 种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,其中 a,b 为一组对边边长, c,d?为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .任意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点 F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 满足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图 1图 26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其余各边长用含有未知数 x的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参考答案一、 1. B 点拨:可选择条件(1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,即( a-b )2=0 且( c-d )2=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定.5 .AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、 7.解:如图所示,四边形ABCD是平行四边形.理由如下:在 Rt△BCD 中,根据勾股定理,得BC2+BD 2=DC 2,即( x-5 )2+42=( x-3 )2,解得 x=8.所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC, AB=DC即可,本题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,如图所示.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2 矩形的判定一、选择题1 .矩形具有而一般平行四边形不具有的性质是()A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2 .下列叙述中能判定四边形是矩形的个数是()①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A . 1B . 2C . 3D . 43.下列命题中,正确的是()A.有一个角是直角的四边形是矩形 B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线相交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1 图 25.若四边形 ABCD的对角线 AC, BD相等,且互相平分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E, F, G,H 两点,试说明四边形EFGH是矩形.四、思考题8.如图所示,△ABC 中, CE, CF分别平分∠ACB和它的邻补角∠ACD.AE⊥CE 于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为什么?参考答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3. D 点拨:选项 D 是矩形的判定定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.2 2所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.理由:因为CE平分∠ ACB, ?CF?平分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.22 2又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A .对角线相等的平行四边形B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A . 1 种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD相交于点O,?添加一个条件使平行四边形为菱形,添加的条件为 ________.(只写出符合要求的一个即可)图 1图 25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增加的条件是 ________.(只写出符合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直平分边AB,则 BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思考题9.如图,矩形 ABCD的对角线相交于点 O,PD∥AC,PC∥BD, PD,PC相交于点 P,四边形 PCOD是菱形吗?试说明理由.参考答案一、 1. A点拨:本题用排除法作答.2. D 点拨:根据菱形的判定方法判断,注意不要漏解.3. C点拨:如图所示,若∠ ABC=60°,则△ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.4 2因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB= 2 2 2 2AB OA 8 4 =43 (cm ? ),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可添加AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的平分线上(或 AE=AF)26. 12cm; 723 cm点拨:如图所示,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠A BC=1:2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×63=72 3 (cm2).7. 4;4 3 点拨:如图所示,因为DE垂直平分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2 2 2 2 2 2 2?AE +DE=AD,即 2 +DE=4 ,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .2 2三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以Y ABCD是菱形.点拨:根据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、 9.解:四边形PCOD是菱形.理由如下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要添加条件_______.4.如图 1 所示,直线L 过正方形ABCD的顶点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图 1图2图 35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延长线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点,AF=2, P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.如图所示,在 Rt△ABC中, CF为∠ ACB的平分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思考题8.已知如图所示,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为什么?(2) AF 与 DE是否垂直?说明你的理由.C D A AB,BC边上的点,且 AE=BF,?请问:参考答案一、 1. C点拨:对角线互相平分的四边形是平行四边形,?对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可添加△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 22 12 = 5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17 点拨:如图所示,作 F 关于AC的对称点G.连结EG交AC于P,则PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?平分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,?还可以先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.理由:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.理由:如图,设DE与 AF 相交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判定1 A C 一、选择题.下列结论中,正确的是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线 AC,BD相交于点O,则图中全等三角形有()A. 2 对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A . 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________ (填一个正确的条件即可).三、解答题7.如图所示,AD是∠ BAC的平分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为什么?参考答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A, B 选项都不正确,而 C 选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2. B点拨:因为△ ABC≌△DCB,△ BAD≌△CDA,△ AOB≌△DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,?所以梯形面积为122L =450,解得 L=30,所以所用竹条长度之和至少为2L=2× 30=60(cm).二、 4. 4:65点拨:如图所示,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形 AEFD为矩形,所以BE=CF=3, AD=EF=4.在Rt△CDF 中, FC2+DF 2=CD 2,即 32+DF 2=52,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:如图所示,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的平分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形ABCD是等腰梯形.理由:延长BA, CD,相交于点 E,如图所示,由∠ B=∠C,可得EB=EC.又AB=DC,所以 EB-AB=EC-DC,即 AE=DE,所以∠ EAD=∠EDA.因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B.故 AD∥BC. ?又 AD<BC,所以四边形 ABCD是梯形.又AB=DC,所以四边形 ABCD是等腰梯形.点拨:由题意可知,只要推出 AD∥BC,再由 AD<BC就可知四边形 ABCD为梯形,再由AB=DC,即可求得此四边形是等腰梯形,由∠ B=∠C联想到延长 BA,CD,即可得到等腰三角形,从而使AD∥BC.华东师大版数学八年级(下)第 20 章平行四边形的判定测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分 ____________一、认认真真选,沉着应战!(每小题 3 分,共 30 分)1. 正方形具有菱形不一定具有的性质是()(A )对角线互相垂直(B)对角线互相平分(C)对角线相等(D)对角线平分一组对角2.如图 (1),EF 过矩形 ABCD 对角线的交点 O,且分别交 AB 、CD 于 E、 F,那么阴影部分的面积是矩形ABCD 的面积的()(A )A 1 1 1( D )3A5(B )( C)104 3D E FFEB C D HB C(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 可以等于()( A )4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若Y ABCD的周长为48,DE = 5, DF= 10,则Y ABCD的面积等于 ()( A )87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A )3种(B)4种(C)5种(D)6种6.如图 (3) ,D、E、F分别是VABC各边的中点,AH 是高,如果 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不能确定7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上任意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2 13 2( A )2 ( B)2 ( C)2 ( D)38.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 , BD 平分ABC ,如果这个梯形的周长为30,则AB的长()( A )4 ( B )5 ( C )6 ( D )7A DA DERPB C( 5)B( 4)Q C9.右图是一个利用四边形的不稳定性制作的菱形晾衣架.A B C 已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A ) 90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、 b,都有 a+b ≥ 2 ab 成立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔仔填,自信!( 每小 2 分,共20 分)11.一个四形四条次是a、b、c、d,且a2 b 2 c 2 d 2 2ac 2bd,个四形是 _______________ .12.在四形ABCD中,角AC、BD交于点O,从(1)AB CD ;(2) AB ∥CD ;(3)OA OC;(4)OB OD ;(5) AC ⊥ BD ;(6) AC 平分 BAD 六个条件中,取三个推出四形ABCD 是菱形.如( 1)( 2)( 5)ABCD 是菱形,再写出符合要求的两个:ABCD 是菱形;ABCD 是菱形.13. 如,已知直l 把 Y ABCD 分成两部分,要使两部分的面相等,直l 所在位置需足的条件是____________________. (只需填上一个你合适的条件)lA DB C(第 13 )(第 16 )14.梯形的上底 6cm ,上底的一点引一腰的平行,与下底相交,所构成的三角形周 21cm ,那么梯形的周_________ cm。

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案

平行四边形性质及判定练习题及答案1、已知平行四边形ABCD中,AE⊥BC,AF⊥CD,E,F分别是BC,CD的中点,则2、已知平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是多少?3、已知平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,求AB的长。

4、下列哪些命题是正确的:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形。

5、已知平行四边形ABCD中,AB=6,AC=4,E,D,F 分别是AB,BC,CA的中点,求四边形AEDF的周长。

6、已知平行四边形ABCD的对角线AC、BD相交于点O,下列哪个结论不正确:(A)DC∥AB;(B)OA=OC;(C)AD=BC;(D)DB平分∠ADC。

7、已知平行四边形ABCD中,AB=4,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,求BC的长。

8、已知平行四边形ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF,若EF=3,则CD的长为多少?9、已知平行四边形ABCD中,对角线AC、BD相交于点O,点E是BC的中点,OE=3,求AB的长。

10、已知平行四边形ABCD中,AB=8,AD=5,E,F分别是AB,AD的中点,连接EF,求四边形CDEF的周长。

11、已知平行四边形ABCD中,AB=6,BC=8,对角线AC,BD相交于点O,OE=3,求AD的长。

12、已知平行四边形ABCD中,AB=5,BC=7,对角线AC,BD相交于点O,点E是BC的中点,求AE的长。

13、已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,求DC边上的高AF的长度。

14、在平行四边形ABCD中,AB=2cm,BC=3cm,∠B、∠C的平分线分别交AD于F、E,求EF的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形性质提高练习及答案1如图,□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F ,连接EC .(1)求证:OE=OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求□ABCD 的周长.2.在面积为15的□ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB=5,BC=6,求CE+CF 的值3如图,□ABCD 中,点E 、F 分别在AD 、AB 上,依次连接EB 、EC 、FC 、FD ,图中阴影部分的面积分别为S 1、S 2、S 3、S 4,已知S 1=2、S 2=12、S 3=3,求S 4的值4如图,□ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,求ABCD 的面积.5.如图,在?ABCD 中,E 、F 分别为边AD 、BC 的中点,对角线AC 分别交BE ,DF 于点G 、H .求证:AG=CH .6如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,求阴影部分的面积.7如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.8在□ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针(直旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.接写出结论不必证明)答案1如图,□ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求□ABCD的周长.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出?ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,∠FDO=∠EBO OD=OB ∠FOD=∠EOB ,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴?ABCD的周长=2(BC+AB)=20.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.2在面积为15的□ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,求CE+CF 的值2平行四边形的性质和面积,勾股定理。

依题意,有如图的两种情况。

设BE=x,DF=y。

如图1,由AB=5,BE=x,得。

由平行四边形ABCD的面积为15,BC=6,得,解得(负数舍去)。

由BC=6,DF=y,得。

由平行四边形ABCD的面积为15,AB=5,得,解得(负数舍去)。

∴CE+CF=(6-)+(5-)=11-。

如图2,同理可得BE= ,DF=。

∴CE+CF=(6+)+(5+)=11+。

故选C。

3如图,□ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S 3、S4,已知S1=2、S2=12、S3=3,求S4的值【考点】平行四边形的性质.【分析】影阴部分S2是三角形CDF与三角形CBE的公共部分,而S1,S4,S3这三块是平行四边形中没有被三角形CDF与三角形CBE盖住的部分,故△CDF面积+△CBE面积+(S1+S4+S3)-S2=平行四边形ABCD的面积,而△CDF与△CBE的面积都是平行四边形ABCD面积的一半,据此求得S4的值.【解答】解:设平行四边形的面积为S ,则S △CBE=S △CDF=12S , 由图形可知,△CDF 面积+△CBE 面积+(S1+S4+S3)-S2=平行四边形ABCD 的面积∴S=S △CBE+S △CDF+2+S 4+3-12,即S=12S+12S+2+S 4+3-12, 解得S 4=7,故选(D ).【点评】本题主要考查了平行四边形的性质,解决问题的关键是明确各部分图形面积的和差关系:平行四边形ABCD 的面积=△CDF 面积+△CBE 面积+(S1+S4+S3)-S2.4如图,□ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,求ABCD 的面积.【考点】平行四边形的性质;三角形的面积;勾股定理的逆定理.【专题】压轴题;转化思想.【分析】求?ABCD 的面积,就需求出BC 边上的高,可过D 作DE ∥AM ,交BC 的延长线于E ,那么四边形ADEM 也是平行四边形,则AM=DE ;在△BDE 中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE 是直角三角形;可过D 作DF ⊥BC 于F ,根据三角形面积的不同表示方法,可求出DF 的长,也就求出了BC 边上的高,由此可求出四边形ABCD 的面积.【解答】解:作DE ∥AM ,交BC 的延长线于E ,则ADEM 是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE 中,∵BD2+DE2=144+81=225=BE2,∴△BDE 是直角三角形,且∠BDE=90°,过D 作DF ⊥BE 于F ,则DF=BD?DEBE=365,∴S?ABCD=BC?FD=10×365=72.故选D.【点评】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.5.(2012?淄博模拟)则在?ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()A.30°B.45°C.60°D.75°【考点】平行四边形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,则可证得△BEG≌△DCG,然后即可求得答案.【解答】解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DFA=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD和△GFD中,BH=GF∠BHD=∠GFDDH=DF,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF,∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.故选C.【点评】此题主要考查平行四边形的性质,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.6.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,求阴影部分的面积.【考点】平行四边形的性质.【专题】压轴题.【分析】作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.【解答】解:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为:40.【点评】本题综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形.7如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【考点】三角形中位线定理;直角三角形斜边上的中线;勾股定理.【分析】(1)根据三角形中位线定理得MN=12AD,根据直角三角形斜边中线定理得BM=1AD,根据直角三角形斜边中线定理得BM=12AC,由此即可证明.首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=12AD,在RT△ABC中,∵M是AC中点,∴BM=12AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=12AC=1,∴BN=2【点评】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.8.(2013?沈阳模拟)在?ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)【考点】平行四边形的性质;全等三角形的判定与性质;等边三角形的判定;等腰直角三角形.【专题】压轴题.【分析】(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.【解答】(1)证明:①∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠ABC=90°,AB∥DC,AD∥BC,∴∠F=∠FDC,∠BEF=∠ADF,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∴∠F=∠BEF,∴BF=BE;②△AGC是等腰直角三角形.理由如下:连接BG,由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,在△AFG和△CBG中,AF=BC∠F=∠CBG=45°BG=FG,∴△AFG≌△CBG(SAS),∴AG=CG,∴∠FAG=∠BCG,又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;(2)连接BG,∵FB绕点F顺时针旋转60°至FG,∴△BFG是等边三角形,∴FG=BG,∠FBG=60°,又∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=∠ADC=60°∴∠CBG=180°-∠FBG-∠ABC=180°-60°-60°=60°,∴∠AFG=∠CBG,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∵AB∥DC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,在△AFG和△CBG中,FG=BG∠AFG=∠CBGAF=BC,∴△AFG≌△CBG(SAS),∴AG=CG,∠FAG=∠BCG,在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°-60°=120°,∴∠AGC=180°-(∠GAC+∠ACG)=180°-120°=60°,∴△AGC是等边三角形.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键.。

相关文档
最新文档